Articles | Volume 9, issue 6
https://doi.org/10.5194/esurf-9-1399-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-1399-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sedimentary architecture and landforms of the late Saalian (MIS 6) ice sheet margin offshore of the Netherlands
Víctor Cartelle
CORRESPONDING AUTHOR
School of Earth and Environment, University of Leeds, Leeds, UK
Natasha L. M. Barlow
School of Earth and Environment, University of Leeds, Leeds, UK
David M. Hodgson
School of Earth and Environment, University of Leeds, Leeds, UK
Freek S. Busschers
TNO, Geological Survey of the Netherlands, Utrecht, the Netherlands
Kim M. Cohen
Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Bart M. L. Meijninger
TNO, Geological Survey of the Netherlands, Utrecht, the Netherlands
Wessel P. van Kesteren
Fugro, Nootdorp, the Netherlands
Related authors
Kim M. Cohen, Víctor Cartelle, Robert Barnett, Freek S. Busschers, and Natasha L. M. Barlow
Earth Syst. Sci. Data, 14, 2895–2937, https://doi.org/10.5194/essd-14-2895-2022, https://doi.org/10.5194/essd-14-2895-2022, 2022
Short summary
Short summary
We describe a geological sea-level dataset for the Last Interglacial period (peaking ~125 000 years ago). From 80 known sites in and around the North Sea and English Channel (from below coastal plains, from along terraced parts of coastlines, from offshore), we provide and document 146 data points (35 entries in the Netherlands, 10 in Belgium, 23 in Germany, 17 in Denmark, 36 in Britain and the Channel Isles, 25 in France) that are also viewable at https://warmcoasts.eu/world-atlas.html.
Amy M. McGuire, Víctor Cartelle, Graham Rush, Freek S. Busschers, Kim M. Cohen, David M. Hodgson, and Natasha L. M. Barlow
Sci. Dril., 34, 29–39, https://doi.org/10.5194/sd-34-29-2025, https://doi.org/10.5194/sd-34-29-2025, 2025
Short summary
Short summary
We present five new sediment cores, the Rates of Interglacial Sea-level Change and Responses (RISeR) cores, extracted from the southern North Sea. The cores will allow us to study the evolution of the basin in the Quaternary (the last 2.58 million years). The cores reveal widespread soil, wetland, and river deposits, reflecting a lost, predominantly terrestrial, landscape that now sits around 20 m below sea level. Understanding these landscapes is vital, as they form the foundations for a rapidly growing offshore wind industry.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
Earth Surf. Dynam., 13, 315–339, https://doi.org/10.5194/esurf-13-315-2025, https://doi.org/10.5194/esurf-13-315-2025, 2025
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains; within South Africa they are regarded as ancient landforms that can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Kim de Wit, Kim M. Cohen, and Roderik S. W. van de Wal
Earth Syst. Sci. Data, 17, 545–577, https://doi.org/10.5194/essd-17-545-2025, https://doi.org/10.5194/essd-17-545-2025, 2025
Short summary
Short summary
In the Holocene, deltas and coastal plains developed due to relative sea level rise (RSLR). Past coastal and inland water levels are preserved in geological indicators, like basal peats. We present a dataset of 712 Holocene water level indicators from the Dutch coastal plain, relevant for studying RSLR and regional subsidence, compiled in HOLSEA workbook format. Our new, internally consistent, expanded documentation encourages multiple data uses and to report RSLR uncertainties transparently.
Oliver G. Pollard, Natasha L. M. Barlow, Lauren J. Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy C. Ely, and Lachlan C. Astfalck
The Cryosphere, 17, 4751–4777, https://doi.org/10.5194/tc-17-4751-2023, https://doi.org/10.5194/tc-17-4751-2023, 2023
Short summary
Short summary
We use advanced statistical techniques and a simple ice-sheet model to produce an ensemble of plausible 3D shapes of the ice sheet that once stretched across northern Europe during the previous glacial maximum (140,000 years ago). This new reconstruction, equivalent in volume to 48 ± 8 m of global mean sea-level rise, will improve the interpretation of high sea levels recorded from the Last Interglacial period (120 000 years ago) that provide a useful perspective on the future.
Sarah A. Woodroffe, Leanne M. Wake, Kristian K. Kjeldsen, Natasha L. M. Barlow, Antony J. Long, and Kurt H. Kjær
Clim. Past, 19, 1585–1606, https://doi.org/10.5194/cp-19-1585-2023, https://doi.org/10.5194/cp-19-1585-2023, 2023
Short summary
Short summary
Salt marsh in SE Greenland records sea level changes over the past 300 years in sediments and microfossils. The pattern is rising sea level until ~ 1880 CE and sea level fall since. This disagrees with modelled sea level, which overpredicts sea level fall by at least 0.5 m. This is the same even when reducing the overall amount of Greenland ice sheet melt and allowing for more time. Fitting the model to the data leaves ~ 3 mm yr−1 of unexplained sea level rise in SE Greenland since ~ 1880 CE.
Kim M. Cohen, Víctor Cartelle, Robert Barnett, Freek S. Busschers, and Natasha L. M. Barlow
Earth Syst. Sci. Data, 14, 2895–2937, https://doi.org/10.5194/essd-14-2895-2022, https://doi.org/10.5194/essd-14-2895-2022, 2022
Short summary
Short summary
We describe a geological sea-level dataset for the Last Interglacial period (peaking ~125 000 years ago). From 80 known sites in and around the North Sea and English Channel (from below coastal plains, from along terraced parts of coastlines, from offshore), we provide and document 146 data points (35 entries in the Netherlands, 10 in Belgium, 23 in Germany, 17 in Denmark, 36 in Britain and the Channel Isles, 25 in France) that are also viewable at https://warmcoasts.eu/world-atlas.html.
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
Cited articles
Aber, J. S. and Ber, A.: Chapter 5 Composite ridges, in: Glaciotectonism,
Developments in Quaternary Sciences, vol. 6, edited by: Aber, J. S. and Ber,
A., Elsevier Ltd, the Netherlands, 59–82, https://doi.org/10.1016/S1571-0866(07)80073-X, 2007.
Aber, J. S., Croot, D. G., and Fenton, M. M.: Glaciotectonic Landforms and
Structures, Springer, Dordrecht, Netherlands, https://doi.org/10.1007/978-94-015-6841-8,
1989.
Arfai, J., Franke, D., Lutz, R., Reinhardt, L., Kley, J., and Gaedicke, C.:
Rapid Quaternary subsidence in the northwestern German North Sea, Sci. Rep.-UK,
8, 11524, https://doi.org/10.1038/s41598-018-29638-6, 2018.
Bakker, M. A. J.: The internal structure of Pleistocene push moraines. A
multidisciplinary approach with emphasis on ground-penetrating radar, Queen
Mary, University of London, 180 pp., 2004.
Bakker, M. A. J. and Van der Meer, J. J. M.: Structure of a Pleistocene push
moraine revealed by GPR: The eastern Veluwe Ridge, the Netherlands, Geol.
Soc. Spec. Publ., 211, 143–151, https://doi.org/10.1144/GSL.SP.2001.211.01.12, 2003.
Barlow, N. L. M., McClymont, E. L., Whitehouse, P. L., Stokes, C. R.,
Jamieson, S. S. R., Woodroffe, S. A., Bentley, M. J., Callard, S. L.,
Cofaigh, C., Evans, D. J. A., Horrocks, J. R., Lloyd, J. M., Long, A. J.,
Margold, M., Roberts, D. H., and Sanchez-Montes, M. L.: Lack of evidence for
a substantial sea-level fluctuation within the Last Interglacial, Nat. Geosci., 11, 627–634,
https://doi.org/10.1038/s41561-018-0195-4, 2018.
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S.,
Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The
configuration of Northern Hemisphere ice sheets through the Quaternary, Nat.
Commun., 10, 3713–3713, https://doi.org/10.1038/s41467-019-11601-2, 2019.
Bateman, M. D., Evans, D. J. A., Buckland, P. C., Connell, E. R., Friend, R.
J., Hartmann, D., Moxon, H., Fairburn, W. A., Panagiotakopulu, E., and
Ashurst, R. A.: Last glacial dynamics of the Vale of York and North Sea
lobes of the British and Irish Ice Sheet, Proc. Geol. Assoc., 126,
712–730, https://doi.org/10.1016/J.PGEOLA.2015.09.005, 2015.
Beets, C. and Beets, D. J.: A high resolution stable isotope record of the
penultimate deglaciation in lake sediments below the city of Amsterdam, The
Netherlands, Quat. Sci. Rev., 22, 195–207,
https://doi.org/10.1016/S0277-3791(02)00089-6, 2003.
Beets, D. J., Beets, C. J., and Cleveringa, P.: Age and climate of the late
Saalian and early Eemian in the type-area, Amsterdam basin, The Netherlands,
Quaternary Sci. Rev., 25, 876–885, https://doi.org/10.1016/j.quascirev.2005.10.001, 2006.
Benn, D. and Evans, D. J. A.: Glaciers and Glaciation, 2nd edition,
Routledge, London, https://doi.org/10.4324/9780203785010, 2010.
Boston, C. M., Evans, D. J. A., and Cofaigh, C. Ó.: Styles of till
deposition at the margin of the Last Glacial Maximum North Sea lobe of the
British–Irish Ice Sheet: an assessment based on geochemical properties of
glacigenic deposits in eastern England, Quaternary Sci. Rev., 29,
3184–3211, https://doi.org/10.1016/J.QUASCIREV.2010.05.028, 2010.
Busschers, F. S., Kasse, C., van Balen, R. T., Vandenberghe, J., Cohen, K.
M., Weerts, H. J. T., Wallinga, J., Johns, C., Cleveringa, P., and Bunnik,
F. P. M.: Late Pleistocene evolution of the Rhine-Meuse system in the
southern North Sea basin: imprints of climate change, sea-level oscillation
and glacio-isostacy, Quaternary Sci. Rev., 26, 3216–3248,
https://doi.org/10.1016/j.quascirev.2007.07.013, 2007.
Busschers, F. S., Van Balen, R. T., Cohen, K. M., Kasse, C., Weerts, H. J.
T., Wallinga, J., and Bunnik, F. P. M.: Response of the Rhine-Meuse fluvial
system to Saalian ice-sheet dynamics, Boreas, 37, 377–398,
https://doi.org/10.1111/j.1502-3885.2008.00025.x, 2008.
Cameron, T. D. J., Laban, C., and Schüttenhelm, R. T. E.: Flemish Bight.
Sheet 52∘ N/02∘ E, Quaternary Geology, 1:250 000 series, Ordnance Survey, Southampton, UK, 1984.
Cameron, T. D. J., Crosby, A., Balson, P. S., Jeffery, D. H., Lott, G. K.,
Bulat, J., and Harrison, D. J.: United Kingdom Offshore Regional Report: The
Geology of the southern North Sea, London, 170 pp., 1992.
Caston, V. N. D.: The Quaternary Sediments of the North Sea, Elsevier
Oceanogr. Ser., 24, 195–196, https://doi.org/10.1016/S0422-9894(08)71349-7, 1979.
Clayton, L., Attig, J. W., and Mickelson, D. M.: Tunnel channels formed in
Wisconsin during the last glaciation, in: Glacial Processes Past and Present,
edited by: Mickelson, D. W. and Attig, J. W., Geological Society of America,
337, 69–82, 1999.
Cotterill, C. J., Phillips, E., James, L., Forsberg, C. F., Tjelta, T. I.,
Carter, G., and Dove, D.: The evolution of the Dogger Bank, North Sea: A
complex history of terrestrial, glacial and marine environmental change,
Quaternary Sci. Rev., 171, 136–153, https://doi.org/10.1016/j.quascirev.2017.07.006, 2017.
De Gans, W., De Groot, T., and Zwaan, H.: The Amsterdam basin, a case study
of a glacial basin in The Netherlands, in: Tills and Glaciotectonics,
edited by: van der Meer, J. J. M., Bakelma, Rotterdam, the Netherlands,
205–216, 1987.
Dendy, S., Austermann, J., Creveling, J. R., and Mitrovica, J. X.:
Sensitivity of Last Interglacial sea-level high stands to ice sheet
configuration during Marine Isotope Stage 6, Quaternary Sci. Rev., 171, 234–244,
https://doi.org/10.1016/j.quascirev.2017.06.013, 2017.
Dove, D., Evans, D. J. A., Lee, J. R., Roberts, D. H., Tappin, D. R.,
Mellett, C. L., Long, D., and Callard, S. L.: Phased occupation and retreat
of the last British–Irish Ice Sheet in the southern North Sea: geomorphic
and seismostratigraphic evidence of a dynamic ice lobe, Quaternary Sci. Rev.,
163, 114–134, https://doi.org/10.1016/J.QUASCIREV.2017.03.006, 2017.
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U.,
DeConto, R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-level rise
due to polar ice-sheet mass loss during past warm periods, Science, 349,
aaa4019, https://doi.org/10.1126/science.aaa4019, 2015.
Eaton, S. J., Hodgson, D. M., Barlow, N. L. M., Mortimer, E. J., and
Mellett, C. L.: Palaeogeographic changes in response to glacial-interglacial
cycles, as recorded in Middle and Late Pleistocene seismic stratigraphy,
southern North Sea – White Rose Research Online, J. Quat. Sci., 35, 760–775,
https://doi.org/10.1002/jqs.3230, 2020.
Ehlers, J.: Reconstructing the dynamics of the North-west European
Pleistocene ice sheets, Quaternary Sci. Rev., 9, 71–83,
https://doi.org/10.1016/0277-3791(90)90005-U, 1990.
Ehlers, J. and Gibbard, P. L. (Eds.): Quaternary Glaciations – Extent and
Chronology. part I: Europe., Elsevier, Amsterdam, 488 pp., 2004.
Emery, A. R., Hodgson, D. M., Barlow, N. L. M., Carrivick, J. L., Cotterill,
C. J., and Phillips, E.: Left High and Dry: Deglaciation of Dogger Bank,
North Sea, Recorded in Proglacial Lake Evolution, Front. Earth Sci., 7,
1–27, https://doi.org/10.3389/feart.2019.00234, 2019.
Evans, D. J. A. and Rea, B. R.: Geomorphology and sedimentology of surging
glaciers: a land-systems approach, Ann. Glaciol., 28, 75–82,
https://doi.org/10.3189/172756499781821823, 1999.
Evans, D. J. A. and Rea, B. R.: Surging glacier landsystem, in: Glacial
Landsystems, edited by: Evans, D. J. A., Arnold, London, 259–288, 2005.
Evans, D. J. A., Roberts, D. H., Bateman, M. D., Ely, J., Medialdea, A.,
Burke, M. J., Chiverrell, R. C., Clark, C. D., and Fabel, D.: A chronology
for North Sea Lobe advance and recession on the Lincolnshire and Norfolk
coasts during MIS 2 and 6, Proc. Geol. Assoc., 130, 523–540,
https://doi.org/10.1016/J.PGEOLA.2018.10.004, 2019.
Evans, D. J. A., Atkinson, N., and Phillips, E.: Glacial geomorphology of the
Neutral Hills Uplands, southeast Alberta, Canada: The process-form imprints
of dynamic ice streams and surging ice lobes, Geomorphology, 350, 106910,
https://doi.org/10.1016/J.GEOMORPH.2019.106910, 2020.
Evans, D. J. A., Phillips, E. R., and Atkinson, N.: Glacitectonic rafts and
their role in the generation of Quaternary subglacial bedforms and deposits,
Quaternary Res., 1–35, https://doi.org/10.1017/QUA.2021.11, 2021.
Fugro: Geophysical Site Investigation Survey. Hollandse Kust (zuid) Wind
Farm Development Zone Wind Farm Site I, Report No. GH176-R1, Netherlands Enterprise Agency, the Netherlands, 2016a.
Fugro: Geophysical Site Investigation Survey. Hollandse Kust (zuid) Wind
Farm Development Zone Wind Farm Site II, Report No. GH176-R2, Netherlands Enterprise Agency, the Netherlands, 2016b.
Fugro: Geophysical Site Investigation Survey. Hollandse Kust (zuid) Wind
Farm Development Zone Wind Farm Site III, Report No. GH176-R3, Netherlands Enterprise Agency, the Netherlands, 2016c.
Fugro: Geophysical Site Investigation Survey. Hollandse Kust (zuid) Wind
Farm Development Zone Wind Farm Site IV, Report No. GH176-R4, Netherlands Enterprise Agency, the Netherlands, 2016d.
Fugro: Geotechnical Report. Investigation Data. Geotechnical Borehole
Locations, Wind Farm Site I, Hollandse Kust (zuid) Wind Farm Zone, Dutch
Sector, North Sea, Report No. N6196/01, Issue 4, Netherlands Enterprise Agency, the Netherlands, 2016e.
Fugro: Geotechnical Report. Investigation Data. Geotechnical Borehole
Locations, Wind Farm Site II, Hollandse Kust (zuid) Wind Farm Zone, Dutch
Sector, North Sea, Report No. N6196/03, Issue 4, Netherlands Enterprise Agency, the Netherlands, 2016f.
Fugro: Geophysical Survey HKZ I to IV, Netherlands Enterprise Agency [data set], available at: https://offshorewind.rvo.nl/soilzh (last access: 31 October 2021), 2016g.
Fugro: Geotechnical Investigations HKZ I & II, Netherlands Enterprise Agency [data set], available at: https://offshorewind.rvo.nl/soilzh (last access: 31 October 2021), 2016h.
Fugro: Geophysical Site Investigation Survey. Hollandse Kust (noord) Wind
Farm Zone Survey 2017, Report No. GH216-R3, Netherlands Enterprise Agency, the Netherlands, 2017a.
Fugro: Geotechnical Report. Investigation Data. Geotechnical Borehole
Locations, Wind Farm Site III, Hollandse Kust (zuid) Wind Farm Zone, Dutch
Sector, North Sea, Report No. N6196/05, Issue 4, Netherlands Enterprise Agency, the Netherlands, 2017b.
Fugro: Geotechnical Report. Investigation Data. Geotechnical Borehole
Locations, Wind Farm Site IV, Hollandse Kust (zuid) Wind Farm Zone, Dutch
Sector, North Sea, Report No. N6196/07, Issue 3, Netherlands Enterprise Agency, the Netherlands, 2017c.
Fugro: Geological Ground Model. Wind farm Site III. Hollandse Kust (zuid)
Wind Farm Zone, Dutch Sector, North Sea, Report No. N6196/11, Issue 2, Netherlands Enterprise Agency, the Netherlands,
2017d.
Fugro: Geotechnical Investigations HKZ III & IV, Netherlands Enterprise Agency [data set], available at: https://offshorewind.rvo.nl/soilzh (last access: 31 October 2021), 2017e.
Fugro: Geophysical Survey HKN, Netherlands Enterprise Agency [data set], available at: https://offshorewind.rvo.nl/soilnh (last access: 31 October 2021), 2017f.
Fugro: Geotechnical Report. Investigation Data. Geotechnical Borehole
Locations Hollandse Kust (noord) Wind Farm Zone, Dutch Sector, North Sea,
Report No. P903749/02, Issue 6, Netherlands Enterprise Agency, the Netherlands, 2019a.
Fugro: Geotechnical Investigations HKN, Netherlands Enterprise Agency [data set], available at: https://offshorewind.rvo.nl/soilnh (last access: 31 October 2021), 2019b.
Gandy, N., Gregoire, L. J., Ely, J. C., Cornford, S. L., Clark, C. D., and
Hodgson, D. M.: Collapse of the last Eurasian Ice Sheet in the North Sea
modulated by combined processes of ice flow, surface melt, and marine ice
sheet instabilities, J. Geophys. Res.-Earth Surf., 126, e2020JF005755,
https://doi.org/10.1029/2020JF005755, 2020.
Gibbard, P. L. and Clark, C. D.: Pleistocene Glaciation Limits in Great
Britain, Dev. Quat. Sci., 15, 75–93, https://doi.org/10.1016/B978-0-444-53447-7.00007-6,
2011.
Gibbard, P. L., Pasanen, A. H., West, R. G., Lunkka, J. P., Boreham, S.,
Cohen, K. M., and Rolfe, C.: Late Middle Pleistocene glaciation in East
Anglia, England, Boreas, 38, 504–528, https://doi.org/10.1111/j.1502-3885.2009.00087.x,
2009.
Glennie, K. W. and Underhill, J. R.: Origin, Development and Evolution of
Structural Styles, in: Petroleum Geology of the North Sea; Basic Concepts
and Recent Advances: Fourth Edition, edited by: Glennie, K. W., Blackwell
Science Ltd, Oxford, UK, 42–84, https://doi.org/10.1002/9781444313413.ch2, 2009.
Graham, A. G. C., Stoker, M. S., Lonergan, L., Bradwell, T., and Stewart, M.
A.: The Pleistocene Glaciations of the North Sea Basin, Dev. Quat. Sci., 15,
261–278, https://doi.org/10.1016/B978-0-444-53447-7.00021-0, 2011.
Graham, A. G. C., Lonergan, L., and Stoker, M. S.: Seafloor glacial features
reveal the extent and decay of the last British Ice Sheet, east of Scotland,
J. Quaternary Sci., 24, 117–138, https://doi.org/10.1002/JQS.1218, 2009.
Hijma, M. P., Cohen, K. M., Roebroeks, W., Westerhoff, W. E., and Busschers,
F. S.: Pleistocene Rhine-Thames landscapes: geological background for
hominin occupation of the southern North Sea region, J. Quaternary Sci., 27,
17–39, https://doi.org/10.1002/jqs.1549, 2012.
Huuse, M. and Lykke-Andersen, H.: Overdeepened Quaternary valleys in the
eastern Danish North Sea: Morphology and origin, Quat. Sci. Rev., 19,
1233–1253, https://doi.org/10.1016/S0277-3791(99)00103-1, 2000.
Joon, B., Laban, C., and Meer, J. J. M.: The Saalian glaciation in the North
Sea, Geol. en Mijnb., 69, 151–158, 1990.
Jørgensen, F. and Sandersen, P. B. E.: Buried and open tunnel valleys in
Denmark – erosion beneath multiple ice sheets, Quaternary Sci. Rev., 25,
1339–1363, https://doi.org/10.1016/J.QUASCIREV.2005.11.006, 2006.
Kehew, A. E., Piotrowski, J. A., and Jørgensen, F.: Tunnel valleys:
Concepts and controversies – A review, Earth-Science Rev., 113, 33–58,
https://doi.org/10.1016/j.earscirev.2012.02.002, 2012.
Kluiving, S. J., Rappol, M., and Wateren, D. van der: Till stratigraphy and
ice movements in eastern Overijssel, The Netherlands, Boreas, 20, 193–205,
https://doi.org/10.1111/j.1502-3885.1991.tb00150.x, 1991.
Knox, R. W. O. B., Bosch, J. H. A., Rasmussen, E. S., Heilmann-Clausen, C.,
Hiss, M., De Lugt, I. R., Kasińksi, J., King, C., Köthe, A., Słodkowska, B., Standke, G., and Vandenberghe, N.: Chapter 12 Cenozoic, in:
Petroleum Geologial Atlas of the Southern Permian basin Area, edited by:
Doornenbal, J. C. and Stevenson, A. G., EAGE Publications b.v., Houten,
211–223, 2010.
Kuhlmann, G.: High Resolution Stratigraphy and Paleoenvironmental Changes in
the Southern North Sea during the Neogene – an Integrated Study of Late
Cenozoic Marine Deposits from the Northern Part of the Dutch Offshore Area,
Utrecht University, 205 pp., 2004.
Laban, C.: The Pleistocene glaciations in the Dutch sector of the North Sea.
A synthesis of sedimentary and seismic data, University of Amsterdam, Amsterdam, 194
pp., 1995.
Laban, C. and van der Meer, J. J. M.: Pleistocene glaciation in The
Netherlands, Dev. Quat. Sci., 15, 247–260,
https://doi.org/10.1016/B978-0-444-53447-7.00020-9, 2011.
Lamb, R. M., Harding, R., Huuse, M., Stewart, M., and Brocklehurst, S. H.:
The early quaternary north sea basin, J. Geol. Soc. London., 175, 275–290,
https://doi.org/10.1144/jgs2017-057, 2018.
Lauer, T. and Weiss, M.: Timing of the Saalian- A nd Elsterian glacial
cycles and the implications for Middle-Pleistocene hominin presence in
central Europe, Sci. Rep.-UK, 8, 1–13, https://doi.org/10.1038/s41598-018-23541-w, 2018.
Lee, J. R., Busschers, F. S., and Sejrup, H. P.: Pre-Weichselian Quaternary
glaciations of the British Isles, The Netherlands, Norway and adjacent
marine areas south of 68∘ N: Implications for long-term ice sheet
development in northern Europe, Quaternary Sci. Rev., 44, 213–228,
https://doi.org/10.1016/j.quascirev.2010.02.027, 2012.
Meinsen, J., Winsemann, J., Weitkamp, A., Landmeyer, N., Lenz, A., and
Dölling, M.: Middle Pleistocene (Saalian) lake outburst floods in the
Münsterland Embayment (NW Germany): Impacts and magnitudes, Quaternary Sci.
Rev., 30, 2597–2625, https://doi.org/10.1016/j.quascirev.2011.05.014, 2011.
Mellett, C. L., Hodgson, D. M., Plater, A. J., Mauz, B., Selby, I., and
Lang, A.: Denudation of the continental shelf between Britain and France at
the glacial–interglacial timescale, Geomorphology, 203, 79–96,
https://doi.org/10.1016/j.geomorph.2013.03.030, 2013.
Mellett, C. L., Phillips, E., Lee, J. R., Cotterill, C. J., Tjelta, T. I.,
James, L., and Duffy, C.: Elsterian ice-sheet retreat in the southern North
Sea: antecedent controls on large-scale glaciotectonics and subglacial bed
conditions, Boreas, 49, 129–151, https://doi.org/10.1111/bor.12410, 2020.
Mitchum, R. M. J.: Seismic Stratigraphy and Global Changes of Sea Level,
Part 11: Glossary of Terms used in Seismic Stratigraphy, in: Seismic
Stratigraphy – Applications to Hydrocarbon Exploration, American
Association of Petroleum Geologists Memoir 26, edited by: Payton, C. E.,
American Association of Petroleum Geologists, 135–144, https://doi.org/10.1306/M26490C13, 1977.
Mitchum, R. M. J. and Vail, P. R.: Seismic Stratigraphy and Global Changes
of Sea Level, Part 7: Seismic Stratigraphic Interpretation Procedure, in:
Seismic Stratigraphy – Applications to Hydrocarbon Exploration, American
Association of Petroleum Geologists Memoir 26, edited by: Payton, C. E.,
American Association of Petroleum Geologists,
135–144, https://doi.org/10.1306/M26490C9, 1977.
Mitchum, R. M. J., Vail, P. R., and Samgree, J. B.: Seismic Stratigraphy and
Global Changes of Sea Level, Part 6: Stratigraphic interpretation of seismic
reflections patterns in depositional sequences, in: Seismic Stratigraphy –
Applications to Hydrocarbon Exploration, American Association of Petroleum
Geologists Memoir 26, edited by: Payton, C. E., American Association of
Petroleum Geologists, 117–133, https://doi.org/10.1306/M26490C8, 1977.
Moreau, J., Huuse, M., Janszen, A., Vegt, V. Der, Gibbard, P. L., and
Moscariello, A.: The glaciogenic unconformity of the southern North Sea,
Geol. Soc. Spec. Publ., 368, 99–110, https://doi.org/10.1144/SP368.5, 2012.
Ó Cofaigh, C.: Tunnel valley genesis, Prog. Phys. Geogr. Earth Environ.,
20, 1–19, https://doi.org/10.1177/030913339602000101, 1996.
Oele, E.: The Quaternary geology of the southern area of the Dutch part of
the North Sea, Geol. en Mijnbouw/Netherlands J. Geosci., 50, 461–474,
1971.
Otto-Bliesner, B. L., Rosenbloom, N., Stone, E. J., Mckay, N. P., Lunt, D.
J., Brady, E. C., and Overpeck, J. T.: How warm was the last interglacial?
new model-data comparisons, Philos. T. R. Soc. A Math. Phys. Eng. Sci.,
371, 20130097, https://doi.org/10.1098/rsta.2013.0097, 2013.
Passchier, S., Laban, C., Mesdag, C. S., and Rijsdijk, K. F.: Subglacial bed
conditions during Late Pleistocene glaciations and their impact on ice
dynamics in the southern North Sea, Boreas, 39, 633–647,
https://doi.org/10.1111/j.1502-3885.2009.00138.x, 2010.
Peeters, J., Busschers, F. S., and Stouthamer, E.: Fluvial evolution of the
Rhine during the last interglacial-glacial cycle in the southern North Sea
basin: A review and look forward, Quaternary Int., 357, 176–188,
https://doi.org/10.1016/j.quaint.2014.03.024, 2015.
Peeters, J., Busschers, F. S., Stouthamer, E., Bosch, J. H. A., Van den
Berg, M. W., Wallinga, J., Versendaal, A. J., Bunnik, F. P. M., and
Middelkoop, H.: Sedimentary architecture and chronostratigraphy of a late
Quaternary incised-valley fill: A case study of the late Middle and Late
Pleistocene Rhine system in the Netherlands, Quaternary Sci. Rev., 131, 211–236,
https://doi.org/10.1016/j.quascirev.2015.10.015, 2016.
Phillips, E., Cotterill, C., Johnson, K., Crombie, K., James, L., Carr, S.,
and Ruiter, A.: Large-scale glacitectonic deformation in response to active
ice sheet retreat across Dogger Bank (southern central North Sea) during the
Last Glacial Maximum, Quaternary Sci. Rev., 179, 24–47,
https://doi.org/10.1016/j.quascirev.2017.11.001, 2018.
Rappol, M., Haldorsen, S., Jørgensen, P. M., van der Meer, J., and
Stoltenberg, H.: Composition and origin of petrographically-stratified thick
till in the northern Netherlands and a Saalian glaciation model for the
North Sea Basin, Meded. – Werkgr. voor Tert. en Kwartaire Geol., 26, 31–64,
1989.
Rijsdijk, K. F., Passchier, S., Weerts, H. J. T. T., Laban, C., van Leeuwen,
R. J. W. W., and Ebbing, J. H. J. J.: Revised Upper Cenozoic stratigraphy of
the Dutch sector of the North Sea Basin: towards an integrated
lithostratigraphic, seismostratigraphic and allostratigraphic approach,
Netherlands J. Geosci. – Geol. en Mijnb., 84, 129–146,
https://doi.org/10.1017/S0016774600023015, 2005.
Rohling, E. J., Hibbert, F. D., Williams, F. H., Grant, K. M., Marino, G.,
Foster, G. L., Hennekam, R., de Lange, G. J., Roberts, A. P., Yu, J.,
Webster, J. M., and Yokoyama, Y.: Differences between the last two glacial
maxima and implications for ice-sheet, δ18O, and sea-level
reconstructions, Quaternary Sci. Rev., 176, 1–28,
https://doi.org/10.1016/j.quascirev.2017.09.009, 2017.
Stewart, F. S. and Stoker, M. S.: Problems associated with seismic facies
analysis of diamicton-dominated, shelf glacigenic sequences, Geo-Marine
Lett., 103, 151–156, https://doi.org/10.1007/BF02085930, 1990.
Stokes, C. R., Tarasov, L., Blomdin, R., Cronin, T. M., Fisher, T. G.,
Gyllencreutz, R., Hättestrand, C., Heyman, J., Hindmarsh, R. C. A.,
Hughes, A. L. C., Jakobsson, M., Kirchner, N., Livingstone, S. J., Margold,
M., Murton, J. B., Noormets, R., Peltier, W. R., Peteet, D. M., Piper, D. J.
W., Preusser, F., Renssen, H., Roberts, D. H., Roche, D. M., Saint-Ange, F.,
Stroeven, A. P., and Teller, J. T.: On the reconstruction of palaeo-ice
sheets: Recent advances and future challenges, Quaternary Sci. Rev., 125, 15–49,
https://doi.org/10.1016/j.quascirev.2015.07.016, 2015.
StrataData: Geochronology of boreholes from Hollandse Kust (zuid) Wind Farm
Zone, Dutch Sector, North Sea, Report No: 08/17 (final version), Ottershaw,
2017.
StrataData: Geochronology of boreholes from Hollandse Kust (noord) Wind Farm
Zone, Dutch Sector, North Sea, Report No: 10/18 (final version), Ottershaw,
2019.
TNO-GSN: Stratigraphic Nomenclature of the Netherlands, TNO-Geological
Survey of the Netherlands, available at:
http://www.dinoloket.nl/en/stratigraphic-nomenclature/, last access: 1 June 2021.
Toucanne, S., Zaragosi, S., Bourillet, J. F., Cremer, M., Eynaud, F., Van
Vliet-Lanoë, B., Penaud, A., Fontanier, C., Turon, J. L., Cortijo, E.,
and Gibbard, P. L.: Timing of massive “Fleuve Manche” discharges over the
last 350 kyr: insights into the European ice-sheet oscillations and the
European drainage network from MIS 10 to 2, Quaternary Sci. Rev., 28, 1238–1256,
https://doi.org/10.1016/j.quascirev.2009.01.006, 2009.
Van Balen, R. T., Houtgast, R. F., and Cloetingh, S. A. P. L.: Neotectonics
of the Netherlands: A review, Quaternary Sci. Rev., 24, 439–454,
https://doi.org/10.1016/j.quascirev.2004.01.011, 2005.
Van den Berg, M. W. and Beets, D.: Saalian glacial deposits and morphology
in the Netherlands., in: Tills and Glaciotectonics, edited by: van der Meer, J. J.
M. and A. A. Balkema, Rotterdam, 235–251, 1987.
van der Vegt, P., Janszen, A., and Moscariello, A.: Tunnel valleys: Current
knowledge and future perspectives, Geol. Soc. Spec. Publ., 368, 75–97,
https://doi.org/10.1144/SP368.13, 2012.
Van der Wateren, D. F. M.: A model of glacial tectonics, applied to the
ice-pushed ridges in the central Netherlands, Bull. Geol. Soc. Denmark, 34,
55–74, 1985.
Van der Wateren, D. F. M.: Structural geology and sedimentology of push
moraines, Meded. Rijks Geol. D., 54, 1–169, 1995.
Van der Wateren, D. F. M.: Processes of glaciotectonism, in: Modern and Past
Glacial Environments, edited by: Menzies, J., Butterworth-Heinemann, Oxford,
UK, 417–443, https://doi.org/10.1016/b978-075064226-2/50017-9, 2002.
Van der Wateren, D. F. M.: Ice-marginal terrestrial landsystems: southern
Scandinavian ice sheet margin., in: Glacial Landsystems, edited by: Evans,
D. J. A., Routledge, London, 166–203, 2003.
van Leeuwen, R. J. W., Beets, D. J., Bosch, J. H. A., Burger, A. W.,
Cleveringa, P., van Harten, D., Herngreen, G. F. W., Kruk, R. W., Langereis,
C. G., Meijer, T., Pouwer, R., and de Wolf, H.: Stratigraphy and integrated
facies analysis of the Saalian and Eemian sediments in the
Amsterdam-Terminal borehole, the Netherlands, Netherlands J. Geosci., 79,
161–196, https://doi.org/10.1017/S0016774600023647, 2000.
Vaughan-Hirsch, D. P. and Phillips, E. R.: Mid-Pleistocene thin-skinned
glaciotectonic thrusting of the Aberdeen Ground Formation, Central Graben
region, central North Sea, J. Quaternary Sci., 32, 196–212,
https://doi.org/10.1002/jqs.2836, 2017.
Zagwijn, W. H.: Pollen-analytical studies of Holsteinian and Saalian beds in
the Northern Netherlands, Meded. Rijks Geol. D., 24, 139–156, 1973.
Zagwijn, W. H.: Sea-level changes in the Netherlands during the Eemian,
Geol. en Mijnb., 62, 437–450, 1983.
Zagwijn, W. H.: An analysis of Eemian climate in western and central Europe,
Quaternary Sci. Rev., 15, 451–469, https://doi.org/10.1016/0277-3791(96)00011-X, 1996.
Zanella, E. and Coward, M. P.: Structural framework., in: The Millenium
Atlas: Petroleum Geology of the Central and Northern North Sea, edited by:
Evans, D., Graham, C., Armour, A., and Bathurst, P., The Geological Society
of London, London, 45–59, 2003.
Ziegler, P. A.: Cenozoic rift system of Western and Central Europe: an
overview, Geol. en Mijnb., 73, 99–127, 1994.
Short summary
Reconstructing the growth and decay of past ice sheets is critical to understand relationships between global climate and sea-level change. We take advantage of large wind-farm datasets in the southern North Sea to investigate buried landscapes left by ice sheet advance and retreat occurring about 160 000 years ago. We demonstrate the utility of offshore wind-farm data in refining palaeo-ice sheet margin limits and providing insight into the processes influencing marginal ice sheet dynamics.
Reconstructing the growth and decay of past ice sheets is critical to understand relationships...