Articles | Volume 10, issue 6
https://doi.org/10.5194/esurf-10-1055-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-1055-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring exogenous controls on short- versus long-term erosion rates globally
School of Geographical Sciences, University of Bristol, BS8 1SS Bristol, UK
Katerina Michaelides
CORRESPONDING AUTHOR
School of Geographical Sciences, University of Bristol, BS8 1SS Bristol, UK
Cabot Institute for the Environment, University of Bristol, Bristol, BS8 1UH, UK
Earth Research Institute, University of California Santa Barbara,
Santa Barbara, California 91306, USA
David A. Richards
School of Geographical Sciences, University of Bristol, BS8 1SS Bristol, UK
Cabot Institute for the Environment, University of Bristol, Bristol, BS8 1UH, UK
Michael Bliss Singer
Earth Research Institute, University of California Santa Barbara,
Santa Barbara, California 91306, USA
School of Earth and Environmental Sciences, Cardiff University, CF103AT Cardiff, UK
Water Research Institute, Cardiff University, CF103AX Cardiff, UK
Related authors
No articles found.
George Blake, Katerina Michaelides, Elizabeth Kendon, Mark Cuthbert, and Michael Singer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1154, https://doi.org/10.5194/egusphere-2025-1154, 2025
Short summary
Short summary
Dryland rainfall mainly falls during localised storms, with the intensity of these storms key in controlling how water moves through the landscape, but most climate models cannot represent these storms accurately. We find that if you use a model that can represent these storms to understand water resources, you end up with higher soil moisture for plants and groundwater for humans. Any studies of future water resources that don’t use high-resolution models could produce misleading projections.
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
Hydrol. Earth Syst. Sci., 28, 4203–4218, https://doi.org/10.5194/hess-28-4203-2024, https://doi.org/10.5194/hess-28-4203-2024, 2024
Short summary
Short summary
Reservoirs are essential for water resource management and can significantly impact downstream flow. However, representing reservoirs in hydrological models can be challenging, particularly across large scales. We design a new and simple method for simulating river flow downstream of water supply reservoirs using only open-access data. We demonstrate the approach in 264 reservoir catchments across Great Britain, where we can significantly improve the simulation of reservoir-impacted flow.
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024, https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Short summary
STORM v.2 (short for STOchastic Rainfall Model version 2.0) is an open-source and user-friendly modelling framework for simulating rainfall fields over a basin. It also allows simulating the impact of plausible climate change either on the total seasonal rainfall or the storm’s maximum intensity.
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, https://doi.org/10.5194/essd-15-5449-2023, 2023
Short summary
Short summary
Drought is undeniably one of the most intricate and significant natural hazards with far-reaching consequences for the environment, economy, water resources, agriculture, and societies across the globe. In response to this challenge, we have devised high-resolution drought indices. These indices serve as invaluable indicators for assessing shifts in drought patterns and their associated impacts on a global, regional, and local level facilitating the development of tailored adaptation strategies.
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
E. Andrés Quichimbo, Michael Bliss Singer, Katerina Michaelides, Daniel E. J. Hobley, Rafael Rosolem, and Mark O. Cuthbert
Geosci. Model Dev., 14, 6893–6917, https://doi.org/10.5194/gmd-14-6893-2021, https://doi.org/10.5194/gmd-14-6893-2021, 2021
Short summary
Short summary
Understanding and quantifying water partitioning in dryland regions are of key importance to anticipate the future impacts of climate change in water resources and dryland ecosystems. Here, we have developed a simple hydrological model (DRYP) that incorporates the key processes of water partitioning in drylands. DRYP is a modular, versatile, and parsimonious model that can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions.
Maria Magdalena Warter, Michael Bliss Singer, Mark O. Cuthbert, Dar Roberts, Kelly K. Caylor, Romy Sabathier, and John Stella
Hydrol. Earth Syst. Sci., 25, 3713–3729, https://doi.org/10.5194/hess-25-3713-2021, https://doi.org/10.5194/hess-25-3713-2021, 2021
Short summary
Short summary
Intensified drying of soil and grassland vegetation is raising the impact of fire severity and extent in Southern California. While browned grassland is a common sight during the dry season, this study has shown that there is a pronounced shift in the timing of senescence, due to changing climate conditions favoring milder winter temperatures and increased precipitation variability. Vegetation may be limited in its ability to adapt to these shifts, as drought periods become more frequent.
Isaac Kipkemoi, Katerina Michaelides, Rafael Rosolem, and Michael Bliss Singer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-48, https://doi.org/10.5194/hess-2021-48, 2021
Manuscript not accepted for further review
Short summary
Short summary
The work is a novel investigation of the role of temporal rainfall resolution and intensity in affecting the water balance of soil in a dryland environment. This research has implications for what rainfall data are used to assess the impact of climate and climate change on the regional water balance. This information is critical for anticipating the impact of a changing climate on dryland communities globally who need it to know when to plant their seeds or where livestock pasture is available.
Cited articles
Aalto, R., Dunne, T., and Guyot, J. L.: Geomorphic controls on Andean
denudation rates, J. Geol., 114, 85–99, https://doi.org/10.1086/498101,
2006.
Adams, B. A., Whipple, K. X., Forte, A. M., Heimsath, A. M., and Hodges, K.
V.: Climate controls on erosion in tectonically active landscapes, Sci.
Adv., 6, eaaz3166, https://doi.org/10.1126/sciadv.aaz3166, 2020.
Ahnert, F.: Functional relationships between denudation, relief, and uplift
in large mid-latitude drainage basins, Amer. J. Sci., 268, 243–263,
https://doi.org/10.2475/ajs.268.3.243, 1970.
Alexandrov, Y., Cohen, H., Laronne, J. B., and Reid, I.: Suspended sediment
load, bed load, and dissolved load yields from a semiarid drainage basin: A
15-year study, Water Resour. Res., 45, W08408,
https://doi.org/10.1029/2008WR007314, 2009.
Asner, G. P., Elmore, A. J., Olander, L. P., Martin, R. E., and Harris, A.
T.: Grazing systems, ecosystem responses, and global change, Annu. Rev.
Environ. Resour., 29, 261–299,
https://doi.org/10.1146/annurev.energy.29.062403.102142, 2004.
Bierman, P. R. and Caffee, M.: Slow rates of rock surface erosion and
sediment production across the Namib Desert and escarpment, southern Africa,
Am. J. Sci., 301, 326–358, https://doi.org/10.2475/ajs.301.4-5.326, 2001.
Bierman, P. R., Reuter, J. M., Pavich, M., Gellis, A. C., Caffee, M. W., and
Larsen, J.: Using cosmogenic nuclides to contrast rates of erosion and
sediment yield in a semi-arid, arroyo-dominated landscape, Rio Puerco Basin,
New Mexico, Earth Surf. Process. Landf., 30, 935–953,
https://doi.org/10.1002/esp.1255, 2005.
Binnie, S. A., Phillips, W. M., Summerfield, M. A., and Fifield, L. K.:
Tectonic uplift, threshold hillslopes, and denudation rates in a developing
mountain range, Geology, 35, 743–746, https://doi.org/10.1130/G23641A.1,
2007.
Brown, E. T., Stallard, R. F., Larsen, M. C., Raisbeck, G. M., and Yiou, F.:
Denudation rates determined from the accumulation of in situ-produced
10Be in the Luquillo Experimental Forest, Puerto Rico, Earth Planet.
Sci. Lett., 129, 193–202, https://doi.org/10.1016/0012-821X(94)00249-X,
1995.
Chen, S.-A., Michaelides, K., Grieve, S. W. D., and Singer, M. B.: Aridity
is expressed in river topography globally, Nature, 573, 573–577,
https://doi.org/10.1038/s41586-019-1558-8, 2019.
Chen, S.-A., Michaelides, K., Singer, M., and Richards, D.: Compilation of global short-term erosion data, data.bris [data set], https://doi.org/10.5523/bris.1pq50eh0902da25aps5nhc1ngv, 2021.
Clapp, E. M., Bierman, P. R., Schick, A. P., Lekach, J., Enzel, Y., and
Caffee, M.: Sediment yield exceeds sediment production in arid region
drainage basins, Geology, 28, 995–998,
https://doi.org/10.1130/0091-7613(2000)28<995:SYESPI>2.0.CO;2, 2000.
Clapp, E. M., Bierman, P. R., Nichols, K. K., Pavich, M., and Caffee, M.:
Rates of sediment supply to arroyos from upland erosion determined using in
situ produced cosmogenic 10Be and 26Al, Quat. Res., 55, 235–245,
https://doi.org/10.1006/qres.2000.2211, 2001.
Cleveland, W. S.: Robust locally weighted regression and smoothing
scatterplots, J. Am. Stat. Assoc., 74, 829–836,
https://doi.org/10.1080/01621459.1979.10481038, 1979.
Codilean, A. T., Fenton, C. R., Fabel, D., Bishop, P., and Xu, S.:
Discordance between cosmogenic nuclide concentrations in amalgamated sands
and individual fluvial pebbles in an arid zone catchment, Quat. Geochronol.,
19, 173–180, https://doi.org/10.1016/j.quageo.2012.04.007, 2014.
Codilean, A. T., Munack, H., Cohen, T. J., Saktura, W. M., Gray, A., and Mudd, S. M.: OCTOPUS: an open cosmogenic isotope and luminescence database, Earth Syst. Sci. Data, 10, 2123–2139, https://doi.org/10.5194/essd-10-2123-2018, 2018.
Collins, D. B. G. and Bras, R. L.: Climatic control of sediment yield in
dry lands following climate and land cover change, Water Resour. Res., 44,
W10405, https://doi.org/10.1029/2007WR006474, 2008.
Cook, S. J., Swift, D. A., Kirkbride, M. P., Knight, P. G., and Waller, R.
I.: The empirical basis for modelling glacial erosion rates, Nat. Commun.,
11, 759, https://doi.org/10.1038/s41467-020-14583-8, 2020.
Covault, J. A., Craddock, W. H., Romans, B. W., Fildani, A., and Gosai, M.:
Spatial and temporal variations in landscape evolution: historic and
longer-term sediment flux through global catchments, J. Geol., 121, 35–56,
https://doi.org/10.1086/668680, 2013.
Dedkov, A. P. and Mozzherin, V. I.: Erosion and sediment yield on the
Earth, in: Erosion and Sediment Yield: Global and Regional Perspectives,
edited by: Walling, D. E., and Webb, B. W., IAHS Publications, Wallingford,
Oxfordshire, UK, 236, 29–36, ISBN 10 0947571892, ISBN 13 9780947571894 1996.
Delunel, R., Schlunegger, F., Valla, P. G., Dixon, J., Glotzbach, C., Hippe,
K., Kober, F., Molliex, S., Norton, K. P., Salcher, B., Wittmann, H.,
Akçar, N., and Christl, M.: Late-Pleistocene catchment-wide denudation
patterns across the European Alps, Earth-Sci. Rev., 211, 103407,
https://doi.org/10.1016/j.earscirev.2020.103407, 2020.
DiBiase, R. A., Whipple, K. X., Heimsath, A. M., and Ouimet, W. B.:
Landscape form and millennial erosion rates in the San Gabriel Mountains,
CA, Earth Planet. Sci. Lett., 289, 134–144,
https://doi.org/10.1016/j.epsl.2009.10.036, 2010.
Dosseto, A. and Schaller, M.: The erosion response to Quaternary climate
change quantified using uranium isotopes and in situ-produced cosmogenic
nuclides, Earth-Sci. Rev., 155, 60–81,
https://doi.org/10.1016/j.earscirev.2016.01.015, 2016.
Dunne, T. and Leopold, L. B.: Water in Environmental Planning, Freeman, New
York, US, ISBN 10 0716700794, ISBN 13 9780716700791, 1978.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter,
S. R., Chapin, F. S., Coe, M. T., Daily, G. C., and Gibbs, H. K.: Global
consequences of land use, Science, 309, 570–574,
https://doi.org/10.1126/science.1111772, 2005.
Ganti, V., von Hagke, C., Scherler, D., Lamb, M. P., Fischer, W. W., and
Avouac, J.-P.: Time scale bias in erosion rates of glaciated landscapes,
Sci. Adv., 2, e1600204, https://doi.org/10.1126/sciadv.1600204, 2016.
Gellis, A. C., Pavich, M. J., Bierman, P. R., Clapp, E. M., Ellevein, A.,
and Aby, S.: Modern sediment yield compared to geologic rates of sediment
production in a semi-arid basin, New Mexico: assessing the human impact,
Earth Surf. Process. Landf., 29, 1359–1372,
https://doi.org/10.1002/esp.1098, 2004.
Granger, D. E. and Schaller, M.: Cosmogenic nuclides and erosion at the
watershed scale, Elements, 10, 369–373,
https://doi.org/10.2113/gselements.10.5.369, 2014.
Granger, D. E., Kirchner, J. W., and Finkel, R.: Spatially averaged
long-term erosion rates measured from in situ-produced cosmogenic nuclides
in alluvial sediment, J. Geol., 104, 249–257,
https://doi.org/10.1086/629823, 1996.
Granger, D. E., Lifton, N. A., and Willenbring, J. K.: A cosmic trip: 25
years of cosmogenic nuclides in geology, GSA Bull., 125, 1379–1402,
https://doi.org/10.1130/B30774.1, 2013.
Grin, E., Schaller, M., and Ehlers, T. A.: Spatial distribution of
cosmogenic 10Be derived denudation rates between the Western Tian Shan
and Northern Pamir, Tajikistan, Geomorphology, 321, 1–15,
https://doi.org/10.1016/j.geomorph.2018.08.007, 2018.
Harel, M.-A., Mudd, S. M., and Attal, M.: Global analysis of the stream
power law parameters based on worldwide 10Be denudation rates,
Geomorphology, 268, 184–196,
https://doi.org/10.1016/j.geomorph.2016.05.035, 2016.
Hilley, G. E., Porder, S., Aron, F., Baden, C. W., Johnstone, S. A., Liu,
F., Sare, R., Steelquist, A., and Young, H. H.: Earth's topographic relief
potentially limited by an upper bound on channel steepness, Nat. Geosci.,
12, 828–832, https://doi.org/10.1038/s41561-019-0442-3, 2019.
Hooke, R. L.: On the history of humans as geomorphic agents, Geology, 28,
843–846, https://doi.org/10.1130/0091-7613(2000)28<843:OTHOHA>2.0.CO;2, 2000.
Horton, R. E.: Erosional development of streams and their drainage basins;
Hydrophysical approach to quantitative morphology, GSA Bull., 56, 275–370,
https://doi.org/10.1130/0016-7606(1945)56[275:Edosat]2.0.Co;2, 1945.
Hovius, N., Stark, C. P., Chu, H. T., and Lin, J. C.: Supply and removal of
sediment in a landslide-dominated mountain belt: Central Range, Taiwan, J.
Geol., 108, 73–89, https://doi.org/10.1086/314387, 2000.
Istanbulluoglu, E. and Bras, R. L.: On the dynamics of soil moisture,
vegetation, and erosion: Implications of climate variability and change,
Water Resour. Res., 42, W06418, https://doi.org/10.1029/2005WR004113, 2006.
Jaeger, K. L., Sutfin, N. A., Tooth, S., Michaelides, K., and Singer, M.:
Geomorphology and sediment regimes of intermittent rivers and ephemeral
streams, in: Intermittent Rivers and Ephemeral Streams: Ecology and
Management, chap. 2.1, edited by: Datry, T., Bonada, N., and Boulton, A., Elsevier,
21–49, https://doi.org/10.1016/B978-0-12-803835-2.00002-4, 2017.
Jerolmack, D. J. and Paola, C.: Shredding of environmental signals by
sediment transport, Geophys. Res. Lett., 37, L19401,
https://doi.org/10.1029/2010GL044638, 2010.
Kemp, D. B., Sadler, P. M., and Vanacker, V.: The human impact on North
American erosion, sediment transfer, and storage in a geologic context, Nat.
Commun., 11, 6012, https://doi.org/10.1038/s41467-020-19744-3, 2020.
Kirchner, J. W., Finkel, R. C., Riebe, C. S., Granger, D. E., Clayton, J.
L., King, J. G., and Megahan, W. F.: Mountain erosion over 10 yr, 10 k.y.,
and 10 m.y. time scales, Geology, 29, 591–594,
https://doi.org/10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2, 2001.
Knighton, A. and Nanson, G.: Distinctiveness, diversity and uniqueness in
arid zone river systems, in: Arid Zone Geomorphology: Process, Form and
Change in Drylands, second edition, edited by: Thomas, D. S. G., John Wiley
& Sons, Chichester, West Sussex, UK, 185–203, ISBN 10 0471976105, ISBN 13 9780471976103, 1997.
Knighton, D.: Fluvial Forms and Processes: A New Perspective, Edward Arnold,
London, UK, ISBN 10 0340663138, ISBN 13 9780340663134, 1998.
Langbein, W. B. and Schumm, S. A.: Yield of sediment in relation to mean
annual precipitation, Eos, Trans. AGU, 39, 1076–1084,
https://doi.org/10.1029/TR039i006p01076, 1958.
Larsen, I. J. and Montgomery, D. R.: Landslide erosion coupled to tectonics
and river incision, Nat. Geosci., 5, 468–473,
https://doi.org/10.1038/ngeo1479, 2012.
Larsen, I. J., Montgomery, D. R., and Korup, O.: Landslide erosion
controlled by hillslope material, Nat. Geosci., 3, 247–251,
https://doi.org/10.1038/ngeo776, 2010.
Leopold, L. B., Wolman, M. G., and Miller, J. P.: Fluvial Processes in
Geomorphology, Freeman, San Francisco, US, ISBN 10 0486685888, ISBN 13 9780486685885, 1964.
Michaelides, K., Hollings, R., Singer, M. B., Nichols, M. H., and Nearing,
M. A.: Spatial and temporal analysis of hillslope–channel coupling and
implications for the longitudinal profile in a dryland basin, Earth Surf.
Process. Landf., 43, 1608–1621, https://doi.org/10.1002/esp.4340, 2018.
Milliman, J. D. and Farnsworth, K. L.: River Discharge to the
Coastal Ocean: A Global Synthesis, Cambridge University Press, Cambridge,
UK, https://doi.org/10.1017/CBO9780511781247, 2011.
Milliman, J. D. and Meade, R. H.: World-wide delivery of river sediment to
the oceans, J. Geol., 91, 1–21, https://doi.org/10.1086/628741, 1983.
Milliman, J. D. and Syvitski, J. P.: Geomorphic/tectonic control of
sediment discharge to the ocean: the importance of small mountainous rivers,
J. Geol., 100, 525–544, https://doi.org/10.1086/629606, 1992.
Mishra, A. K., Placzek, C., and Jones, R.: Coupled influence of
precipitation and vegetation on millennial-scale erosion rates derived from
10Be, PloS One, 14, e0211325,
https://doi.org/10.1371/journal.pone.0211325, 2019.
Molnar, P. and England, P.: Late Cenozoic uplift of mountain ranges and
global climate change: chicken or egg?, Nature, 346, 29–35,
https://doi.org/10.1038/346029a0, 1990.
Molnar, P., Anderson, R. S., Kier, G., and Rose, J.: Relationships among
probability distributions of stream discharges in floods, climate, bed load
transport, and river incision, J. Geophys. Res. Earth Surf., 111, F02001,
https://doi.org/10.1029/2005JF000310, 2006.
Montgomery, D. R.: Soil erosion and agricultural sustainability, Proc. Natl.
Acad. Sci., 104, 13268–13272, https://doi.org/10.1073/pnas.0611508104,
2007.
Mudd, S. M., Harel, M.-A., Hurst, M. D., Grieve, S. W. D., and Marrero, S. M.: The CAIRN method: automated, reproducible calculation of catchment-averaged denudation rates from cosmogenic nuclide concentrations, Earth Surf. Dynam., 4, 655–674, https://doi.org/10.5194/esurf-4-655-2016, 2016.
Pagani, M., Garcia-Pelaez, J., Gee, R., Johnson, K., Poggi, V., Styron, R.,
Weatherill, G., Simionato, M., Viganò, D., Danciu, L., and Monelli, D.:
Global Earthquake Model (GEM) Seismic Hazard Map, ver. 2018.1, December
2018, 36, 226–251, https://doi.org/10.1177/8755293020931866, 2018.
Pan, B.-T., Geng, H.-P., Hu, X.-F., Sun, R.-H., and Wang, C.: The
topographic controls on the decadal-scale erosion rates in Qilian Shan
Mountains, N.W. China, Earth Planet. Sci. Lett., 292, 148–157,
https://doi.org/10.1016/j.epsl.2010.01.030, 2010.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the
Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci. Discuss.,
4, 439–473, https://hal.archives-ouvertes.fr/hal-00298818 (last access: 19 September 2017), 2007.
Portenga, E. W. and Bierman, P. R.: Understanding Earth's eroding surface
with 10Be, GSA Today, 21, 4–10, https://doi.org/10.1130/G111A.1, 2011.
Ramankutty, N. and Foley, J. A.: Estimating historical changes in global
land cover: Croplands from 1700 to 1992, Global Biogeochem. Cycles, 13,
997–1027, https://doi.org/10.1029/1999GB900046, 1999.
Ray, N. and Adams, J.: A GIS-based vegetation map of the world at the Last
Glacial Maximum (25 000–15 000 BP), Internet Archaeol., 11, 44 pp., https://archive-ouverte.unige.ch/unige:17817 (last access: 20 September 2019), 2001.
Roe, G. H., Montgomery, D. R., and Hallet, B.: Effects of orographic
precipitation variations on the concavity of steady-state river profiles,
Geology, 30, 143–146, https://doi.org/10.1130/0091-7613(2002)030<0143:EOOPVO>2.0.CO;2, 2002.
Rustemeier, E., Becker, A., Finger, P., Schneider, U., and Ziese, M.: GPCC Climatology Version 2020 at 0.25∘: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges built on GTS-based and Historical Data, https://opendata.dwd.de/climate_environment/GPCC/html/gpcc_normals_v2020_doi_download.html (last access: 24 June 2022), 2020.
Sadler, P. M.: Sediment accumulation rates and the completeness of
stratigraphic sections, J. Geol., 89, 569–584,
https://doi.org/10.1086/628623, 1981.
Sadler, P. M. and Jerolmack, D. J.: Scaling laws for aggradation,
denudation and progradation rates: the case for time-scale invariance at
sediment sources and sinks, Geological Society, London, Special
Publications, 404, 69–88, https://doi.org/10.1144/SP404.7, 2015.
Schaller, M., von Blanckenburg, F., Hovius, N., and Kubik, P.: Large-scale
erosion rates from in situ-produced cosmogenic nuclides in European river
sediments, Earth Planet. Sci. Lett., 188, 441–458,
https://doi.org/10.1016/S0012-821X(01)00320-X, 2001.
Schaller, M., von Blanckenburg, F., Veldkamp, A., Tebbens, L., Hovius, N.,
and Kubik, P.: A 30 000 yr record of erosion rates from cosmogenic 10Be
in Middle European river terraces, Earth Planet. Sci. Lett., 204, 307–320,
https://doi.org/10.1016/S0012-821X(02)00951-2, 2002.
Schmidt, A. H., Neilson, T. B., Bierman, P. R., Rood, D. H., Ouimet, W. B., and Sosa Gonzalez, V.: Influence of topography and human activity on apparent in situ 10Be-derived erosion rates in Yunnan, SW China, Earth Surf. Dynam., 4, 819–830, https://doi.org/10.5194/esurf-4-819-2016, 2016.
Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E., Montgomery,
D. R., and Schaub, T.: The variability of root cohesion as an influence on
shallow landslide susceptibility in the Oregon Coast Range, Can. Geotech.
J., 38, 995–1024, https://doi.org/10.1139/t01-031, 2001.
Singer, M. B. and Aalto, R.: Floodplain development in an engineered
setting, Earth Surf. Process. Landf., 34, 291–304,
https://doi.org/10.1002/esp.1725, 2009.
Singer, M. B. and Dunne, T.: Modeling decadal bed material sediment flux
based on stochastic hydrology, Water Resour. Res., 40, W03302,
https://doi.org/10.1029/2003WR002723, 2004.
Singer, M. B. and Dunne, T.: Modeling the influence of river rehabilitation
scenarios on bed material sediment flux in a large river over decadal
timescales, Water Resour. Res., 42, W12415,
https://doi.org/10.1029/2006WR004894, 2006.
Singer, M. B. and Michaelides, K.: How is topographic simplicity maintained
in ephemeral dryland channels?, Geology, 42, 1091–1094,
https://doi.org/10.1130/G36267.1, 2014.
Singer, M. B. and Michaelides, K.: Deciphering the expression of climate
change within the Lower Colorado River basin by stochastic simulation of
convective rainfall, Environ. Res. Lett., 12, 104011,
https://doi.org/10.1088/1748-9326/aa8e50, 2017.
Struck, M., Jansen, J. D., Fujioka, T., Codilean, A. T., Fink, D., Fülöp, R.-H., Wilcken, K. M., Price, D. M., Kotevski, S., Fifield, L. K., and Chappell, J.: Tracking the 10Be–26Al source-area signal in sediment-routing systems of arid central Australia, Earth Surf. Dynam., 6, 329–349, https://doi.org/10.5194/esurf-6-329-2018, 2018.
Summerfield, M. and Hulton, N.: Natural controls of fluvial denudation
rates in major world drainage basins, J. Geophys. Res. Solid Earth, 99,
13871–13883, https://doi.org/10.1029/94JB00715, 1994.
Syvitski, J. P. and Milliman, J. D.: Geology, geography, and humans battle
for dominance over the delivery of fluvial sediment to the coastal ocean, J.
Geol., 115, 1–19, https://doi.org/10.1086/509246, 2007.
Syvitski, J. P., Vörösmarty, C. J., Kettner, A. J., and Green, P.:
Impact of humans on the flux of terrestrial sediment to the global coastal
ocean, Science, 308, 376–380, https://doi.org/10.1126/science.1109454,
2005.
Tofelde, S., Duesing, W., Schildgen, T. F., Wickert, A. D., Wittmann, H.,
Alonso, R. N., and Strecker, M.: Effects of deep-seated versus shallow
hillslope processes on cosmogenic 10Be concentrations in fluvial sand
and gravel, Earth Surf. Process. Landf., 43, 3086–3098,
https://doi.org/10.1002/esp.4471, 2018.
Tooth, S.: Process, form and change in dryland rivers: a review of recent
research, Earth Sci. Rev., 51, 67–107,
https://doi.org/10.1016/S0012-8252(00)00014-3, 2000.
Trabucco, A. and Zomer, R. J.: Global Aridity and PET Database, CGIAR
Consortium for Spatial Information,
http://www.cgiar-csi.org/data/global-aridity-and-pet-database (last access: 8 November 2019), 2009.
United Nations Environment Programme: World Atlas of Desertification: Second
Edition, Arnold, London, UK, https://wedocs.unep.org/20.500.11822/30300
(last access: 12 May 2018),
1997.
US Geological Survey: National Water Information System data, USGS Water Data for the Nation,
https://waterdata.usgs.gov/nwis, last access: 2 December 2019.
von Blanckenburg, F.: The control mechanisms of erosion and weathering at
basin scale from cosmogenic nuclides in river sediment, Earth Planet. Sci.
Lett., 237, 462–479, https://doi.org/10.1016/j.epsl.2005.06.030, 2006.
von Blanckenburg, F. and Willenbring, J. K.: Cosmogenic nuclides: dates and
rates of Earth-surface change, Elements, 10, 341–346,
https://doi.org/10.2113/gselements.10.5.341, 2014.
Walling, D. and Fang, D.: Recent trends in the suspended sediment loads of
the world's rivers, Global Planet. Change, 39, 111–126,
https://doi.org/10.1016/S0921-8181(03)00020-1, 2003.
Walling, D. and Kleo, A. H. A.: Sediment yields of rivers in areas of
low precipitation: a global view, in: The Hydrology of Areas of Low
Precipitation, IAHS Publications, Wallingford, Oxfordshire, UK, 128,
479–493, 1979.
Walling, D. and Webb, B.: The dissolved loads of rivers: a global
overview, in: Dissolved Loads of Rivers and Surface Water Quantity/Quality
Relationships, edited by: Webb, B. W., IAHS Publications, Hamburg, Germany,
3–20, https://doi.org/10.1002/esp.3290100115, 1983.
Walling, D. and Webb, B.: Erosion and sediment yield: a global overview,
in: Erosion and Sediment Yield: Global and Regional Perspectives, edited by:
Walling, D. E., and Webb, B. W., IAHS Publications, Wallingford,
Oxfordshire, UK, 236, 3–20, ISBN 10 0947571892, ISBN 13 9780947571894, 1996.
Whipple, K. X.: The influence of climate on the tectonic evolution of
mountain belts, Nat. Geosci., 2, 97–104, https://doi.org/10.1038/ngeo413,
2009.
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river
incision model: Implications for height limits of mountain ranges, landscape
response timescales, and research needs, J. Geophys. Res. Solid Earth, 104,
17661–17674, https://doi.org/10.1029/1999JB900120, 1999.
Wilkinson, B. H. and McElroy, B. J.: The impact of humans on continental
erosion and sedimentation, GSA Bull., 119, 140–156,
https://doi.org/10.1130/B25899.1, 2007.
Willett, S. D.: Orogeny and orography: The effects of erosion on the
structure of mountain belts, J. Geophys. Res. Solid Earth, 104,
28957–28981, https://doi.org/10.1029/1999JB900248, 1999.
Wittmann, H., von Blanckenburg, F., Maurice, L., Guyot, J.-L., Filizola, N.,
and Kubik, P. W.: Sediment production and delivery in the Amazon River basin
quantified by in situ–produced cosmogenic nuclides and recent river loads,
GSA Bull., 123, 934–950, https://doi.org/10.1130/B30317.1, 2011.
Yair, A., Sharon, D., and Lavee, H.: An instrumented watershed for the study
of partial area contribution of runoff in the arid zone, Z. Geomorphol.
Suppl., 29, 71–82, 1978.
Yizhou, W., Huiping, Z., Dewen, Z., Wenjun, Z., Zhuqi, Z., Weitao, W., and
Jingxing, Y.: Controls on decadal erosion rates in Qilian Shan:
re-evaluation and new insights into landscape evolution in north-east Tibet,
Geomorphology, 223, 117–128,
https://doi.org/10.1016/j.geomorph.2014.07.002, 2014.
Short summary
Drainage basin erosion rates influence landscape evolution through controlling land surface lowering and sediment flux, but gaps remain in understanding their large-scale patterns and drivers between timescales. We analysed global erosion rates and show that long-term erosion rates are controlled by rainfall, former glacial processes, and basin landform, whilst human activities enhance short-term erosion rates. The results highlight the complex interplay of controls on land surface processes.
Drainage basin erosion rates influence landscape evolution through controlling land surface...