Articles | Volume 10, issue 3
https://doi.org/10.5194/esurf-10-383-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-383-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The direction of landscape erosion
Colin P. Stark
CORRESPONDING AUTHOR
BlueMarbleSoft, Kyushu, Japan
Gavin J. Stark
Department of Computer Science and Technology, University of
Cambridge, Cambridge, UK
Related authors
Roberto Fernández, Gary Parker, and Colin P. Stark
Earth Surf. Dynam., 7, 949–968, https://doi.org/10.5194/esurf-7-949-2019, https://doi.org/10.5194/esurf-7-949-2019, 2019
Short summary
Short summary
This paper describes the case of a meandering bedrock river with loose sediment on the bed. In such rivers, the sediment hits and erodes the bed as it moves with the flow. We did experiments in a laboratory flume to identify the areas where the sediment moves and those where it deposits. We discovered that the size and location of those areas change with the amount of sediment in the channel and its curvature. The fluctuations of sediment cover over the bed drive the erosion potential.
Maxwell T. Cunningham, Colin P. Stark, Michael R. Kaplan, and Joerg M. Schaefer
Earth Surf. Dynam., 7, 147–169, https://doi.org/10.5194/esurf-7-147-2019, https://doi.org/10.5194/esurf-7-147-2019, 2019
Short summary
Short summary
Glacial erosion is known to limit the height of midlatitude mountain ranges affected by substantial glaciation during cold periods. Our study examines this phenomenon in the tropics. A new form of hypsometric analysis, along with other evidence, of 10 tropical ranges reveals widespread signs of a perched glacial base level at the ELA. Although glacial influence is moderate to weak in these environments, the evidence suggests that glacial erosion acts to limit the height of tropical ranges.
C. Hibert, C. P. Stark, and G. Ekström
Nat. Hazards Earth Syst. Sci., 15, 1265–1273, https://doi.org/10.5194/nhess-15-1265-2015, https://doi.org/10.5194/nhess-15-1265-2015, 2015
Short summary
Short summary
We carry out a study of the seismic signals generated by the devastating Oso-Steelhead landslides. We invert the long-period seismic signals generated by the first main event and obtain estimates of its trajectory, kinematics and mass. No distinct long-period surface waves were recorded for the second failure, which prevents inversion for its source parameters. However, from the comparison of the energy of the short-period waves generated by both events, we can estimate the volume of the second.
L. Zhang, G. Parker, C. P. Stark, T. Inoue, E. Viparelli, X. Fu, and N. Izumi
Earth Surf. Dynam., 3, 113–138, https://doi.org/10.5194/esurf-3-113-2015, https://doi.org/10.5194/esurf-3-113-2015, 2015
Short summary
Short summary
The saltation-abrasion model captures bedrock incision due stones striking bedrock. We present the Macro-Roughness-based Saltation-Abrasion-Alluviation (MRSAA) model, which tracks spatiotemporal variation of both bedload and alluvial thickness. It captures migrating waves of incision upstream and alluviation downstream. We apply it to incision problems not captured by saltation-abrasion, including the response to alluviation and stripping, and a simplified graben with uplift and subsidence.
Roberto Fernández, Gary Parker, and Colin P. Stark
Earth Surf. Dynam., 7, 949–968, https://doi.org/10.5194/esurf-7-949-2019, https://doi.org/10.5194/esurf-7-949-2019, 2019
Short summary
Short summary
This paper describes the case of a meandering bedrock river with loose sediment on the bed. In such rivers, the sediment hits and erodes the bed as it moves with the flow. We did experiments in a laboratory flume to identify the areas where the sediment moves and those where it deposits. We discovered that the size and location of those areas change with the amount of sediment in the channel and its curvature. The fluctuations of sediment cover over the bed drive the erosion potential.
Maxwell T. Cunningham, Colin P. Stark, Michael R. Kaplan, and Joerg M. Schaefer
Earth Surf. Dynam., 7, 147–169, https://doi.org/10.5194/esurf-7-147-2019, https://doi.org/10.5194/esurf-7-147-2019, 2019
Short summary
Short summary
Glacial erosion is known to limit the height of midlatitude mountain ranges affected by substantial glaciation during cold periods. Our study examines this phenomenon in the tropics. A new form of hypsometric analysis, along with other evidence, of 10 tropical ranges reveals widespread signs of a perched glacial base level at the ELA. Although glacial influence is moderate to weak in these environments, the evidence suggests that glacial erosion acts to limit the height of tropical ranges.
C. Hibert, C. P. Stark, and G. Ekström
Nat. Hazards Earth Syst. Sci., 15, 1265–1273, https://doi.org/10.5194/nhess-15-1265-2015, https://doi.org/10.5194/nhess-15-1265-2015, 2015
Short summary
Short summary
We carry out a study of the seismic signals generated by the devastating Oso-Steelhead landslides. We invert the long-period seismic signals generated by the first main event and obtain estimates of its trajectory, kinematics and mass. No distinct long-period surface waves were recorded for the second failure, which prevents inversion for its source parameters. However, from the comparison of the energy of the short-period waves generated by both events, we can estimate the volume of the second.
L. Zhang, G. Parker, C. P. Stark, T. Inoue, E. Viparelli, X. Fu, and N. Izumi
Earth Surf. Dynam., 3, 113–138, https://doi.org/10.5194/esurf-3-113-2015, https://doi.org/10.5194/esurf-3-113-2015, 2015
Short summary
Short summary
The saltation-abrasion model captures bedrock incision due stones striking bedrock. We present the Macro-Roughness-based Saltation-Abrasion-Alluviation (MRSAA) model, which tracks spatiotemporal variation of both bedload and alluvial thickness. It captures migrating waves of incision upstream and alluviation downstream. We apply it to incision problems not captured by saltation-abrasion, including the response to alluviation and stripping, and a simplified graben with uplift and subsidence.
Related subject area
Cross-cutting themes: Complex systems in Earth surface processes: nonlinear system dynamics and chaos, self-organisation, self-organised criticality
MPeat2D – a fully coupled mechanical–ecohydrological model of peatland development in two dimensions
Impacts of grazing on vegetation dynamics in a sediment transport complex model
Data-driven components in a model of inner-shelf sorted bedforms: a new hybrid model
Adilan W. Mahdiyasa, David J. Large, Matteo Icardi, and Bagus P. Muljadi
Earth Surf. Dynam., 12, 929–952, https://doi.org/10.5194/esurf-12-929-2024, https://doi.org/10.5194/esurf-12-929-2024, 2024
Short summary
Short summary
Mathematical models provide insight to analyse peatland behaviour. However, the omission of mechanical processes by the existing models leads to uncertainties in their outputs. We proposed a peatland growth model in 2D that incorporates mechanical, ecological, and hydrological factors, together with the effect of spatial heterogeneity on the peatland system. Our model might assist in understanding the complex interactions and the impact of climate change on the peatland carbon balance.
Phillipe Gauvin-Bourdon, James King, and Liliana Perez
Earth Surf. Dynam., 9, 29–45, https://doi.org/10.5194/esurf-9-29-2021, https://doi.org/10.5194/esurf-9-29-2021, 2021
Short summary
Short summary
Arid ecosystem health is a complex interaction between vegetation and climate. Coupled with impacts from grazing, it can result in quick changes in vegetation cover. We present a wind erosion and vegetation health model with active grazers over 100-year tests to find the limits of arid environments for different levels of vegetation, rainfall, wind speed, and grazing. The model shows the resilience of grass landscapes to grazing and its role as an improved tool for managing arid landscapes.
E. B. Goldstein, G. Coco, A. B. Murray, and M. O. Green
Earth Surf. Dynam., 2, 67–82, https://doi.org/10.5194/esurf-2-67-2014, https://doi.org/10.5194/esurf-2-67-2014, 2014
Cited articles
Adalsteinsson, D. and Sethian, J. A.: A fast level set method for propagating interfaces, J. Comput. Phys., 118, 269–277,
https://doi.org/10.1006/jcph.1995.1098, 1995a. a
Adalsteinsson, D. and Sethian, J. A.: A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography I: Algorithms and Two-Dimensional Simulations, J. Comput. Phys., 120, 128–144, https://doi.org/10.1006/jcph.1995.1153, 1995b. a, b
Adalsteinsson, D. and Sethian, J. A.: A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography II: Three-Dimensional Simulations, J. Comput. Phys., 122, 348–366, https://doi.org/10.1006/jcph.1995.1221, 1995c. a, b
Adalsteinsson, D. and Sethian, J. A.: A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography III: Redeposition, Reemission, Surface Diffusion, and Complex Simulations, J. Comput. Phys., 138, 193–223, https://doi.org/10.1006/jcph.1997.5817, 1997. a, b
Anderson, D. H., Catchpole, E. A., De Mestre, N. J., and Parkes, T.: Modelling the spread of grass fires, ANZIAM J., 23, 451–466, https://doi.org/10.1017/S0334270000000394, 1982. a
Antonelli, P. L.: Generalizations of Finsler geometry, Springer Science+Business Media, Dordrecht, https://doi.org/10.1007/978-94-011-4235-9, 2000. a
Antonelli, P. L., Ingarden, R. S., and Matsumoto, M.: The theory of sprays and Finsler spaces with applications in physics and biology, Springer-Science+Business Media, B. Y., Dordrecht, https://doi.org/10.1007/978-94-015-8194-3, 1993. a, b
Antonelli, P. L., Bóna, A., and Slawinski, M. A.: Seismic rays as Finsler geodesics, Nonlinear Anal.-Real, 4, 711–722, https://doi.org/10.1016/S1468-1218(02)00073-1, 2003a. a
Antonelli, P. L., Rutz, S. F., and Slawinski, M. A.: A geometrical foundation for seismic ray theory based on modern Finsler geometry, in: Finsler and Lagrange Geometries, edited by: Anastasiei, M. and Antonelli, P. L., Springer Science+Business Media, 17–54, https://doi.org/10.1007/978-94-017-0405-2, 2003b. a
Arnold, V. I.: Mathematical Methods of Classical Mechanics, 2nd edn., Springer-Verlag, https://doi.org/10.1007/978-1-4757-2063-1, 1989. a, b, c
Aronsson, G. and Lindé, K.: Grand Canyon – A quantitative approach to the erosion and weathering of a stratified bedrock, Earth Surf. Proc. Land., 7, 589–599, https://doi.org/10.1002/esp.3290070607, 1982. a
Asanov, G. S.: Finsler Geometry, Relativity and Gauge Theories, Springer Science+Business Media, https://doi.org/10.1007/978-94-009-5329-1, 1985. a
Bao, D.: On two curvature-driven problems in Riemannian-Finsler geometry, in: Advanced Studies in Pure Mathematics, Finsler Geometry, Sapporo, 19–71, https://doi.org/10.2969/aspm/04810019, 2007. a, b, c
Bao, D., Chern, S. S., and Shen, Z.: An Introduction to Riemann-Finsler Geometry, vol. 200 of Graduate Texts in Mathematics, Springer Science+Business Media, New York, NY, https://doi.org/10.1007/978-1-4612-1268-3, 2000. a, b, c, d
Barber, D. J., Frank, F. C., Moss, M., Steeds, J. W., and Tsong, I. S. T.: Prediction of ion-bombarded surface topographies using Frank's kinematic theory of crystal dissolution, J. Mater. Sci., 8, 1030–1040, https://doi.org/10.1007/BF00756635, 1973. a
Beem, J. K.: Motions in two dimensional indefinite Finsler spaces, Indiana U. Math. J., 21, 551–555, https://www.jstor.org/stable/24890331 (last access: 21 April 2022), 1971. a
Beeson, H. W. and McCoy, S. W.: Geomorphic signatures of the transient fluvial response to tilting, Earth Surf. Dynam., 8, 123–159, https://doi.org/10.5194/esurf-8-123-2020, 2020. a
Bóna, A. and Slawinski, M. A.: Raypaths as parametric curves in anisotropic, nonuniform media: differential-geometry approach, Nonlinear Anal.-Theor., 51, 983–994, https://doi.org/10.1016/s0362-546x(01)00873-2, 2002. a
Bóna, A. and Slawinski, M. A.: Fermat's principle for seismic rays in elastic media, J. Appl. Geophys., 54, 445–451, https://doi.org/10.1016/j.jappgeo.2003.08.019, 2003. a
Bucataru, I. and Slawinski, M. A.: Generalized orthogonality between rays and wavefronts in anisotropic inhomogeneous media, Nonlinear Anal.-Real, 6, 111–121, https://doi.org/10.1016/j.nonrwa.2004.03.004, 2005. a
Carathéodory, C.: Calculus of variations and partial differential equations of the first order, AMS Chelsea Publishing, https://bookstore.ams.org/chel-318/ (last access: 21 April 2022), 1999. a
Carter, G.: The physics and applications of ion beam erosion, J. Phys. D Appl. Phys., 34, R1–R22, https://doi.org/10.1088/0022-3727/34/3/201, 2001. a
Carter, G., Colligon, J. S., and Nobes, M. J.: The equilibrium topography of sputtered amorphous solids II, J. Mater. Sci., 6, 115–117, https://doi.org/10.1007/BF00550340, 1971. a
Carter, G., Nobes, M. J., and Cruz, S. A.: Surface morphology evolution of sputtered, moving substrates, J. Mater. Sci. Lett., 3, 523–527, https://doi.org/10.1007/BF00720990, 1984. a, b
Červený, V.: Ray tracing in factorized anisotropic inhomogeneous media, Geophys. J. Int., 99, 91–100, https://doi.org/10.1111/j.1365-246x.1989.tb02017.x, 1989. a
Červený, V.: Seismic Ray Theory, Cambridge University Press, https://doi.org/10.1017/CBO9780511529399, 2005. a
Chern, S. S.: Finsler geometry is just Riemannian geometry without the quadratic equation, Not. Am. Math. Soc., 43, 959–963, https://doi.org/10.1090/conm/196/02429, 1996. a, b
Chow, Y. T., Darbon, J., Osher, S., and Yin, W.: Algorithm for overcoming the curse of dimensionality for certain non-convex Hamilton–Jacobi equations, projections and differential games, Annals of Mathematical Sciences and Applications, 3, 369–403, https://doi.org/10.4310/AMSA.2018.v3.n2.a1, 2018. a
Chow, Y. T., Darbon, J., Osher, S., and Yin, W.: Algorithm for overcoming the curse of dimensionality for state-dependent Hamilton-Jacobi equations, J. Comput. Phys., 387, 376–409, https://doi.org/10.1016/j.jcp.2019.01.051, 2019. a
Coulthard, T. J.: Landscape evolution models: a software review, Hydrol. Process., 15, 165–173, https://doi.org/10.1002/hyp.426, 2001. a
Crandall, M. G. and Lions, P. L.: Viscosity solutions of
Hamilton-Jacobi equations., T. Am. Math. Soc., 277, 1–42,
https://doi.org/10.2307/1999343, 1981. a
Dehkordi, H. R. and Saa, A.: Huygens' envelope principle in Finsler spaces and analogue gravity, Classical Quant. Grav., 36, 085008, https://doi.org/10.1088/1361-6382/ab0f03, 2019. a
Dellinger, J.: Anisotropic finite difference traveltimes using a Hamilton-Jacobi solver , in: SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 1786–1789, https://doi.org/10.1190/1.1885780, 1997. a
Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heimsath, A. M., and Roering, J. J.: Geomorphic transport laws for predicting landscape form and dynamics, in: Prediction in Geomorphology, American Geophysical Union, Washington, D. C., 103–132, https://doi.org/10.1029/135GM09, 2003. a, b
Evans, L. C.: Envelopes and nonconvex Hamilton–Jacobi equations, Calc. Var. Partial Dif., 50, 257–282, https://doi.org/10.1007/s00526-013-0635-3, 2014. a
Flint, J. J.: Stream gradient as a function of order, magnitude, and discharge, Water Resour. Res., 10, 969–973, https://doi.org/10.1029/WR010i005p00969, 1974. a
Fowler, A.: Mathematical Geoscience, vol. 36 of Interdisciplinary Applied Mathematics, Springer London, London, https://doi.org/10.1007/978-0-85729-721-1, 2011. a
Frank, F. C.: On the kinematic theory of crystal growth and dissolution processes, in: Growth and perfection of crystals: Proceedings of an International Conference on Crystal Growth held at Cooperstown, New York, 27–29 August 1958, edited by: Doremus, R. H., Roberts, B. W., and Turnbull, D., John Wiley, New York, 411–419, 1958. a, b
Frank, F. C. and Ives, M. B.: Orientation-dependent dissolution of germanium, J. Appl. Phys., 31, 1996–1999, https://doi.org/10.1063/1.1735485, 1960. a, b
Giaquinta, M. and Hildebrandt, S.: Calculus of Variations II, vol. 311 of Grundlehren der mathematischen Wissenschaften, Springer Science+Business Media, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-06201-2, 2004. a, b, c
Gibbons, G. W. and Warnick, C. M.: The geometry of sound rays in a wind, Contemp. Phys., 52, 197–209, https://doi.org/10.1080/00107514.2011.563515, 2011. a
Gibou, F., Fedkiw, R., and Osher, S.: A review of level-set methods and some recent applications, J. Comput. Phys., 353, 82–109, https://doi.org/10.1016/j.jcp.2017.10.006, 2018. a
Giga, Y.: Surface evolution equations: A level set approach, vol. 99 of Monographs in Mathematics, Birkhäuser Verlag, Basel, https://doi.org/10.1007/3-7643-7391-1_2, 2006. a
Goldstein, H., Poole, C., and Safko, J.: Classical Mechanics, Addison-Wesley, 3rd edn., https://doi.org/10.1119/1.1484149, 2000. a
Hairer, E. and Wanner, G.: Solving Ordinary Differential Equations II, vol. 14 of Stiff and Differential – Algebraic Problems, Springer Science+Business Media, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-09947-6, 2013. a
Hairer, E., Nørsett, S. P., and Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, Springer Science+Business Media, https://doi.org/10.1007/978-3-540-78862-1, 2008. a
Harris, C. R., Millman, K. J., Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk, M. H., Brett, M., Haldane, A., Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020.
Houchmandzadeh, B.: The Hamilton–Jacobi equation: An alternative approach, Am. J. Phys., 88, 1–8, https://doi.org/10.1119/10.0000781, 2020. a, b
Ijjasz-Vasquez, E. J., Bras, R. L., Rodríguez-Iturbe, I., Rigon, R., and Rinaldo, A.: Are river basins optimal channel networks?, Adv. Water Resour., 16, 69–79, https://doi.org/10.1016/0309-1708(93)90030-J, 1993. a
Innami, N.: Generalized metrics for second order equations satisfying Huygens' principle, Nihonkai Mathematical Journal, 6, 5–23, https://projecteuclid.org/euclid.nihmj/1273780052, 1995. a
Ives, M. B.: Orientation-dependent dissolution of lithium fluoride, J. Appl. Phys., 32, 1534–1535, https://doi.org/10.1063/1.1728391, 1961. a
Javaloyes, M. A., Pendás-Recondo, E., and Sánchez, M.: Applications of cone structures to the anisotropic rheonomic Huygens' principle, Nonlinear Anal.-Theor., 209, 112337, https://doi.org/10.1016/j.na.2021.112337, 2021. a
Katardjiev, I. V.: A kinematic model of surface evolution during growth and erosion: Numerical analysis, J. Vac. Sci. Technol. A, 7, 3222–3232, https://doi.org/10.1116/1.576340, 1989. a, b
Katardjiev, I. V., Carter, G., and Nobes, M. J.: The application of the Huygens principle to surface evolution in inhomogeneous, anisotropic and time-dependent systems, J. Phys. D Appl. Phys., 22, 1813–1824, https://doi.org/10.1088/0022-3727/22/12/003, 1989. a, b
Klimeš, L.: Relation of the wave-propagation metric tensor to the curvatures of the slowness and ray-velocity surfaces, Stud. Geophys. Geod., 46, 589–597, https://doi.org/10.1023/A:1019551320867, 2002. a
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., and Willing, C.: Jupyter Notebooks – a publishing format for reproducible computational workflows, in: Positioning and Power in Academic Publishing: Players, Agents and Agendas, edited by: Loizides, F. and Schmidt, B., IOS Press Ebooks, 87–90, https://doi.org/10.3233/978-1-61499-649-1-87, 2016.
Lague, D.: The stream power river incision model: evidence, theory and beyond, Earth Surf. Proc. Land., 39, 38–61, https://doi.org/10.1002/esp.3462, 2014. a, b, c
Lighthill, M. J. and Whitham, G. B.: On kinematic waves I. Flood movement in long rivers, P. Roy. Soc. Lond. A Mat., 229, 281–316, https://doi.org/10.1098/rspa.1955.0088, 1955a. a
Lighthill, M. J. and Whitham, G. B.: On kinematic waves II. A theory of traffic flow on long crowded roads, P. Roy. Soc. Lond. A Mat., 229, 317–345, https://doi.org/10.1098/rspa.1955.0089, 1955b. a
Luke, J. C.: Mathematical models for landscape evolution, J. Geophys. Res., 77, 2460–2464, https://doi.org/10.1029/JB077i014p02460, 1972. a, b, c, d
Luke, J. C.: Special solutions for non-linear erosion problems, J. Geophys. Res., 79, 4035–4040, https://doi.org/10.1029/JB079i026p04035, 1974. a
Luke, J. C.: A note on the use of characteristics in slope evolution models, Z. Geomorphol. Supp., 25, 114–119, 1976. a
Markvorsen, S.: A Finsler geodesic spray paradigm for wildfire spread modelling, Nonlinear Anal.-Real, 28, 208–228, https://doi.org/10.1016/j.nonrwa.2015.09.011, 2016. a, b
Mensch, T. and Farra, V.: Computation of qP-wave rays, traveltimes and slowness vectors in orthorhombic media, Geophys. J. Int., 138, 244–256, https://doi.org/10.1046/j.1365-246x.1999.00870.x, 1999. a
Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, Š., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Scopatz, A.: SymPy: symbolic computing in Python, PeerJ Computer Science, 3, e103–27, https://doi.org/10.7717/peerj-cs.103, 2017.
Miller, D. A. B.: Huygens's wave propagation principle corrected, Opt. Lett., 16, 1370–1372, https://doi.org/10.1364/OL.16.001370, 1991. a
Mirebeau, J.-M.: Anisotropic fast-marching on Cartesian grids using lattice basis reduction, SIAM J. Numer. Anal., 52, 1573–1599, https://doi.org/10.1137/120861667, 2014a. a, b
Mirebeau, J.-M.: Efficient fast marching with Finsler metrics, Numer. Math., 126, 515–557, https://doi.org/10.1007/s00211-013-0571-3, 2014b. a, b
Mirebeau, J.-M.: Riemannian fast-marching on Cartesian grids using Voronoi's first reduction of quadratic forms, SIAM J. Numer. Anal., 57, 2608–2655, https://doi.org/10.1137/17M1127466, 2019. a, b
Mirebeau, J.-M. and Portegies, J.: Hamiltonian Fast Marching: A numerical solver for anisotropic and non-holonomic eikonal PDEs, Image Processing On Line, 9, 47–93, https://doi.org/10.5201/ipol.2019.227, 2019. a, b
Miron, R., Hrimiuc, D., Shimada, H., and Sabau, S. V.: The Geometry of Hamilton and Lagrange Spaces, Springer Science+Business Media, Dordrecht, https://doi.org/10.1007/0-306-47135-3, 2002. a, b
Misner, C. W., Thorne, K. S., and Wheeler, J. A.: Gravitation, W. H. Freeman, San Francisco, https://press.princeton.edu/books/hardcover/9780691177793/gravitation (last access: 21 April 2022), 1973. a
Mo, X.: An Introduction to Finsler Geometry, vol. 1 of Peking University Series in Mathematics, World Scientific, https://doi.org/10.1142/6095, 2006. a
Mosaliganti, K. R., Gelas, A., and Megason, S.: An efficient, scalable, and adaptable framework for solving generic systems of level-set PDEs, Front. Neuroinform., 7, 1–14, https://doi.org/10.3389/fninf.2013.00035, 2013. a
Moser, T. J.: Shortest path calculation of seismic rays, Geophysics, 56, 59–67, https://doi.org/10.1190/1.1442958, 1991. a
Nobes, M. J., Colligon, J. S., and Carter, G.: The equilibrium topography of sputtered amorphous solids, J. Mater. Sci., 4, 730–733, https://doi.org/10.1007/BF00742430, 1969. a
Nobes, M. J., Katardjiev, I. V., Carter, G., and Smith, R.: Analytic, geometric and computer techniques for the prediction of morphology evolution of solid surfaces from multiple processes, J. Phys. D Appl. Phys., 20, 870, https://doi.org/10.1088/0022-3727/20/7/008, 1987. a
Noether, E.: Invariant variation problems (translation from the German by M. A. Tavel; originally published as “Invariante Variationsprobleme”, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 1918, p. 235–257), Transport Theor. Stat., 1, 186–207, https://doi.org/10.1080/00411457108231446, 1971. a
Nolte, D. D.: Introduction to Modern Dynamics: Chaos, Networks, Space and Time, 2nd edn., Oxford University Press, https://doi.org/10.1093/oso/9780198844624.001.0001, 2019. a
Osher, S. and Fedkiw, R. P.: Level set methods: An overview and some recent results, J. Comput. Phys., 169, 463–502, https://doi.org/10.1006/jcph.2000.6636, 2001. a
Osher, S. and Fedkiw, R. P.: Level set methods and dynamic implicit surfaces, vol. 153 of Applied mathematical sciences, Springer, NY, https://doi.org/10.1115/1.1760520, 2003. a
Osher, S. and Merriman, B.: The Wulff shape as the asymptotic limit of a growing crystalline interface, Asian J. Math., 1, 560–571, https://doi.org/10.4310/AJM.1997.v1.n3.a6, 1997. a, b
Palmer, B.: Anisotropic wavefronts and Laguerre geometry, J. Math. Phys., 56, 023503, https://doi.org/10.1063/1.4907215, 2015. a
Passalacqua, P., Do Trung, T., Foufoula-Georgiou, E., Sapiro, G., and Dietrich, W. E.: A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths, J. Geophys. Res., 115, F01002–18, https://doi.org/10.1029/2009JF001254, 2010a. a
Passalacqua, P., Tarolli, P., and Foufoula-Georgiou, E.: Testing space-scale methodologies for automatic geomorphic feature extraction from lidar in a complex mountainous landscape, Water Resour. Res., 46, W11535–17, https://doi.org/10.1029/2009WR008812, 2010b. a
Pazzaglia, F. J.: Landscape evolution models, in: The Quaternary Period in the United States, Elsevier, 247–274, https://doi.org/10.1016/S1571-0866(03)01012-1, 2003. a
Perlick, V.: Ray Optics, Fermat's Principle, and Applications to General Relativity, vol. 61 of Lecture Notes in Physics, Springer-Verlag, Berlin, Heidelberg, https://doi.org/10.1007/3-540-46662-2, 2000. a
Pinezich, J. D.: Propagation of singularities in nonconvex Hamilton-Jacobi problems: local structure in two dimensions, SIAM J. Math. Anal., 51, 3796–3818, https://doi.org/10.1137/18M1235570, 2019. a
Qian, J., Cheng, L.-T., and Osher, S.: A level set-based Eulerian approach for anisotropic wave propagation, Wave Motion, 37, 365–379, https://doi.org/10.1016/S0165-2125(02)00101-4, 2003. a
Radjenović, B. and Radmilović-Radjenović, M.: 3D simulations of the profile evolution during anisotropic wet etching of silicon, Thin Solid Films, 517, 4233–4237, https://doi.org/10.1016/j.tsf.2009.02.007, 2009. a
Radjenović, B., Lee, J. K., and Radmilović-Radjenović, M.: Sparse field level set method for non-convex Hamiltonians in 3D plasma etching profile simulations, Comput. Phys. Commun., 174, 127–132, https://doi.org/10.1016/j.cpc.2005.09.010, 2006a. a
Radjenović, B., Radmilović-Radjenović, M., and Mitrić, M.: Nonconvex Hamiltonians in three dimensional level set simulations of the wet etching of silicon, Appl. Phys. Lett., 89, 213102, https://doi.org/10.1063/1.2388860, 2006b. a
Radjenović, B., Radmilović-Radjenović, M., and Mitrić, M.: Level set approach to anisotropic wet etching of silicon, Sensors, 10, 4950–4967, https://doi.org/10.3390/s100504950, 2010. a
Rawlinson, N., Hauser, J., and Sambridge, M.: Seismic ray tracing and wavefront tracking in laterally heterogeneous media, in: Advances in Geophysics, vol. 49, Elsevier, 203–273, https://doi.org/10.1016/S0065-2687(07)49003-3, 2008. a, b
Reinhardt, L. J., Bishop, P., Hoey, T. B., Dempster, T. J., and Sanderson, D. C. W.: Quantification of the transient response to base-level fall in a small mountain catchment: Sierra Nevada, southern Spain, J. Geophys. Res., 112, F03S05, https://doi.org/10.1029/2006JF000524, 2007. a
Richards, G. D.: An elliptical growth model of forest fire fronts and its numerical solution, Geophys. Res., 30, 1163–1179, https://doi.org/10.1002/nme.1620300606, 1990. a
Richards, G. D.: A general mathematical framework for modeling two-dimensional wildland fire spread, Int. J. Wildland Fire, 5, 63–72, https://doi.org/10.1071/WF9950063, 1995. a
Rider, P. R.: The figuratrix in the calculus of variations, Ann. Math., 28, 640–563, https://doi.org/10.2307/1989068, 1926. a
Rigon, R., Rinaldo, A., Rodriguez-Iturbe, I., Ijjasz-Vasquez, E., and Bras, R. L.: Optimal channel networks: a framework for the study of river basin morphology, Water Resour. Res., 29, 1635–1346, https://doi.org/10.1029/92WR02985, 1993. a
Rinaldo, A., Rodriguez-Iturbe, I., Rigon, R., Bras, R. L., Ijjasz-Vasquez, E., and Marani, A.: Minimum energy and fractal structures of drainage networks, Water Resour. Res., 28, 2183–2195, https://doi.org/10.1029/92WR00801, 1992. a
Rinaldo, A., Rodríguez-Iturbe, I., and Rigon, R.: Channel networks, Annu. Rev. Earth Pl. Sc., 26, 289–327, https://doi.org/10.1146/annurev.earth.26.1.289, 1998. a, b
Rodriguez-Iturbe, I. and Rinaldo, A.: Fractal River Basins: Chance and Self-Organization, Cambridge University Press, ISBN 9780521004053, 2001. a
Rodriguez-Iturbe, I., Rinaldo, A., Rigon, R., Bras, R. L., Ijjasz-Vasquez, E., and Marani, A.: Fractal structures as least energy patterns: The case of river networks, Geophys. Res. Lett., 19, 889–892, https://doi.org/10.1029/92GL00938, 1992a. a
Rodriguez-Iturbe, I., Rinaldo, A., Rigon, R., Bras, R. L., Marani, A., and Ijjasz-Vasquez, E.: Energy dissipation, runoff production, and the three-dimensional structure of river basins, Water Resour. Res., 28, 1095–1103, https://doi.org/10.1029/91WR03034, 1992b. a
Rund, H.: The Differential Geometry of Finsler Spaces, Springer Science+Business Media, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-51610-8, 1959. a
Sethian, J. A.: Level Set Methods and Fast Marching Methods,
Evolving Interfaces in Computational Geometry, Fluid Mechanics,
Computer Vision, and Materials Science, 2nd edn., Cambridge University
Press,
https://www.cambridge.org/jp/academic/subjects/mathematics/
(last access: 21 April 2022), 1999. a
Sethian, J. A. and Adalsteinsson, D.: An overview of level set methods for etching, deposition, and lithography development, IEEE T. Semiconduct. M., 10, 167–184, https://doi.org/10.1109/66.554505, 1997. a, b
Shemenski, R. M., Beck, F. H., and Fontana, M. G.: Orientation-dependent dissolution of iron whiskers, J. Appl. Phys., 36, 3909–3916, https://doi.org/10.1063/1.1713969, 1965. a
Shen, Z.: Differential Geometry of Spray and Finsler Spaces,
Springer Science+Business Media, https://doi.org/10.1007/978-94-015-9727-2, 2013. a
Shimada, H. and Sabau, S. V.: Finsler geometry, in: Generalizations of Finsler geometry, edited by: Antonelli, P. L., Kluwer, Dordrecht, 15–24, https://doi.org/10.1007/978-94-011-4235-9, 2000. a, b, c
Shimada, H. and Sabau, S. V.: Introduction to Matsumoto metric, Nonlinear Anal.-Theor., 63, e165–e168, https://doi.org/10.1016/j.na.2005.02.062, 2005. a
Sieniutycz, S.: Dynamic programming approach to a Fermat type principle for heat flow, Int. J. Heat Mass Tran., 43, 3453–3468, https://doi.org/10.1016/S0017-9310(00)00032-6, 2000. a
Sieniutycz, S.: A variational theory for frictional flow of fluids in inhomogeneous porous systems, Int. J. Heat Mass Tran., 50, 1278–1287, https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.014, 2007. a
Sinclair, K. and Ball, R. C.: Mechanism for global optimization of river networks from local erosion rules, Phys. Rev. E, 76, 3360–3363, https://doi.org/10.1103/physrevlett.76.3360, 1996. a
Sklar, L. S. and Dietrich, W. E.: The role of sediment in controlling steady-state bedrock channel slope: Implications of the saltation-abrasion incision model, Geomorphology, 82, 58–83, https://doi.org/10.1016/j.geomorph.2005.08.019, 2006. a
Slawinski, M. A.: Waves and rays in elastic continua, 3rd edn., World Scientific Publishing Company, https://doi.org/10.1142/7486, 2014. a
Small, A. and Lam, K. S.: Simple derivations of the Hamilton–Jacobi equation and the eikonal equation without the use of canonical transformations, Am. J. Phys., 79, 678–681, https://doi.org/10.1119/1.3553462, 2011. a, b
Smith, R., Carter, G., and Nobes, M. J.: The theory of surface erosion by ion bombardment, P. Roy. Soc. Lond. A Mat., 407, 405–433, https://doi.org/10.1098/rspa.1986.0103, 1986. a, b
Stark, C. P.: GME: Geometric Mechanics of Erosion (v1.0),
Zenodo [code], https://doi.org/10.5281/zenodo.6373103, 2022c. a, b
Stark, C. P.: GMPLib: Geomorphysics Python Library (v1.0),
Zenodo [code], https://doi.org/10.5281/zenodo.6373127, 2022d. a, b
Sullivan, A. L.: Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models, Int. J. Wildland Fire, 18, 387–403, https://doi.org/10.1071/WF06144, 2009. a
Tucker, G. E.: Landscape evolution, in: Crustal and Lithosphere Dynamics: Treatise on Geophysics, edited by: Watts, A. B., Elsevier, 593–630, https://doi.org/10.1016/B978-0-444-53802-4.00124-X, 2015. a
Tucker, G. E. and Hancock, G. R.: Modelling landscape evolution, Earth Surf. Proc. Land., 35, 28–50, https://doi.org/10.1002/esp.1952, 2010. a
van der Beek, P.: Modelling landscape evolution, in: Environmental Modelling, John Wiley & Sons, Ltd, Chichester, UK, 309–331, https://doi.org/10.1002/9781118351475.ch19, 2013. a
Van Wagner, C. E.: A simple fire-growth model, Forestry Chron., 103–104, https://doi.org/10.5558/tfc45103-2, 1969. a
Virieux, J. and Lambaré, G.: Theory and observations – Body waves: Ray methods and finite frequency effects, in: Seismology and Structure of the Earth: Treatise on Geophysics, edited by: Romanowicz, B. A. and Dziewonski, A. M., Elsevier, 127–155, https://doi.org/10.1016/B978-044452748-6.00004-3, 2007. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I. L., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Vladimirsky, A. B.: Fast methods for static Hamilton-Jacobi Partial Differential Equations, PhD thesis, University of California, Berkeley, https://escholarship.org/uc/item/8k28k9t9 (last access: 21 April 2022), 2001. a
Wang, Y., Nemeth, T., and Langan, R. T.: An expanding-wavefront method for solving the eikonal equations in general anisotropic media, Geophysics, 71, T129–T135, https://doi.org/10.1190/1.2235563, 2006. a
Weissel, J. K. and Seidl, M. A.: Inland propagation of erosional escarpments and river profile evolution across the southeast Australian passive continental margin, in: Prediction in Geomorphology, American Geophysical Union, Washington, DC, 189–206, https://doi.org/10.1029/GM107p0189, 1998. a, b, c, d, e
Whitham, G. B.: Linear and Nonlinear Waves, Whitham/Linear, John Wiley & Sons, Inc., Hoboken, NJ, USA, https://doi.org/10.1002/9781118032954, 1999. a, b
Willgoose, G.: Mathematical modeling of whole landscape evolution, Annu. Rev. Earth Pl. Sc., 33, 443–459, https://doi.org/10.1146/annurev.earth.33.092203.122610, 2005. a
Witcomb, M. J.: Frank's kinematic theory of crystal dissolution applied to the prediction of apex angles of conical ion-bombardment structures, J. Mater. Sci., 10, 669–682, https://doi.org/10.1007/BF00566576, 1975.
a
Woodhouse, J. H. and Deuss, A.: Theory and observations – Earth's free oscillations, in: Seismology and Structure of the Earth: Treatise on Geophysics, edited by: Romanowicz, B. A. and Dziewonski, A. M., Elsevier, 31–65, https://doi.org/10.1016/B978-044452748-6.00002-X, 2007. a
Yajima, T. and Nagahama, H.: Finsler geometry of seismic ray path in anisotropic media, P. Roy. Soc. A-Math. Phy., 465, 1763–1777, https://doi.org/10.1098/rspa.2008.0453, 2009. a, b
Yajima, T. and Nagahama, H.: Finsler geometry for nonlinear path of fluids flow through inhomogeneous media, Nonlinear Anal.-Real, 25, 1–8, https://doi.org/10.1016/j.nonrwa.2015.02.009, 2015. a
Yajima, T., Yamasaki, K., and Nagahama, H.: Finsler metric and elastic constants for weak anisotropic media, Nonlinear Anal.-Real, 12, 3177–3184, https://doi.org/10.1016/j.nonrwa.2011.05.018, 2011. a, b, c
Zhang, L., Parker, G., Stark, C. P., Inoue, T., Viparelli, E., Fu, X., and Izumi, N.: Macro-roughness model of bedrock–alluvial river morphodynamics, Earth Surf. Dynam., 3, 113–138, https://doi.org/10.5194/esurf-3-113-2015, 2015. a
Short summary
Landscape erosion is generally considered to take place vertically downward. Here, by writing gradient-driven erosion in Hamiltonian form, we show this is not true. Instead, we find it takes place in two directions simultaneously: (i) normal to the surface and (ii) along rays pointing upstream and either up or down depending on how erosion rate scales with slope. The rays follow the shortest time paths that determine how long it takes for a landscape to respond to changes in external conditions.
Landscape erosion is generally considered to take place vertically downward. Here, by writing...