Articles | Volume 10, issue 5
https://doi.org/10.5194/esurf-10-975-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-975-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transitional rock glaciers at sea level in northern Norway
Karianne S. Lilleøren
CORRESPONDING AUTHOR
Department of Geosciences, University of Oslo, Oslo, 0316, Norway
Bernd Etzelmüller
Department of Geosciences, University of Oslo, Oslo, 0316, Norway
Line Rouyet
NORCE Norwegian Research Centre AS, Tromsø, 9294, Norway
Trond Eiken
Department of Geosciences, University of Oslo, Oslo, 0316, Norway
Gaute Slinde
Department of Geosciences, University of Oslo, Oslo, 0316, Norway
Christin Hilbich
Department of Geosciences, University of Fribourg, Fribourg, 1700,
Switzerland
Related authors
Thomas James Barnes, Thomas Vikhamar Schuler, Karianne Staalesen Lilleøren, and Louise Steffensen Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2025-108, https://doi.org/10.5194/egusphere-2025-108, 2025
Preprint archived
Short summary
Short summary
Ribbed moraines are a common, but poorly understood landform within formerly glaciated regions. There are many competing theories for their formation. As such, this paper addresses some of these theories by taking modelled ice conditions and physical characteristics of the landscapes in which they form and, then comparing them to the location of ribbed moraines. Using this we can identify conditions where ribbed moraines are more often present, and therefore we identify the most likely theories.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Cas Renette, Kristoffer Aalstad, Juditha Aga, Robin Benjamin Zweigel, Bernd Etzelmüller, Karianne Staalesen Lilleøren, Ketil Isaksen, and Sebastian Westermann
Earth Surf. Dynam., 11, 33–50, https://doi.org/10.5194/esurf-11-33-2023, https://doi.org/10.5194/esurf-11-33-2023, 2023
Short summary
Short summary
One of the reasons for lower ground temperatures in coarse, blocky terrain is a low or varying soil moisture content, which most permafrost modelling studies did not take into account. We used the CryoGrid community model to successfully simulate this effect and found markedly lower temperatures in well-drained, blocky deposits compared to other set-ups. The inclusion of this drainage effect is another step towards a better model representation of blocky mountain terrain in permafrost regions.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Cassandra E. M. Koenig, Christin Hilbich, Christian Hauck, Lukas U. Arenson, and Pablo Wainstein
The Cryosphere, 19, 2653–2676, https://doi.org/10.5194/tc-19-2653-2025, https://doi.org/10.5194/tc-19-2653-2025, 2025
Short summary
Short summary
This study presents the first regional compilation of borehole temperature data from high-altitude permafrost sites in the Andes, providing a baseline of ground thermal conditions. Data from 53 boreholes show thermal characteristics similar to other mountain permafrost areas, but uniquely shaped by Andean topo-climatic conditions. The study emphasizes the need for ongoing monitoring and is a notable collaboration between industry, academia, and regulators in advancing climate change research.
Thomas James Barnes, Thomas Vikhamar Schuler, Karianne Staalesen Lilleøren, and Louise Steffensen Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2025-108, https://doi.org/10.5194/egusphere-2025-108, 2025
Preprint archived
Short summary
Short summary
Ribbed moraines are a common, but poorly understood landform within formerly glaciated regions. There are many competing theories for their formation. As such, this paper addresses some of these theories by taking modelled ice conditions and physical characteristics of the landscapes in which they form and, then comparing them to the location of ribbed moraines. Using this we can identify conditions where ribbed moraines are more often present, and therefore we identify the most likely theories.
Alexandru Onaca, Flavius Sirbu, Valentin Poncos, Christin Hilbich, Tazio Strozzi, Petru Urdea, Răzvan Popescu, Oana Berzescu, Bernd Etzelmüller, Alfred Vespremeanu-Stroe, Mirela Vasile, Delia Teleagă, Dan Birtaș, Iosif Lopătiță, Simon Filhol, Alexandru Hegyi, and Florina Ardelean
EGUsphere, https://doi.org/10.5194/egusphere-2024-3262, https://doi.org/10.5194/egusphere-2024-3262, 2025
Short summary
Short summary
This study establishes a methodology for the study of slow-moving rock glaciers in marginal permafrost and provides the basic knowledge for understanding rock glaciers in south east Europe. By using a combination of different methods (remote sensing, geophysical survey, thermal measurements), we found out that, on the transitional rock glaciers, low ground ice content (i.e. below 20 %) produces horizontal displacements of up to 3 cm per year.
Lotte Wendt, Line Rouyet, Hanne H. Christiansen, Tom Rune Lauknes, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2972, https://doi.org/10.5194/egusphere-2024-2972, 2024
Short summary
Short summary
In permafrost environments, the ground surface moves due to the formation and melt of ice in the ground. This study compares ground surface displacements measured from satellite images against field data of ground ice contents. We find good agreement between the detected seasonal subsidence and observed ground ice melt. Our results show the potential of satellite remote sensing for mapping ground ice variability, but also indicate that ice in excess of the pore space must be considered.
Tamara Mathys, Muslim Azimshoev, Zhoodarbeshim Bektursunov, Christian Hauck, Christin Hilbich, Murataly Duishonakunov, Abdulhamid Kayumov, Nikolay Kassatkin, Vassily Kapitsa, Leo C. P. Martin, Coline Mollaret, Hofiz Navruzshoev, Eric Pohl, Tomas Saks, Intizor Silmonov, Timur Musaev, Ryskul Usubaliev, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2795, https://doi.org/10.5194/egusphere-2024-2795, 2024
Short summary
Short summary
This study provides a comprehensive geophysical dataset on permafrost in the data-scarce Tien Shan and Pamir mountain regions of Central Asia. It also introduces a novel modeling method to quantify ground ice content across different landforms. The findings indicate that this approach is well-suited for characterizing ice-rich permafrost, which is crucial for evaluating future water availability and assessing risks associated with thawing permafrost.
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Theresa Maierhofer, Adrian Flores Orozco, Nathalie Roser, Jonas K. Limbrock, Christin Hilbich, Clemens Moser, Andreas Kemna, Elisabetta Drigo, Umberto Morra di Cella, and Christian Hauck
The Cryosphere, 18, 3383–3414, https://doi.org/10.5194/tc-18-3383-2024, https://doi.org/10.5194/tc-18-3383-2024, 2024
Short summary
Short summary
In this study, we apply an electrical method in a high-mountain permafrost terrain in the Italian Alps, where long-term borehole temperature data are available for validation. In particular, we investigate the frequency dependence of the electrical properties for seasonal and annual variations along a 3-year monitoring period. We demonstrate that our method is capable of resolving temporal changes in the thermal state and the ice / water ratio associated with seasonal freeze–thaw processes.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023, https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Short summary
Permafrost (permanently frozen ground) is widespread in the mountains of Norway and Iceland. Several boreholes were drilled after 1999 for long-term permafrost monitoring. We document a strong warming of permafrost, including the development of unfrozen bodies in the permafrost. Warming and degradation of mountain permafrost may lead to more natural hazards.
Anatoly O. Sinitsyn, Sara Bazin, Rasmus Benestad, Bernd Etzelmüller, Ketil Isaksen, Hanne Kvitsand, Julia Lutz, Andrea L. Popp, Lena Rubensdotter, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2950, https://doi.org/10.5194/egusphere-2023-2950, 2023
Preprint archived
Short summary
Short summary
This study looked at under the ground on Svalbard, an archipelago close to the North Pole. We found something very surprising – there is water under the all year around frozen soil. This was not known before. This water could be used for drinking if we manage it carefully. This is important because getting clean drinking water is very difficult in Svalbard, and other Arctic places. Also, because the climate is getting warmer, there might be even more water underground in the future.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Justyna Czekirda, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, and Florence Magnin
The Cryosphere, 17, 2725–2754, https://doi.org/10.5194/tc-17-2725-2023, https://doi.org/10.5194/tc-17-2725-2023, 2023
Short summary
Short summary
We assess spatio-temporal permafrost variations in selected rock walls in Norway over the last 120 years. Ground temperature is modelled using the two-dimensional ground heat flux model CryoGrid 2D along nine profiles. Permafrost probably occurs at most sites. All simulations show increasing ground temperature from the 1980s. Our simulations show that rock wall permafrost with a temperature of −1 °C at 20 m depth could thaw at this depth within 50 years.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Cas Renette, Kristoffer Aalstad, Juditha Aga, Robin Benjamin Zweigel, Bernd Etzelmüller, Karianne Staalesen Lilleøren, Ketil Isaksen, and Sebastian Westermann
Earth Surf. Dynam., 11, 33–50, https://doi.org/10.5194/esurf-11-33-2023, https://doi.org/10.5194/esurf-11-33-2023, 2023
Short summary
Short summary
One of the reasons for lower ground temperatures in coarse, blocky terrain is a low or varying soil moisture content, which most permafrost modelling studies did not take into account. We used the CryoGrid community model to successfully simulate this effect and found markedly lower temperatures in well-drained, blocky deposits compared to other set-ups. The inclusion of this drainage effect is another step towards a better model representation of blocky mountain terrain in permafrost regions.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Tamara Mathys, Christin Hilbich, Lukas U. Arenson, Pablo A. Wainstein, and Christian Hauck
The Cryosphere, 16, 2595–2615, https://doi.org/10.5194/tc-16-2595-2022, https://doi.org/10.5194/tc-16-2595-2022, 2022
Short summary
Short summary
With ongoing climate change, there is a pressing need to understand how much water is stored as ground ice in permafrost. Still, field-based data on permafrost in the Andes are scarce, resulting in large uncertainties regarding ground ice volumes and their hydrological role. We introduce an upscaling methodology of geophysical-based ground ice quantifications at the catchment scale. Our results indicate that substantial ground ice volumes may also be present in areas without rock glaciers.
Theresa Maierhofer, Christian Hauck, Christin Hilbich, Andreas Kemna, and Adrián Flores-Orozco
The Cryosphere, 16, 1903–1925, https://doi.org/10.5194/tc-16-1903-2022, https://doi.org/10.5194/tc-16-1903-2022, 2022
Short summary
Short summary
We extend the application of electrical methods to characterize alpine permafrost using the so-called induced polarization (IP) effect associated with the storage of charges at the interface between liquid and solid phases. We investigate different field protocols to enhance data quality and conclude that with appropriate measurement and processing procedures, the characteristic dependence of the IP response of frozen rocks improves the assessment of thermal state and ice content in permafrost.
Christin Hilbich, Christian Hauck, Coline Mollaret, Pablo Wainstein, and Lukas U. Arenson
The Cryosphere, 16, 1845–1872, https://doi.org/10.5194/tc-16-1845-2022, https://doi.org/10.5194/tc-16-1845-2022, 2022
Short summary
Short summary
In view of water scarcity in the Andes, the significance of permafrost as a future water resource is often debated focusing on satellite-detected features such as rock glaciers. We present data from > 50 geophysical surveys in Chile and Argentina to quantify the ground ice volume stored in various permafrost landforms, showing that not only rock glacier but also non-rock-glacier permafrost contains significant ground ice volumes and is relevant when assessing the hydrological role of permafrost.
Noah D. Smith, Eleanor J. Burke, Kjetil Schanke Aas, Inge H. J. Althuizen, Julia Boike, Casper Tai Christiansen, Bernd Etzelmüller, Thomas Friborg, Hanna Lee, Heather Rumbold, Rachael H. Turton, Sebastian Westermann, and Sarah E. Chadburn
Geosci. Model Dev., 15, 3603–3639, https://doi.org/10.5194/gmd-15-3603-2022, https://doi.org/10.5194/gmd-15-3603-2022, 2022
Short summary
Short summary
The Arctic has large areas of small mounds that are caused by ice lifting up the soil. Snow blown by wind gathers in hollows next to these mounds, insulating them in winter. The hollows tend to be wetter, and thus the soil absorbs more heat in summer. The warm wet soil in the hollows decomposes, releasing methane. We have made a model of this, and we have tested how it behaves and whether it looks like sites in Scandinavia and Siberia. Sometimes we get more methane than a model without mounds.
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Léo C. P. Martin, Jan Nitzbon, Johanna Scheer, Kjetil S. Aas, Trond Eiken, Moritz Langer, Simon Filhol, Bernd Etzelmüller, and Sebastian Westermann
The Cryosphere, 15, 3423–3442, https://doi.org/10.5194/tc-15-3423-2021, https://doi.org/10.5194/tc-15-3423-2021, 2021
Short summary
Short summary
It is important to understand how permafrost landscapes respond to climate changes because their thaw can contribute to global warming. We investigate how a common permafrost morphology degrades using both field observations of the surface elevation and numerical modeling. We show that numerical models accounting for topographic changes related to permafrost degradation can reproduce the observed changes in nature and help us understand how parameters such as snow influence this phenomenon.
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere, 15, 2491–2509, https://doi.org/10.5194/tc-15-2491-2021, https://doi.org/10.5194/tc-15-2491-2021, 2021
Short summary
Short summary
This study presents rock surface temperatures (RSTs) of steep high-Arctic rock walls on Svalbard from 2016 to 2020. The field data show that coastal cliffs are characterized by warmer RSTs than inland locations during winter seasons. By running model simulations, we analyze factors leading to that effect, calculate the surface energy balance and simulate different future scenarios. Both field data and model results can contribute to a further understanding of RST in high-Arctic rock walls.
Christian Halla, Jan Henrik Blöthe, Carla Tapia Baldis, Dario Trombotto Liaudat, Christin Hilbich, Christian Hauck, and Lothar Schrott
The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, https://doi.org/10.5194/tc-15-1187-2021, 2021
Short summary
Short summary
In the semi-arid to arid Andes of Argentina, rock glaciers contain invisible and unknown amounts of ground ice that could become more important in future for the water availability during the dry season. The study shows that the investigated rock glacier represents an important long-term ice reservoir in the dry mountain catchment and that interannual changes of ground ice can store and release significant amounts of annual precipitation.
Cited articles
Amschwand, D., Ivy-Ochs, S., Frehner, M., Steinemann, O., Christl, M., and
Vockenhuber, C.: Deciphering the evolution of the Bleis Marscha rock glacier
(Val d'Err, eastern Switzerland) with cosmogenic nuclide exposure dating,
aerial image correlation, and finite element modeling, The Cryosphere, 15,
2057–2081, https://doi.org/10.5194/tc-15-2057-2021, 2021.
Andersen, B. G.: Late Weichselian ice sheets in Eurasia, Greenland, and
Norway, in: The Last Great Ice Sheets, edited by: Denton, G. H. and Hughes,
T. J., John Wiley & Sons, New York, USA, 20–27, ISBN 978-0471060062, 1981.
Ballantyne, C. K.: Paraglacial geomorphology, Quaternaty Sci. Rev., 21,
1935–2017, 2002.
Barsch, D.: Permafrost creep and rockglaciers, Permafrost Periglac.
Process., 3, 175–188, https://doi.org/10.1002/ppp.3430030303, 1992.
Barsch, D.: Rockglaciers. Indicators for the Present and Former Geoecology
in high mountain environments, Spinger Verlag, Heidelberg, 1996.
Berthling, I.: Beyond confusion: Rock glaciers as cryo-conditioned
landforms, Geomorphology, 131, 98–106, https://doi.org/10.1016/j.geomorph.2011.05.002, 2011.
Berthling, I., Etzelmüller, B., Eiken, T., and Sollid, J. L.: Rock
glaciers on Prins Karls Forland, Svalbard. I: internal structure, flow
velocity and morphology, Permafrost Periglac. Process., 9, 135–145,
https://doi.org/10.1002/(SICI)1099-1530(199804/06)9:2<135::AID-PPP284>3.0.CO;2-R, 1998.
Bertone, A., Barboux, C., Bodin, X., Bolch, T., Brardinoni, F., Caduff, R., Christiansen, H. H., Darrow, M. M., Delaloye, R., Etzelmüller, B., Humlum, O., Lambiel, C., Lilleøren, K. S., Mair, V., Pellegrinon, G., Rouyet, L., Ruiz, L., and Strozzi, T.: Incorporating InSAR kinematics into rock glacier inventories: insights from 11 regions worldwide, The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, 2022.
Borge, A. F., Westermann, S., Solheim, I., and Etzelmüller, B.: Strong
degradation of palsas and peat plateaus in northern Norway during the last
60 years, The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, 2017.
Boulton, G. S., Dongelmans, P., Punkari, M., and Broadgate, M.:
Palaeoglaciology of an ice sheet through a glacial cycle: the European ice
sheet through the Weichselian, Quaternary Sci. Rev., 20, 591–625,
https://doi.org/10.1016/S0277-3791(00)00160-8, 2001.
Dehls, J. F., Larsen, Y., Marinkovic, P., Lauknes, T. R., Stødle, D., and
Moldestad, D. A.: INSAR.No: A National Insar Deformation Mapping/Monitoring
Service In Norway – From Concept To Operations, in: IGARSS 2019 – 2019 IEEE
International Geoscience and Remote Sensing Symposium, 28 July–2 August 2019, Yokohama, Japan, 5461–5464, https://doi.org/10.1109/IGARSS.2019.8898614, 2019.
Delaloye, R. and Lambiel, C.: Evidence of winter ascending air circulation
throughout talus slopes and rock glaciers situated in the lower belt of
alpine discontinuous permafrost (Swiss Alps), Norsk Geografisk Tidsskrift –
Norweg. J. Geogr., 59, 194–203, https://doi.org/10.1080/00291950510020673, 2005.
Deluigi, N., Lambiel, C., and Kanevski, M.: Data-driven mapping of the
potential mountain permafrost distribution, Sci. Total Environ., 590–591, 370–380, https://doi.org/10.1016/j.scitotenv.2017.02.041, 2017.
Dowdeswell, J. A. and Siegert, M. J.: Ice-sheet numerical modeling and
marine geophysical measurements of glacier-derived sedimentation on the
Eurasian Arctic continental margins, GSA Bull., 111, 1080–1097,
https://doi.org/10.1130/0016-7606(1999)111<1080:Isnmam>2.3.Co;2, 1999.
Egholm, D. L., Knudsen, M. F., and Sandiford, M.: Lifespan of mountain
ranges scaled by feedbacks between landsliding and erosion by rivers,
Nature, 498, 475–478, https://doi.org/10.1038/nature12218, 2013.
Etzelmüller, B., Patton, H., Schomacker, A., Czekirda, J., Girod, L.,
Hubbard, A., Lilleøren, K. S., and Westermann, S.: Icelandic permafrost
dynamics since the Last Glacial Maximum – model results and
geomorphological implications, Quaternary Sci. Rev., 233, 106236,
https://doi.org/10.1016/j.quascirev.2020.106236, 2020.
Farbrot, H., Isaksen, K., Eiken, T., Kääb, A., and Sollid, J. L.:
Composition and internal structures of a rock glacier on the strandflat of
western Spitsbergen, Svalbard, Norsk Geografisk Tidsskrift, 59, 139–148,
2005.
Farbrot, H., Etzelmüller, B., Gudmundsson, A., Humlum, O.,
Kellerer-Pirklbauer, A., Eiken, T., and Wangensteen, B.: Rock glaciers and
permafrost in Trollaskagi, northern Iceland, Z. Geomorphol., 51, 1–16, https://doi.org/10.1127/0372-8854/007/0051s2-0001, 2007.
Farbrot, H., Isaksen, K., and Etzelmüller, B.: Present and past
distribution of mountain permafrost in Gaissane Mountains, Northern Norway,
Ninth International Conference on Permafrost, University of Alaska,
Fairbanks, 427–432, ISBN 978-0-9800179-2-2, 2008.
Farbrot, H., Isaksen, K., Etzelmüller, B., and Gisnås, K.: Ground
Thermal Regime and Permafrost Distribution under a Changing Climate in
Northern Norway, Permafrost Periglac. Process., 24, 20–38, https://doi.org/10.1002/ppp.1763, 2013.
Ferretti, A., Prati, C., and Rocca, F.: Permanent scatterers in SAR interferometry, IEEE T. Geosci. Remote, 39, 8–20, https://doi.org/10.1109/36.898661, 2001.
Fjellanger, J., Sørbel, L., Linge, H., Brook, E. J., Raisbeck, G. M., and
Yiou, F.: Glacial survival of blockfields on the Varanger Peninsula,
northern Norway, Geomorphology, 82, 255–272, https://doi.org/10.1016/j.geomorph.2006.05.007, 2006.
Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E., and Torill Skaugen, E.: Temperature and Precipitation Development at Svalbard 1900–2100, Adv. Meteorol., 2011, 893790, https://doi.org/10.1155/2011/893790, 2011.
Gisnås, K., Etzelmüller, B., Farbrot, H., Schuler, T. V., and
Westermann, S.: CryoGRID 1.0: Permafrost Distribution in Norway estimated by
a Spatial Numerical Model, Permafrost Periglac. Process., 24, 2–19,
https://doi.org/10.1002/ppp.1765, 2013.
Gisnås, K., Westermann, S., Schuler, T. V., Melvold, K., and
Etzelmüller, B.: Small-scale variation of snow in a regional permafrost
model, The Cryosphere, 10, 1201–1215, https://doi.org/10.5194/tc-10-1201-2016, 2016.
Gisnås, K., Etzelmüller, B., Lussana, C., Hjort, J., Sannel, A. B.
K., Isaksen, K., Westermann, S., Kuhry, P., Christiansen, H. H., Frampton,
A., and Åkerman, J.: Permafrost Map for Norway, Sweden and Finland,
Permafrost Periglac. Process., 28, 359–378, https://doi.org/10.1002/ppp.1922, 2017.
Gruber, S.: Derivation and analysis of a high-resolution estimate of global permafrost zonation, The Cryosphere, 6, 221–233, https://doi.org/10.5194/tc-6-221-2012, 2012.
Gubler, S., Fiddes, J., Keller, M., and Gruber, S.: Scale-dependent measurement and analysis of ground surface temperature variability in alpine
terrain, The Cryosphere, 5, 431–443, https://doi.org/10.5194/tc-5-431-2011, 2011.
Haeberli, W.: Creep of mountain permafrost: internal structure and flow of
Alpine rock glaciers, ETH, Zurich, Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der Eidgenössischen Technischen Hochschule Zürich, 142 pp., ISSN 0374-0056, 1985.
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kaab, A.,
Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., and Vonder Muhll,
D.: Permafrost creep and rock glacier dynamics, Permafrost Periglac. Process., 17, 189–214, https://doi.org/10.1002/ppp.561, 2006.
Hales, T. C. and Roering, J. J.: Climatic controls on frost cracking and
implications for the evolution of bedrock landscapes, J. Geophys.
Res.-Earth, 112, F02033, https://doi.org/10.1029/2006jf000616, 2007.
Hales, T. C. and Roering, J. J.: A frost “buzzsaw” mechanism for erosion
of the eastern Southern Alps, New Zealand, Geomorphology, 107, 241–253,
https://doi.org/10.1016/j.geomorph.2008.12.012, 2009.
Halla, C., Blöthe, J. H., Tapia Baldis, C., Trombotto Liaudat, D., Hilbich, C., Hauck, C., and Schrott, L.: Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina, The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, 2021.
Hanssen-Bauer, I., Førland, E. J., Haddeland, I., Hisdal, H., Lawrence, D., Mayer, S., Nesje, A., Nilsen, J. E. Ø., Sandven, S., Sandø, A. B., Sorteberg, A., Ådlandsvik, B., Andreassen, L. M., Beldring, S., Bjune, A., Breil, K., Dahl, C. A., Dyrrdal, A. V., Isaksen, K., Haakenstad, H., Hygen, H. O., Langehaug, H. R., Lauritzen, S. E., Melvold, K., Mezghani, A., Ravndal, O. R., Risebrobakken, B., Roald, L., Sande, H., Simpson, M. J. R., Skagseth, Ø., Skaugen, T., Skogen, M., Støren, E. N., Tveito, O. E., and Wong, W. K.: Climate in Norway 2100 – a knowledge base for climate adaptation, Norwegian Environment Agency (Miljødirektoratet), 1/2017, 48 pp,, ISSN 2387-3027, https://www.miljodirektoratet.no/globalassets/publikasjoner/m741/m741.pdf (last access: 7 October 2022), 2017.
Hanssen-Bauer, I., Førland, E. J., Hisdal, H., Mayer, S., Sandø, A.
B., Sorteberg, A., Adakudlu, M., Andresen, J., Bakke, J., Beldring, S.,
Benestad, R., Bilt, W., Bogen, J., Borstad, C., Breili, K., Breivik, Ø.,
Børsheim, K. Y., Christiansen, H. H., Dobler, A., Engeset, R.,
Frauenfelder, R., Gerland, S., Gjelten, H. M., Gundersen, J., Isaksen, K.,
Jaedicke, C., Kierulf, H. P., Kohler, J., Li, H., Lutz, J., Melvold, K.,
Mezghani, A., Nilsen, F., Nilsen, I. B., Nilsen, J. E. Ø., Pavlova, O.,
Ravndal, O., Risebrobakken, B., Saloranta, T., Sandven, S., Schuler, T. V.,
Simpson, M. J. R., Skogen, M., Smedsrud, L. H., Sund, M., Vikhamar-Schuler,
D., Westermann, S., and Wong, W. K.: Climate in Svalbard 2100 – a knowledge
base for climate adaptation, The Norwegian Environment Agency, 207 pp. , ISSN 2387-3027, https://www.miljodirektoratet.no/globalassets/publikasjoner/M1242/M1242.pdf (last accessL 7 October 2022), 2019.
Harris, C. and Vonder Mühll, D.: Permafrost and climate in Europe.
Climate change, mountain permafrost degradation and geotechnical hazard, in:
Global Change and Protected Areas, Advances in Global Change Research, edited by: Visconti, G., Beniston, M., Iannorelli, E. D., and Barba, D., 71–82, ISBN 978-1-4020-3507-4, 2001.
Harris, S. A. and Corte, A. E.: Interactions and relations between mountain
permafrost, glaciers, snow and water, Permafrost Periglac. Process., 3, 103–110, https://doi.org/10.1002/ppp.3430030207, 1992.
Hauck, C. and Kneisel, C. (Eds.): Applied geophysics in periglacial
environments, Campbridge University Press, ISBN 9780511535628, https://doi.org/10.1017/CBO9780511535628, 2008.
Hauck, C., Böttcher, M., and Maurer, H.: A new model for estimating
subsurface ice content based on combined electrical and seismic data sets,
The Cryosphere, 5, 453–468, https://doi.org/10.5194/tc-5-453-2011, 2011.
Heid, T. and Kääb, A.: Evaluation of existing image matching methods
for deriving glacier surface displacements globally from optical satellite
imagery, Remote Sens. Environ., 118, 339–355, https://doi.org/10.1016/j.rse.2011.11.024, 2012.
Hilbich, C.: Time-lapse refraction seismic tomography for the detection of ground ice degradation, The Cryosphere, 4, 243–259, https://doi.org/10.5194/tc-4-243-2010, 2010.
Humlum, O., Christiansen, H. H., and Juliussen, H.: Avalanche-derived rock
glaciers in Svalbard, Permafrost Periglac. Process., 18, 75–88,
https://doi.org/10.1002/ppp.580, 2007.
Ikeda, A. and Matsuoka, N.: Pebbly versus bouldery rock glaciers: Morphology, structure and processes, Geomorphology, 73, 279–296, https://doi.org/10.1016/j.geomorph.2005.07.015, 2006.
IPA: Kinematics as an optional attribute in standardized rock glacier inventories, Version 3.0.1, IPA Action Group Rock glacier inventories and kinematics, https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/IPA/CurrentVersion/Current_KinematicalAttribute.pdf, last access: 7 October 2022.
Isaksen, K., Ødegård, R. S., Eiken, T., and Sollid, J. L.:
Composition, flow and development of two tongue-shaped rock glaciers in the
permafrost of Svalbard, Permafrost Periglac. Process., 11, 241–257, 2000.
Kääb, A. and Vollmer, M.: Surface Geometry, Thickness Changes and
Flow Fields on Creeping Mountain Permafrost: Automatic Extraction by Digital
Image Analysis, Permafrost Periglac. Process., 11, 315–326,
https://doi.org/10.1002/1099-1530(200012)11:4<315::AID-PPP365>3.0.CO;2-J, 2000.
Kääb, A., Frauenfelder, R., and Roer, I.: On the response of
rockglacier creep to surface temperature increase, Global Planet. Change, 56, 172–187, https://doi.org/10.1016/j.gloplacha.2006.07.005, 2007.
Kellerer-Pirklbauer, A., Wangensteen, B., Farbrot, H., and Etzelmüller,
B.: Relative surface age-dating of rock glacier systems near Holar in
Hjaltadalur, northern Iceland, J. Quatern. Sci., 23, 137–151, 2008.
Kellerer-Pirklbauser, A., Lieb, G., and Kleinferchner, H.: A new rock glacier
inventory of the eastern European Alps, Aust. J. Earth Sci., 105, 78–93, 2012.
Kenner, R., Phillips, M., Hauck, C., Hilbich, C., Mulsow, C., Bühler,
Y., Stoffel, A., and Buchroithner, M.: New insights on permafrost genesis
and conservation in talus slopes based on observations at Flüelapass,
Eastern Switzerland, Geomorphology, 290, 101–113,
https://doi.org/10.1016/j.geomorph.2017.04.011, 2017.
King, L.: Zonation and Ecology of High Mountain Permafrost in Scandinavia,
Geogr. Ann. A, 68, 131–139, 1986.
Kjellman, S. E., Axelsson, P. E., Etzelmüller, B., Westermann, S., and
Sannel, A. B. K.: Holocene development of subarctic permafrost peatlands in
Finnmark, northern Norway, Holocene, 28, 1855–1869,
https://doi.org/10.1177/0959683618798126, 2018.
Lambiel, C. and Pieracci, K.: Permafrost distribution in talus slopes
located within the alpine periglacial belt, Swiss Alps, Permafrost
Periglac. Process., 19, 293–304, https://doi.org/10.1002/ppp.624, 2008.
Liestøl, O.: Talus terraces in Arctic regions, Norsk polarinstitutts,
Norwegian Polar Institute, Aarbok, https://brage.npolar.no/npolar-xmlui/handle/11250/172825102--105 (last access: 7 October 2022), 1961.
Lilleøren, K. S.: Transitional rock glaciers at sea-level in Northern Norway – data, Zenodo [data set], https://doi.org/10.5281/zenodo.7157112, 2022.
Lilleøren, K. S. and Etzelmüller, B.: A regional inventory of rock
glaciers and ice-cored moraines in Norway, Geograf. Ann. A, 93, 175–191, https://doi.org/10.1111/j.1468-0459.2011.00430.x, 2011.
Lilleøren, K. S., Etzelmüller, B., Gärtner-Roer, I.,
Kääb, A., Westermann, S., and Guðmundsson, Á.: The
Distribution, Thermal Characteristics and Dynamics of Permafrost in
Tröllaskagi, Northern Iceland, as Inferred from the Distribution of Rock
Glaciers and Ice-Cored Moraines, Permafrost Periglac. Process., 24, 322–335, https://doi.org/10.1002/ppp.1792, 2013.
Loke, M. H.: Tutorial: 2-D and 3-D electrical imaging surveys, http://www.geotomosoft.com/downloads.php (last access: 7 October 2022), 2018.
Loke, M. H. and Barker, R. D.: Rapid least-squares inversion of apparent
resistivity pseudosections by a quasi-Newton method, Geophys. Prospect., 44, 131–152, https://doi.org/10.1111/j.1365-2478.1996.tb00142.x, 1996a.
Loke, M. H. and Barker, R. D.: Practical techniques for 3D resistivity
surveys and data inversion, Geophys. Prospect., 44, 499–523,
https://doi.org/10.1111/j.1365-2478.1996.tb00162.x, 1996b.
Lussana, C., Saloranta, T., Skaugen, T., Magnusson, J., Tveito, O. E., and
Andersen, J.: seNorge2 daily precipitation, an observational gridded dataset
over Norway from 1957 to the present day, Earth Syst. Sci. Data, 10, 235–249, https://doi.org/10.5194/essd-10-235-2018, 2018.
Malmström, B. and Palmér, O.: Glacial and periglacial geomorphology
on the Varanger peninsula, Northern Norway. Geomorphological mapping with
analysis of glacial forms and block fields, The Royal University of Lund,
Sweden, https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/IPA/Guidelines/V4/210801_Baseline_Concepts_Inventorying_Rock_Glaciers_V4.2.1.pdf (last access: 7 October 2022), 1984.
Matsuoka, N. and Ikeda, A.: Geological control on the distribution and
characteristics talus-derived rock glaciers, Annual Report of the Institute
of Geosciences, University of Tsukuba, Japan, 27, 11–16, https://www.researchgate.net/publication/37640619_Geological_control_on_the_distribution_and_characteristics_of_talus-derived_rock_glaciers (last access: 14 October 2022), 2001.
McColl, S. T.: Paraglacial rock-slope stability, Geomorphology, 153–154,
1–16, https://doi.org/10.1016/j.geomorph.2012.02.015, 2012.
Meier, K.-D.: Studien zur Periglaziärmorphologie der Varanger-Halbinsel, Nordnorwegen, in: Schriftenreihe des Arbeitskreises für geographische Nordeuropaforschung in der Deutschen Gesellschaft für Geographie, edited by: Glässer, H., Lindemann, R., and Venzke, J.-F., NORDEN, Bremen, Germany, 405 pp., 1996.
Mewes, B., Hilbich, C., Delaloye, R., and Hauck, C.: Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes, The Cryosphere, 11, 2957–2974, https://doi.org/10.5194/tc-11-2957-2017, 2017.
NCCS: Klimanormaler – ny standard normalperiode 1991–2020 (Climate normals
– new standard normal period 1991-2020), Norwegian Center for Climate
Services, https://klimaservicesenter.no/kss/vrdata/normaler#nye-normaler-for-stasjoner
(last access: 15 January 2022), 2021.
NGU: 1:50 000 Bedrock data, NGU – Norwegian Geological Survey,
https://geo.ngu.no/kart/berggrunn_mobil/, last access: 10 January 2022.
Nordli, Ø., Przybylak, R., Ogilvie, A. E. J., and Isaksen, K.: Long-term
temperature trends and variability on Spitsbergen: the extended Svalbard
Airport temperature series, 1898–2012, Polar Res., 33, 21349,
https://doi.org/10.3402/polar.v33.21349, 2014.
Obu, J., Westermann, S., Kääb, A., and Bartsch, A.: Ground
Temperature Map, 2000–2016, Northern Hemisphere Permafrost, PANGAEA
[data set], https://doi.org/10.1594/PANGAEA.888600, 2018.
Ottesen, D., Dowdeswell, J. A., and Rise, L.: Submarine landforms and the
reconstruction of fast-flowing ice streams within a large Quaternary ice
sheet: The 2500-km-long Norwegian-Svalbard margin (57∘–80∘ N), GSA Bull., 117, 1033–1050, https://doi.org/10.1130/b25577.1, 2005.
Pellet, C., Hilbich, C., Marmy, A., and Hauck, C.: Soil Moisture Data for the Validation of Permafrost Models Using Direct and Indirect Measurement Approaches at Three Alpine Sites, Front. Earth Sci., 3, 91, https://doi.org/10.3389/feart.2015.00091, 2016.
RGIK: Towards standard guidelines for inventorying rock glaciers: baseline
concepts (version 4.2.2), IPA Action Group on Rock Glacier Inventories and
Kinematics, https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/IPA/Guidelines/V4/210801_Baseline_Concepts_Inventorying_Rock_Glaciers_V4.2.1.pdf (last access: 7 October 2022), 2021.
Rödder, T. and Kneisel, C.: Influence of snow cover and grain size on
the ground thermal regime in the discontinuous permafrost zone, Swiss Alps,
Geomorphology, 175–176, 176–189, https://doi.org/10.1016/j.geomorph.2012.07.008, 2012.
Romundset, A., Bondevik, S., and Bennike, O.: Postglacial uplift and
relative sea level changes in Finnmark, northern Norway, Quaternary Sci. Rev., 30, 2398–2421, https://doi.org/10.1016/j.quascirev.2011.06.007, 2011.
Rouyet, L., Lauknes, T. R., Barboux, C., Bertone, A., Delaloye, R., Kaab, A., Christiansen, H. H., Onaca, A., Sirbu, F., Poncos, V., Strozzi, T., and Bartsch, A.: Rock glacier kinematics as new associated parameter of ECV permafrost, version 1.0. European Space Agency, CCI+ Phase 1 – New ECVs Permafrost, https://climate.esa.int/media/documents/CCI_PERMA_CCN1_2_D2.5_PVP_v1.0.pdf (last access: 7 October 2022), 2020.
Rouyet, L., Lilleøren, K. S., Böhme, M., Vick, L. M., Delaloye, R.,
Etzelmüller, B., Lauknes, T. R., Larsen, Y., and Blikra, L. H.: Regional
Morpho-Kinematic Inventory of Slope Movements in Northern Norway, Front. Earth Sci., 9, 681088, https://doi.org/10.3389/feart.2021.681088, 2021.
Saloranta, T. M.: Simulating snow maps for Norway: description and statistical evaluation of the seNorge snow model, The Cryosphere, 6, 1323–1337, https://doi.org/10.5194/tc-6-1323-2012, 2012.
Sandwell, D. T. and Price, E. J.: Phase gradient approach to stacking
interferograms, J. Geophys. Res.-Solid, 103, 30183–30204, https://doi.org/10.1029/1998JB900008, 1998.
Schilling, J., Reimann, C., and Roberts, D.: REE potential of the Nordkinn
Peninsula, North Norway: A comparison of soil and bedrock composition, Appl. Geochem., 41, 95–106, https://doi.org/10.1016/j.apgeochem.2013.12.004, 2014.
Serrano, E., San José, J. J., and Agudo, C.: Rock glacier dynamics in a
marginal periglacial high mountain environment: Flow, movement (1991–2000)
and structure of the Argualas rock glacier, the Pyrenees, Geomorphology, 74,
285–296, https://doi.org/10.1016/j.geomorph.2005.08.014, 2006.
Shackleton, C., Patton, H., Hubbard, A., Winsborrow, M., Kingslake, J.,
Esteves, M., Andreassen, K., and Greenwood, S. L.: Subglacial water storage
and drainage beneath the Fennoscandian and Barents Sea ice sheets, Quaternary
Sci. Rev., 201, 13–28, https://doi.org/10.1016/j.quascirev.2018.10.007, 2018.
Sollid, J. L. and Sørbel, L.: Rock glaciers in Svalbard and Norway,
Permafrost Periglac. Process., 3, 215–220, 1992.
Sollid, J. L. and Sørbel, L.: Palsa Bogs as a climate indicator – Examples from Dovrefjell, Southern Norway, Ambio, 27, 287–291, 1998.
Sollid, J. L., Andersen, S. T., Hamre, N., Kjeldsen, O., Salvigsen, O.,
Sturød, S., Tveitå, T., and Wilhelmsen, A.: Deglaciation of Finnmark,
North Norway, Norsk geografisk tidsskrift – Norweg. J. Geogr., 27, 233–325, 1973.
Sundheim, E. and Andresen, H.: Pilot project in Moldova for use of drone for production of orthophoto data, Geomatikk Survey AS, https://docplayer.net/50436268-Report-statens-kartverk-agency-for-land-relations (last access: 14 October 2022), 2018.
Svensson, H.: Note on a type of patterned ground on the Varanger peninsula,
Norway, Geograf. Ann., 44, 413, https://doi.org/10.1080/20014422.1962.11881011, 1962.
Svensson, H.: Permafrost. Some Morphoclimatic Aspects of Periglacial
Features of Northern Scandinavia, Geograf. Ann. A, 68, 123–130, https://doi.org/10.1080/04353676.1986.11880165, 1986.
Svensson, H.: Frost-fissure patterns in the Nordic countries, Geograf. Ann. A, 74, 207–218, 1992.
van Everdingen, R. O. E.: Multi-language glossary of permafrost and related
ground-ice terms, International Permafrost Association, the University of
Calgary, Calgary, https://globalcryospherewatch.org/reference/glossary_docs/Glossary_of_Permafrost_and_Ground-Ice_IPA_2005.pdf (last access: 7 October 2022), 1998.
Vick, L. M., Böhme, M., Rouyet, L., Bergh, S. G., Corner, G. D., and
Lauknes, T. R.: Structurally controlled rock slope deformation in northern
Norway, Landslides, 17, 1745–1776, https://doi.org/10.1007/s10346-020-01421-7, 2020.
Westermann, S., Schuler, T. V., Gisnås, K., and Etzelmüller, B.:
Transient thermal modeling of permafrost conditions in Southern Norway, The
Cryosphere, 7, 719–739, https://doi.org/10.5194/tc-7-719-2013, 2013.
Wicky, J. and Hauck, C.: Numerical modelling of convective heat transport by
air flow in permafrost talus slopes, The Cryosphere, 11, 1311–1325,
https://doi.org/10.5194/tc-11-1311-2017, 2017.
Winsborrow, M. C. M., Andreassen, K., Corner, G. D., and Laberg, J. S.:
Deglaciation of a marine-based ice sheet: Late Weichselian palaeo-ice dynamics and retreat in the southern Barents Sea reconstructed from onshore
and offshore glacial geomorphology, Quaternary Sci. Rev., 29, 424–442,
https://doi.org/10.1016/j.quascirev.2009.10.001, 2010.
Yuki, S., Ishikawa, M., and Ono, Y.: Thermal regime of sporadic permafrost
in a block slope on Mt. Nishi-Nupukaushinupuri, Hokkaido Island, Northern
Japan, Geomorphology, 52, 121–130, https://doi.org/10.1016/S0169-555X(02)00252-0, 2003.
Short summary
In northern Norway we have observed several rock glaciers at sea level. Rock glaciers are landforms that only form under the influence of permafrost, which is frozen ground. Our investigations show that the rock glaciers are probably not active under the current climate but most likely were active in the recent past. This shows how the Arctic now changes due to climate changes and also how similar areas in currently colder climates will change in the future.
In northern Norway we have observed several rock glaciers at sea level. Rock glaciers are...