Articles | Volume 11, issue 4
https://doi.org/10.5194/esurf-11-633-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esurf-11-633-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An overview of sedimentary volcanism on Mars
Institute of Geophysics of the Czech Academy of Sciences, Boční II/1401, 141 31 Prague, Czech Republic
Dorothy Oehler
Planetary Science Institute, Tucson, AZ, USA
Adriano Mazzini
Department of Geosciences, University of Oslo, 0371, Oslo, Norway
Ernst Hauber
Institute of Planetary Research, DLR, Rutherfordstr. 2, 12489 Berlin, Germany
Goro Komatsu
International Research School of Planetary Sciences, Università d'Annunzio, Viale Pindaro 42, 65127 Pescara, Italy
Giuseppe Etiope
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 2, Rome, Italy
Faculty of Environmental Science and Engineering, Babes Bolyai University, Cluj-Napoca, Romania
Vojtěch Cuřín
Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
Related authors
No articles found.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter Raymond, Pierre Regnier, Joseph G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihito Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joel Thanwerdas, Hanquin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido van der Werf, Doug E. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-115, https://doi.org/10.5194/essd-2024-115, 2024
Preprint under review for ESSD
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesize and update the budget of the sources and sinks of CH4. This edition benefits from important progresses in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
S. Su, L. Fanara, X. Zhang, K. Gwinner, E. Hauber, and J. Oberst
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 673–678, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-673-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-673-2021, 2021
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Giuseppe Etiope, Giancarlo Ciotoli, Stefan Schwietzke, and Martin Schoell
Earth Syst. Sci. Data, 11, 1–22, https://doi.org/10.5194/essd-11-1-2019, https://doi.org/10.5194/essd-11-1-2019, 2019
Short summary
Short summary
We developed the first global maps of natural geological CH4 flux and isotopic values which can be used for new atmospheric CH4 modelling. The maps, based on updated, measured and theoretically estimated data, show that the highest geo-CH4 emissions are located in the Northern Hemisphere (N. America, Caspian region, Europe, Siberian Arctic Shelf), and that geo-CH4 is less 13C-enriched than what has been assumed so far in other studies. Other CH4 sources can now be estimated with higher accuracy.
Julia Boike, Inge Juszak, Stephan Lange, Sarah Chadburn, Eleanor Burke, Pier Paul Overduin, Kurt Roth, Olaf Ippisch, Niko Bornemann, Lielle Stern, Isabelle Gouttevin, Ernst Hauber, and Sebastian Westermann
Earth Syst. Sci. Data, 10, 355–390, https://doi.org/10.5194/essd-10-355-2018, https://doi.org/10.5194/essd-10-355-2018, 2018
Short summary
Short summary
A 20-year data record from the Bayelva site at Ny-Ålesund, Svalbard, is presented on meteorology, energy balance components, surface and subsurface observations. This paper presents the data set, instrumentation, calibration, processing and data quality control. The data show that mean annual, summer and winter soil temperature data from shallow to deeper depths have been warming over the period of record, indicating the degradation and loss of permafrost at this site.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Owen A. Sherwood, Stefan Schwietzke, Victoria A. Arling, and Giuseppe Etiope
Earth Syst. Sci. Data, 9, 639–656, https://doi.org/10.5194/essd-9-639-2017, https://doi.org/10.5194/essd-9-639-2017, 2017
Short summary
Short summary
Multiple natural and anthropogenic emissions sources contribute to the global atmospheric methane budget. Methane emissions are constrained, in part, by inverse (top-down) models that incorporate data on the concentration and stable carbon and hydrogen isotopic ratios of methane from different sources. To aid in these modeling efforts, we present a geochemical database comprising over 10 000 discrete samples from fossil and non-fossil fuel sources of methane.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
W. A. Marra, S. J. McLelland, D. R. Parsons, B. J. Murphy, E. Hauber, and M. G. Kleinhans
Earth Surf. Dynam., 3, 389–408, https://doi.org/10.5194/esurf-3-389-2015, https://doi.org/10.5194/esurf-3-389-2015, 2015
Short summary
Short summary
Groundwater seepage creates valleys with typical theater-shaped valley heads, which are found on Earth and on Mars. For a better interpretation of these systems, we conducted scale experiments on the formation such valleys. We find that entire landscapes, instead of just the shape of the valleys, provide insights into the source of groundwater. Landscapes filled with valleys indicate a local groundwater source in contrast to sparsely dissected landscapes formed by a distal source of groundwater.
Related subject area
Physical: Planetary Geomorphology
Long-runout landslides with associated longitudinal ridges in Iceland as analogues of Martian landslide deposits
Long-term erosion rates as a function of climate derived from the impact crater inventory
Deep-seated gravitational slope deformation scaling on Mars and Earth: same fate for different initial conditions and structural evolutions
Rainfall intensity bursts and the erosion of soils: an analysis highlighting the need for high temporal resolution rainfall data for research under current and future climates
Groundwater seepage landscapes from distant and local sources in experiments and on Mars
Giulia Magnarini, Anya Champagne, Costanza Morino, Calvin Beck, Meven Philippe, Armelle Decaulne, and Susan J. Conway
Earth Surf. Dynam., 12, 657–678, https://doi.org/10.5194/esurf-12-657-2024, https://doi.org/10.5194/esurf-12-657-2024, 2024
Short summary
Short summary
We show that Icelandic long-runout landslides with longitudinal ridges represent good analogues of Martian landforms. The large record of long-runout landslides with longitudinal ridges emplaced after the Last Glacial Maximum in Iceland offers a unique opportunity to study the possible relation between the development of these landforms and environmental conditions. This could have implications for reconstructing Martian paleoclimatic and paleoenvironmental conditions.
Stefan Hergarten and Thomas Kenkmann
Earth Surf. Dynam., 7, 459–473, https://doi.org/10.5194/esurf-7-459-2019, https://doi.org/10.5194/esurf-7-459-2019, 2019
Short summary
Short summary
Our study reveals that worldwide mean erosion rates on the million-year timescale are very similar to present-day erosion rates in contrast to the majority of the previously published results. Concerning the dependence of erosion on climate, we found that the long-term erosion efficacy of the tropical zone has been about 5 times higher than that of the cold zones, while the erosional efficacy of the present-day arid zone has been as high as that of the temperate zone.
Olga Kromuszczyńska, Daniel Mège, Krzysztof Dębniak, Joanna Gurgurewicz, Magdalena Makowska, and Antoine Lucas
Earth Surf. Dynam., 7, 361–376, https://doi.org/10.5194/esurf-7-361-2019, https://doi.org/10.5194/esurf-7-361-2019, 2019
Short summary
Short summary
Deep-seated gravitational spreading features are spectacular on Mars on the hillslopes of Valles Marineris, both in terms of landform freshness and size. This paper compares their dimensions and those in terrestrial analogue sites in the Tatra Mountains. Gravitational spreading is thought to be inactive in both locations. We find that the height-to-width ratio, ~0.24, is similar in spite of much larger strain in Valles Marineris. We explore the implications.
David L. Dunkerley
Earth Surf. Dynam., 7, 345–360, https://doi.org/10.5194/esurf-7-345-2019, https://doi.org/10.5194/esurf-7-345-2019, 2019
Short summary
Short summary
Soil erosion, especially in vulnerable conditions such as post-fire landscapes or tilled agricultural soils, is greatly affected by the occurrence of bursts of intense rainfall. These are often set within longer periods of less intense rain. This paper documents the nature of the intensity bursts at two Australian locations and shows that high-resolution rainfall records are required in order to make estimates of the intensity. Hourly rainfall data are not suitable for this task.
W. A. Marra, S. J. McLelland, D. R. Parsons, B. J. Murphy, E. Hauber, and M. G. Kleinhans
Earth Surf. Dynam., 3, 389–408, https://doi.org/10.5194/esurf-3-389-2015, https://doi.org/10.5194/esurf-3-389-2015, 2015
Short summary
Short summary
Groundwater seepage creates valleys with typical theater-shaped valley heads, which are found on Earth and on Mars. For a better interpretation of these systems, we conducted scale experiments on the formation such valleys. We find that entire landscapes, instead of just the shape of the valleys, provide insights into the source of groundwater. Landscapes filled with valleys indicate a local groundwater source in contrast to sparsely dissected landscapes formed by a distal source of groundwater.
Cited articles
Adler, J. B., Bell, J. F., Warner, N. H., Dobrea, E. N., and Harrison, T. N.:
Regional geology of the Hypanis Valles system, Mars, J. Geophys. Res.-Planet., 127, e2021JE006994, https://doi.org/10.1029/2021JE006994, 2022.
Akhmanov, G. G., Premoli Silva, I., Erba, E., and Cita, M. B.:
Sedimentary succession and evolution of the Mediterranean Ridge western sector as derived from lithology of mud breccia clasts, Mar. Geol., 195, 277–299, https://doi.org/10.1016/S0025-3227(02)00693-X, 2003.
Alemanno, G., Orofino, V., and Mancarella, F.:
Global map of Martian fluial systems: Age and total eroded volume estimations, Earth Space Sci., 5, 560–577, https://doi.org/10.1029/2018EA000362, 2018.
Allen, C. C.:
Volcano/ice interactions on Mars, J. Geophys. Res., 84, 8048–8059, https://doi.org/10.1029/JB084iB14p08048, 1979.
Aliyev, A., Guliyev, F., Dadashev, F. G., and Rahmannov, R. R.: Atlas of the world mud volcanoes, Nafta-Press, ISBN 978-9952-437-60-7, 2015.
Allen, C. C., Oehler, D. Z., and Baker, D. M.: Mud volcanoes – A new class of sites for geological and astrobiological exploration of Mars, in: 40th Lunar and Planetary Science Conference, 23–27 March 2009, The Woodlands, TX, Abs. #1749, 2009.
Allen, C. C., Oehler, D., Etiope, G., Van Rensbergen, P., Baciu, C., Feyzullayev, A., Martinelli, G., Tanaka, K., and Van Rooij, D.:
Fluid expulsion in terrestrial sedimentary basins: a process providing potential analogs for giant polygons and mounds in the martian lowlands, Icarus, 224, 424–432, https://doi.org/10.1016/j.icarus.2012.09.018, 2013.
Andreassen, K., Hubbard, A., Winsborrow, M., Patton, H., Vadakkepuliyambatta, S., Plaza-Faverola, A., Gudlaugsson, E., Serov, P., Deryabin, A., Mattingsdal, R., Mienert, J., and Bünz, S.:
Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor, Science, 356, 6341, 948–953, https://doi.org/10.1126/science.aal4500, 2017.
Andrews-Hanna, J. C.: The tectonic architecture of wrinkle ridges on Mars, Icarus, 351, 113937, https://doi.org/10.1016/j.icarus.2020.113937, 2020.
Baker, V. R. and Milton, D. J.:
Erosion by catastrophic floods on Mars and Earth, Icarus, 23, 27–41, https://doi.org/10.1016/0019-1035(74)90101-8, 1974.
Baker, V. R., Hamilton, C. W., Burr, D. M., Gulick, V., Komatsu, G., Luo, W., Rice Jr., J. W., and Rodríguez, J. A. P.:
Fluvial geomorphology on Earth-like planetary surfaces: a review, Geomorphology 245, 149–182, https://doi.org/10.1016/j.geomorph.2015.05.002, 2015.
Bargery, A. S., Lane, S. J., Barrett, A., Wilson, L., and Gilbert, J. S.: The initial responses of hot liquid water released under low atmospheric pressures: experimental in-sights, Icarus, 210, 488–506, https://doi.org/10.1016/j.icarus.2010.06.019, 2010.
Belleguic, V., Lognonné, P., and Wieczorek, M.:
Constraints on the Martian lithosphere from gravity and topography data, J. Geophys. Res., 110, E11005, https://doi.org/10.1029/2005JE002437, 2005.
Beven, K.: Equifinality and uncertainty in geomorphological modelling, in: The Scientific Nature of Geomorphology, in: Proc. 27th Binghampton Symp. Geomorphol., 27–29 September 1996, Binghamton, edited by: Rhoads, B. L. and Thorn, C. E., Wiley, Chichester, 289–313, 1996.
Bleacher, J. E., Greeley, R., Williams, D. A., Cave, S. R., and Neukum, G.: Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province, J. Geophys. Res., 112, E09005, https://doi.org/10.1029/2006JE002873, 2007.
Bouriak, S., Vanneste, M., and Saoutkine, A.:
Inferred gas hydrates and clay diapirs near the Storegga Slide on the southern edge of the Vøring Plateau, offshore Norway, Mar. Geol., 163, 1–4, 125–148, https://doi.org/10.1016/S0025-3227(99)00115-2, 2000.
Brass, G. W.:
Stability of brines on Mars, Icarus, 42, 20–28, https://doi.org/10.1016/0019-1035(80)90237-7, 1980.
Bristow, C. R., Gale, I. N., Fellman, E., Cox, B. M., Wilkinson, I. P., and Riding, J. B.: The lithostratigraphy, biostratigraphy and hydrogeological significance of the mud springs at Templars Firs, Wootton Bassett, Wiltshire, Proceedings of the Geologists' Association, 111, 231–245, https://doi.org/10.1016/S0016-7878(00)80016-4, 2000.
Brož, P. and Hauber, E.:
Hydrovolcanic tuff rings and cones as indicators for phreatomagmatic explosive eruptions on Mars, J. Geophys. Res., 118, 1656–1675, https://doi.org/10.1002/jgre.20120, 2013.
Brož, P., Čadek, O., Hauber, E., and Rossi, A. P.:
Scoria cones on Mars: detailed investigation of morphometry based on high-resolution digital elevation models, J. Geophys. Res., 120, 1512–1527, https://doi.org/10.1002/2015JE004873, 2015a.
Brož, P., Hauber, E., Platz, T., and Balme, M. R.:
Evidence for Amazonian highly viscous lavas in the southern highlands on Mars, Earth Planet. Sc. Lett., 415, 200–212, https://doi.org/10.1016/j.epsl.2015.01.033, 2015b.
Brož, P., Hauber, E., Wray, J. J., and Michael, G.:
Amazonian volcanism inside Valles Marineris on Mars, Earth Planet. Sc. Lett., 473, 122–130, https://doi.org/10.1016/j.epsl.2017.06.003, 2017.
Brož, P., Hauber, E., van de Burgt, I., Špillar, V., and Michael, G.:
Subsurface sediment mobilization in the southern Chryse Planitia on Mars, J. Geophys. Res., 124, 703–720, https://doi.org/10.1029/2018JE005868, 2019.
Brož, P., Krýza, O., Wilson, L., Conway, S. J., Hauber, E., Mazzini, A., Raack, J., Patel, M. R., Balme, M. R., and Sylvest, M. E.:
Experimental evidence for lava-like mud flows under Martian surface conditions, Nat. Geosci., 13, 403–407, https://doi.org/10.1038/s41561-020-0577-2, 2020a.
Brož, P., Krýza, O., Conway, S. J., Mueller, N. T., Hauber, E., Mazzini, A., Raack, J., Patel, M. R., Balme, M. R., and Sylvest, M. E.:
Mud flow levitation on Mars: insights from laboratory simulations, Earth Planet. Sc. Lett., 545, 116406, https://doi.org/10.1016/j.epsl.2020.116406, 2020b.
Brož, P., Bernhardt, H., Conway, S. J., and Parekh, R.:
An overview of explosive volcanism on Mars, J. Volcanol. Geoth. Res., 409, https://doi.org/10.1016/j.jvolgeores.2020.107125, 2021.
Brož, P., Hauber, E., Conway, S. J., Luzzi, E., Mazzini, A., Noblet, A., Jaroš, J., Fawdon, P., and Markonis, Y.:
New Evidence for Sedimentary Volcanism on Chryse Planitia, Mars, Icarus, 382, 115038, https://doi.org/10.1016/j.icarus.2022.115038, 2022a.
Brož, P., Krýza, O., Conway, S. J., Mazzini, A., Hauber, E., Sylvest, M. E., and Patel, M. R.: Volumetric changes of mud on Mars: evidence from laboratory simulations, in: 53rd lunar and Planetary science conference, 7–11 March 2022, The Woodlands, TX, #1337, 2022b.
Bulanova, I. A., Solovyeva, M. A., Akhmanov, G. G., Khlystov, O. M., and Starovoytov, A. V.:
Results of geological and geophysical studies of the Elovsky (Lake Baikal), Proceedings of VII International conference “Marine Research and Education (MARESEDU-2018)” Moscow, 19–22 November 2018, v. 2, no. LLC “PolyPRESS”, Tver', 2019, p. 153–154, 2018.
Calvari, S. and Pinkerton, H.:
Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms, J. Volcanol. Geoth. Res., 90, 263–280, https://doi.org/10.1016/S0377-0273(99)00024-4, 1999.
Carr, M. H.:
Stability of streams and lakes on Mars, Icarus, 56, 476–495, https://doi.org/10.1016/0019-1035(83)90168-9, 1983.
Chan, M. A., Ormo, J., Murchie, S., Okubo, C. H., Komatsu, G., Wray, J. J., McGuire, P., and McGovern, J. A.:
Geomorphic knobs of Candor Chasms, Mars: new Mars Reconnaissance Orbiter data and comparisons to terrestrial analogs, Icarus, 205, 138–153, https://doi.org/10.1016/j.icarus.2009.04.006, 2010.
Ciotoli, G., Procesi, M., Etiope, G., Fracassi, U., and Ventura, G.:
Influence of tectonics on global scale distribution of geological methane emissions, Nat. Commun., 11, 2305, https://doi.org/10.1038/s41467-020-16229-1, 2020.
Cita, M. B., Ryan, W. B. F., and Paggi, L.:
Prometheus mudbreccia: An example of shale diapirism in the Western Mediterranean Ridge, Ann. Geol. Pays Hellen., 30, 543–570, 1981.
Clifford, S. M., Lasue, J., Heggy, E., Boisson, J., McGovern, P., and Max, M. D.:
Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater, J. Geophys. Res., 115, E07001, https://doi.org/10.1029/2009JE003462, 2010.
Cockell, C. S.:
Trajectories of Martian Habitability, Astrobiology, 14, 182–203, https://doi.org/10.1089/ast.2013.1106, 2014.
Cockell, C. S. and Barlow, N.: Impact excavation and the search for subsurface life on Mars, Icarus, 155, 340–349, https://doi.org/10.1006/icar.2001.6725, 2002.
Conway, S. J., Lamb, M. P., Balme, M. R., Towner, M. C., and Murray, J. B.:
Enhanced runout and erosion by overland flow at low pressure and subfreezing conditions: Experiments and application to Mars, Icarus, 211, 443–457. https://doi.org/10.1016/j.icarus.2010.08.026, 2011.
Cooper, C.: Mud volcanoes of Azerbaijan visualized using 3D seismic depth cubes: the importance of overpressured fluid and gas instead of non extant diapirs, Abstract Vol. Subsurface Sediment Mobilization Conf, 10–13 September, Ghent, Belgium, p. 71, 2001.
Costard, F., Séjourné, A., Jelloun, K., Clifford, S., Lavigne, F., Di Pietro, I., and Souley, S.: Modeling tsunami propagation and the emplacement of thumbprint terrain in an early Mars ocean, J. Geophys. Res.-Planet., 122, 633–649, https://doi.org/10.1002/2016JE005230, 2017.
Cuřín, V., Brož, P., Hauber, E., and Markonis, Y.: Mud flows in Southwestern Utopia Planitia, Mars, Icarus, 389, 115266, https://doi.org/10.1016/j.icarus.2022.115266, 2023.
Dapremont, A. M. and Wray, J. J.:
Insights into Mars mud volcanism using visible and near-infrared spectroscopy, Icarus, 359, 114299, https://doi.org/10.1016/j.icarus.2020.114299, 2021.
Davis, P. A. and Tanaka, K. L.: Curvilinear ridges in Isidis Planitia, Mars – The result of mud volcanism?, in: 24th Lunar and Planetary Science, 15–19 March 1993, The Woodlands, TX, 321–322, 1995.
Dehn, J. and Sheridan, M. F.: Cinder cones on the Earth, Moon, Mars, and Venus: A computer model, in: 21st Lunar and Planetary Science Conference, 12–16 March 1990, The Woodlands, TX, #270, 1990.
De Toffoli, B., Pozzobon, R., Massironi, M., Mazzarini, F., Conway, S., and Cremonese, G.:
Surface expressions of subsurface sediment mobilization rooted into a gas hydrate-rich cryosphere on Mars, Sci. Rep.-UK, 9, 8603, https://doi.org/10.1038/s41598-019-45057-7, 2019.
De Toffoli, B., Massironi, M., Mazzarini, F., and Bistacchi, A.:
Rheological and mechanical layering of the crust underneath thumbprint terrains in Arcadia Planitia, Mars, J. Geophys. Res.-Planet., 126 (11), https://doi.org/10.1029/2021JE007007, 2021.
Dickinson, W. R.:
Tectonics and Sedimentation, SEPM Special Publication, Vol. 22, SEPM Society for Sedimentary Geology, https://doi.org/10.2110/pec.74.22, 1974.
Dimitrov, L. I.:
Mud volcanoes–the most important pathway for degassing deeply buried sediments, Earth Sci. Rev., 59, 49–76, https://doi.org/10.1016/S0012-8252(02)00069-7, 2002.
Dimitrov, L. I.:
Mud volcanoes—a significant source of atmospheric methane, Geo-Mar. Lett., 23, 155–161, https://doi.org/10.1007/s00367-003-0140-3, 2003.
Di Pietro, I., Séjourné, A., Costard, F., Ciazela, J., and Rodríguez, A. P.:
Evidence of mud volcanism due to the rapid compaction of martian tsunami deposits in southeastern Acidalia Planitia, Mars, Icarus, 354, 114096, https://doi.org/10.1016/j.icarus.2020.114096, 2021.
Etiope, G. and Milkov, A. V. : A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere, Environ. Geol., 46, 997–1002, https://doi.org/10.1007/s00254-004-1085-1, 2004.
Etiope, G., Feyzullayev, A., and Baciu, C. L.:
Terrestrial methane seeps and mud volcanoes: a global perspective of gas origin, Mar. Petrol. Geol., 26, 333–344, https://doi.org/10.1016/j.marpetgeo.2008.03.001, 2009.
Etiope, G., Baciu, C., and Schoell, M.:
Extreme methane deuterium, nitrogen and helium enrichment in natural gas from the Homorod seep (Romania), Chem. Geol., 280, 89–96, https://doi.org/10.1016/j.chemgeo.2010.10.019, 2011.
Farrand, W. H., Gaddis, L. R., and Keszthlyi, L.: Pitted cones and domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data, J. Geophys. Res., 110, E05005, https://doi.org/10.1029/2004JE002297, 2005.
Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., and Giuranna, M.:
Detection of Methane in the Atmosphere of Mars, Science, 306, 1758–1761, https://doi.org/10.1126/science.1101732, 2004.
Franchi, F., Rossi, A. P., Pondrelli, M., and Cavalazzi, B.:
Geometry, stratigraphy and evidences for fluid expulsion within Crommelin crater deposits, Arabia Terra, Mars, Planet. Space Sci., 92, 34–48, https://doi.org/10.1016/j.pss.2013.12.013, 2014.
Frey, H. M., Lowry, B. L., and Chase, S. A.:
Pseudocraters on Mars, J. Geophys. Res., 84, 8075–8086, https://doi.org/10.1029/JB084iB14p08075, 1979.
Frey, H. V., Roark, J. H., Shockey, K. M., Frey, E. L., and Sakimoto, S. E. H.:
Ancient lowlands on Mars, Geophys. Res. Lett., 29, 1384. https://doi.org/10.1029/2001GL013832, 2002.
Fryer, P.: Serpentinite Mud Volcanism: Observations, Processes, and Implications, Annu. Rev. Mar. Sci., 4, 345–373, https://doi.org/10.1146/annurev-marine-120710-100922, 2012.
Fryer, P., Wheat, C. G., Williams, T., Kelley, C., Johnson, K., Ryan, J., Kurz, W., Shervais, J., Albers, E., Bekins, B., Debret, B., Deng, J., Dong, Y., Eickenbusch, P., Frery, E., Ichiyama, Y., Johnston, R., Kevorkian, R., Magalhaes, V., Mantovanelli, S., Menapace, W., Menzies, C., Michibayashi, K., Moyer, C., Mullane, K., Park, J.-W., Price, R., Sissmann, O., Suzuki, S., Takai, K., Walter, B., Zhang, R., Amon, D., Glickson, D., and Pomponi. S.: Mariana serpentinite mud volcanism exhumes subducted seamount materials: implications for the origin of life, Philos. T. R. Soc. A, 378, 20180425, https://doi.org/10.1098/rsta.2018.0425, 2020.
Gabasova, L. R. and Kite, E. S.:
Compaction and sedimentary basin analysis on Mars, Planet. Space Sci., 152, 86–106, https://doi.org/10.1016/j.pss.2017.12.021, 2018.
Gallagher, C., Balme, M., Soare, R., and Conway, S. J.:
Formation and degradation of chaotic terrain in the Galaxias regions of Mars: implications for near-surface storage of ice, Icarus, 309, 69–83, https://doi.org/10.1016/j.icarus.2018.03.002, 2018.
Genova, A.:
ORACLE: A mission concept to study Mars' climate, surface and interior, Acta Astronaut., 166, 317–329, https://doi.org/10.1016/j.actaastro.2019.10.006, 2020.
Gill, W. D. and Kuenen, P. H.: Sand volcanoes on slumps in the Carboniferous of County Clare, Ireland, Quarterly Journal of the Geological Society, 113, 441–460, https://doi.org/10.1144/GSL.JGS.1957.113.01-04.19, 1957.
Giuranna, M., Viscardy, S., Daerden, F., Neary, L., Etiope, G., Oehler, D., Formisano, V., Aronica, A., Wolkenberg, P., Aoki, S., Cardesin-Moinelo, A., Marin-Yaseli de la Parra, J., Merritt, D., and Amoroso, M.:
Independent confirmation of a methane spike on Mars and a source region east of Gale Crater, Nat. Geosci., 12, 326–332, https://doi.org/10.1038/s41561-019-0331-9, 2019.
Goldspiel, J. M. and Squyres, S. W.:
Ancient aqueous sedimentation on Mars, Icarus, 89, 392–410, https://doi.org/10.1016/0019-1035(91)90186-W, 1991.
Golombek, M. P. and Phillips, R. J.: Mars Tectonics, Chapter 5 in: Planetary Tectonics, edited by: Watters, T. R. and Schultz, R. A., Cambridge University Press, Cambridge, UK, 183–232, https://doi.org/10.1017/CBO9780511691645.006, 2010.
Goossens, S., Sabaka, T. J., Genova, A., Mazarico, E., Nicholas, J. B., and Neumann, G. A.:
Evidence for a low bulk crustal density for Mars from gravity and topography, Geophys. Res. Lett., 44, 7686–7694, https://doi.org/10.1002/2017GL074172, 2017.
Grenfell, J. L., Wunderlich, F., Sinnhuber, M., Herbst, K., Lehmann, R., Scheucher, M., Gebauer, S., Arnold, G., and Rauer H.:
Atmospheric processes affecting methane on Mars, Icarus, 382, 114940, https://doi.org/10.1016/j.icarus.2022.114940, 2022.
Grott, M., Baratoux, D., Hauber, E., Sautter, V., Mustard, J., Gasnault, O., Ruff, S. W., Karato, S.-I., Debaille, V., Knapmeyer, M., Sohl, F., Van Hoolst, T., Breuer, D., Morschhauser, A., and Toplis, M. J.: Long-term evolution of the Martian crust-mantle system, Space Sci. Rev., 174, 49–111, https://doi.org/10.1007/s11214-012-9948-3, 2013.
Grotzinger, J. P., Sumner, D. Y., Kah, L. C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K., Schieber, J., Mangold, N., Milliken, R., Conrad, P. G., DesMarais, D., Farmer, J., Siebach, K., Calef, F., Hurowitz, J., McLennan, S. M., Ming, D., Vaniman, D., Crisp, J., Vasavada, A., Edgett, K. S., Malin, M., Blake, D., Gellert, R., Mahaffy, P., Wiens, R. C., Maurice, S., Grant, J. A., Wilson, S., Anderson, R. C., Beegle, L., Arvidson, R., Hallet, B., Sletten, R. S., Rice, M., Bell, J., Griffes, J., Ehlmann, B., Anderson, R. B., Bristow, T. F., Dietrich, W. E., Dromart, G., Eigenbrode, J., Fraeman, A., Hardgrove, C., Herkenhoff, K., Jandura, L., Kocurek, G., Lee, S., Leshin, L. A., Leveille, R., Limonadi, D., Maki, J. , McCloskey, S., Meyer, M., Minitti, M., Newsom, H., Oehler, D., Okon, A., Palucis, M., Parker, T., Rowland, S., Schmidt, M., Squyres, S., Steele, A., Stolper, E., Summons, R., Treiman, A., Williams, R., Yingst, A., and MSL Science Team: A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars, Science, 343, 1242777, https://doi.org/10.1126/science.1242777, 2013.
Guest, J. E., Butterworth, P. S., and Greeley, R.:
Geological observations in the Cydonia Region of Mars from Viking, J. Geophys. Res., 82, 4111–4120, https://doi.org/10.1029/JS082i028p04111, 1977.
Guliyev, I. S. and Feizullayev, A. A.: All about Mud volcanoes, Nafta Press, Baku, p. 52, ISBN 1801039000, 1997.
Haberle, R. M., McKay, C. P., Schaeffer, J., Cabrol, N. A., Grin, E. A., Zent, A. P., and Quinn, R.:
On the possibility of liquid water on present-day Mars, J. Geophys. Res., 106, 23317–23326, https://doi.org/10.1029/2000JE001360, 2001.
Haberle, R. M., Catling, D. C., Carr, M. H., and Zahnle, K. J.: The Early Mars Climate System, in: The Atmosphere and Climate of Mars, edited by: Haberle, R. M., Clancy, R. T., Forget, F., Smith, M. D., and Zurek, R. W., Cambridge University Press, 526–568, https://doi.org/10.1017/9781139060172.017, 2017.
Harrison, K. P. and Chapman, M. G.:
Evidence for ponding and catastrophic floods in central Valles Marineris, Mars, Icarus, 198, 351–364, https://doi.org/10.1016/j.icarus.2008.08.003, 2008.
Harrison, K. P. and Grimm, R. E.:
Tharsis recharge: a source of groundwater for Martian outflow channels, Geophys. Res. Lett., 31, L14703, https://doi.org/10.1029/2004GL020502, 2004.
Hartmann, W. K. and Berman, D. C.: Elysium Planitia lava flows: Crater count chronology and geological implications, J. Geophys. Res., 105, 15011–15025, https://doi.org/10.1029/1999JE001189, 2000.
Hartmann, W. K. and Neukum, G.:
Cratering chronology and the evolution of Mars, Space Sci. Rev., 96, 165–194, https://doi.org/10.1023/A:1011945222010, 2001.
Hauber, E., Bleacher, J., Gwinner, K., Williams, D., and Greeley, R.: The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars, J. Volcanol. Geoth. Res., 185, 69–95, https://doi.org/10.1016/j.jvolgeores.2009.04.015, 2009.
Hauber, E., Brož, P., Jagert, F., Jodłowski, P., and Platz, T.: Very recent and widespread basaltic volcanism on Mars, Geophys. Res. Lett., 28, L10201, https://doi.org/10.1029/2011GL047310, 2011.
Hecht, M. H.: Metastability of liquid water on Mars, Icarus, 156, 373–386, https://doi.org/10.1006/icar.2001.6794, 2002.
Hemmi, R. and Miyamoto, H.: Distribution, morphology, and morphometry of circular mounds in the elongated basin of northern Terra Sirenum, Mars, Progress in Earth and Planetary Science, 4, 26, https://doi.org/10.1186/s40645-017-0141-x, 2017.
Hemmi, R. and Miyamoto, H.: High-resolution topographic analyses of mounds in southern Acidalia Planitia, Mars: Implications for possible mud volcanism in submarine and subaerial environments, Geosciences 8, 152, https://doi.org/10.3390/geosciences8050152, 2018.
Hodson, A. J., Nowak, A., Hornum, M. T., Senger, K., Redeker, K., Christiansen, H. H., Jessen, S., Betlem, P., Thornton, S. F., Turchyn, A. V., Olaussen, S., and Marca, A.:
Sub-permafrost methane seepage from open-system pingos in Svalbard, The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, 2020.
Hon, K., Kauahikaua, J., Denlinger, R., and Mackay, K.:
Emplacement and inflation of pahoehoe sheet flows: observation and measurements of active lava flows on Kilauea Volcano, Hawaii, Geol. Soc. Am. Bull., 106, 351–370, https://doi.org/10.1130/0016-7606(1994)106%3C0351:EAIOPS%3E2.3.CO;2, 1994.
Huang, H., Liu, J., Wang, X., Chen, Y., Zhang, Q., Liu, D., Yan,W., and Ren, X.:
The Analysis of Cones within the Tianwen-1 Landing Area, Remote Sens.-Basel, 14, 2590, https://doi.org/10.3390/rs14112590, 2022.
Hurst, A., Cartwright, J. A., Huuse, M., and Duranti, D.:
Extrusive sandstones (extrudites): a new class of stratigraphic trap?, Geological Society, London, Special Publications, 254, p. 289, 2006.
Inan, S., Yalcin, M. N., Guliyev, I. S., Kuliev, K., and Feyzullayev, A. A.:
Deep Petroleum occurrences in the Lower Kura Depression, South Caspian Basin, Azerbaijan: an organic geochemical and basing modeling study, Mar. Petrol. Geol., 14, 731–762, https://doi.org/10.1016/s0264-8172(97)00058-5, 1997.
Ivanov, M. A. and Hiesinger, H.:
The Acidalia Mensa region on Mars: A key element to test the Mars ocean hypothesis, Icarus, 349, 113874, https://doi.org/10.1016/j.icarus.2020.113874, 2020.
Ivanov, M. A., Hiesinger, H., Erkeling, G., Hielscher, F., and Reiss, D.:
Major episodes of geologic history of Isidis Planitia on Mars, Icarus, 218, 24–46, https://doi.org/10.1016/j.icarus.2011.11.029, 2012.
Ivanov, M. A., Hiesinger, H., Erkeling, G., and Reiss, D.:
Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean, Icarus, 228, 121–140, https://doi.org/10.1016/j.icarus.2013.09.018, 2014.
Ivanov, M. A., Hiesinger, H., Erkeling, G., and Reiss, D.:
Evidence for large reservoirs of water/mud in Utopia and Acidalia Planitiae on Mars, Icarus, 248, 383–391, https://doi.org/10.1016/j.icarus.2014.11.013, 2015.
Jakosky, B. M.:
Atmospheric Loss to Space and the History of Water on Mars, Annu. Rev. Earth Pl. Sc., 49, 71–93, https://doi.org/10.1146/annurev-earth-062420-052845, 2021.
Jakubov, A. A., AliZade, A. A., and Zeinalov, M. M.:
Mud volcanoes of the Azerbaijan SSR: Atlas, Azerbaijan Academy of Sciences, Baku, 1971 (in Russian).
Jamtveit, B., Svensen, H., Podladchikov, Y., and Planke, S.:
Hydrothermal vent complexes associated with sill intrusions in sedimentary basins, Geological Society, London, Special Publications, 234, 233–241, 2004.
Jolly, R. J. H. and Lonergan, L.:
Mechanism and control on the formation of sand intrusion, J. Geol. Soc. London, 159, 5, 605–617, https://doi.org/10.1144/0016-764902-025, 2002.
Jones, E., Caprarelli, G., and Osinski, G. R.:
Insights into complex layered ejecta emplacement and subsurface stratigraphy in Chryse Planitia, Mars, through an analysis of THEMIS brightness temperature data, J. Geophys. Res.-Planet., 121, 986–1015. https://doi.org/10.1002/2015JE004879, 2016.
Jöns, H.-P.: Late sedimentation and late sediments in the northern lowlands on Mars, in: Lunar and Planetary Science, XVI, 11–15 March 1985, The Woodlands, TX, 414–415, 1985.
Karagoz, O., Kenkmann, T., and Wulf, G.:
Insights into the subsurface structure of wrinkle ridges on Mars, Earth Planet. Sci. Lett., 595, 117759, https://doi.org/10.1016/j.epsl.2022.117759, 2022.
Keszthelyi, L., Jaeger, W., McEwen, A., Tornabene, L., Beyer, R. A., Dundas, C., and Milazzo, M.: High resolution imaging science experiment (HiRISE) images of volcanic terrains from the first 6 months of the Mars reconnaissance orbiter primary science phase, J. Geophys. Res., 113, E04005, https://doi.org/10.1029/2007JE002968, 2008.
Khlystov, O., Poort, J., Mazzini, A., Akhamanov, G. G., Minami, H., Hachikubo, A., Khabuev, A., Kazakov., A. V., De Batist, M., Naudts, L., Chensky, A. G., and Vorobeva, S.: Shallow-rooted mud volcanism in Lake Baikal, Mar. Petrol. Geol., 102, 580–589, https://doi.org/10.1016/j.marpetgeo.2019.01.005, 2019.
Kite, E. S., Hovius, N., Hillier, J. K., and Besserer, J.: Candidate Mud Volcanoes in the Northern Plains of Mars, American Geophysical Union, Fall Meeting 2007, 31st Lunar and Planetary Science, 13–17 March 2007, The Woodlands, TX, abstract id.V13B-1346, 2007.
Kite, E. S., Williams, J.-P., Lucas, A., and Aharonson, O.:
Low palaeopressure of the martian atmosphere estimated from the size distribution of ancient craters, Nat. Geosci., 7, 335–339, https://doi.org/10.1038/ngeo2137, 2014.
Knapmeyer, M., Oberst, J., Hauber, E., Wählisch, M., Deuchler, C., and Wagner, R.: Working models for spatial distribution and level of Mars' seismicity, J. Geophys. Res., 111, E11006, https://doi.org/10.1029/2006JE002708, 2006.
Knittel, K. and Boetius, A.:
Anaerobic Oxidation of Methane: Progress with an Unknown Process, Annu. Rev. Microbiol., 63, 311–334, https://doi.org/10.1146/annurev.micro.61.080706.093130, 2009.
Knutsen, E. W., Villanueva, G. L., Liuzzi, G., Crismani, M. M. J., Mumma, M. J., Smith, M. D., Vandaele, A. C., Aoki, S., Thomas, I. R., Daerden, F., Viscardy, S., Erwin, J. T., Trompet, L., Neary, L., Ristic, B., Lopez-Valverde, M. A., Lopez-Moreno, J. J., Patel, M. R., Karatekin, O., and Bellucci, G.:
Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD, Icarus, 357, 114266, https://doi.org/10.1016/j.icarus.2020.114266, 2021.
Kokoschka, S., Dreier, A., Romoth, K., Taviani, M., Schäfer, N., Reitner, J., and Hoppert, M.:
Isolation of Anaerobic Bacteria from Terrestrial Mud Volcanoes (Salse di Nirano, Northern Apennines, Italy), Geomicrobiol. J., 32, 355–364, https://doi.org/10.1080/01490451.2014.940632, 2015.
Komatsu, G.:
Rivers in the Solar System: Water is not the only fluid flow on planetary bodies, Geography Compass, 1/3, 480–502, https://doi.org/10.1111/j.1749-8198.2007.00029.x, 2007.
Komatsu, G.: A possible mud volcano field in Chryse Planitia, Mars, in: European Planetary Science Congress, 19–24 September 2010, Rome, Abstract, EPSC2010-131, 2010.
Komatsu, G. and Baker V. R.:
Paleohydrology and flood geomorphology of Ares Vallis, J. Geophys. Res., 102, 4151–4160, https://doi.org/10.1029/96JE02564, 1997.
Komatsu, G. and Brož, P.: Southern Chryse Planitia on Mars as a potential landing site: investigation of hypothesized sedimentary volcanism, in: 52th Lunar and Planet. Sci. Conf., 15–19 March 2021, virtual meeting, #1164, 2021.
Komatsu, G. and Ori, G. G.:
Exobiological implications of potential sedimentary deposits on Mars, Planet. Space Sci., 48/11, 1043–1052, https://doi.org/10.1016/S0032-0633(00)00078-7, 2000.
Komatsu, G., Ori, G. G., Cardinale, M., Dohm, J. M., Baker, V. R., Vaz, D. A., Ishimaru, R., Namiki, N., and Matsui, T.:
Roles of methane and carbon dioxide in geological processes on Mars, Planet. Space Sci., 59, 169–181, https://doi.org/10.1016/j.pss.2010.07.002, 2011.
Komatsu, G., Ishimaru, R., Miyake, N., Ohno, S., and Matsui, T.: Astrobiological Potential of Mud Volcanism on Mars, in: 45th Lunar and Planet. Sci. Conf., 17–21 March 2014, The Woodlands, TX, #1085, 2014.
Komatsu, G., Okubo, C. H., Wray, J. J., Ojha, L., Cardinale, M., Murana, A., Orosei, R., Chan, M. A., Ormö, J., and Gallagher, R.:
Small edifice features in Chryse Planitia, Mars: Assessment of a mud volcano hypothesis, Icarus, 268, 56–75, https://doi.org/10.1016/j.icarus.2015.12.032, 2016.
Komatsu, G., Ishimaru, R., Kawai, K., Miyake, N., Kobayashi, M., Sakuma, H., and Matsui, T.: Sedimentary records of ancient mud volcanism: How do we identify mud volcanoes in the stratigraphy of Mars?, in: 50th Lunar and Planet. Sci. Conf., 18–22 March 2019, The Woodlands, TX, #2132, 2019.
Kopf, A. J.: Significance of mud volcanism, Rev. Geophys., 40, 2–52, https://doi.org/10.1029/2000RG000093, 2002.
Korablev, O., Vandaele, A. C., Montmessin, F., Fedorova, A. A., Trokhimovskiy, A., Forget, F., Lefèvre, F., Daerden, F., Thomas, I. R., Trompet, L., Erwin, J. T., Aoki, S., Robert, S., Neary, L., Viscardy, S., Grigoriev, A. V., Ignatiev, N. I., Shakun, A., Patrakeev, A., Belyaev, D. A., Bertaux, J.-L., Olsen, K. S., Baggio, L., Alday, J., Ivanov, Y. S., Ristic, B., Mason, J., Willame, Y., Depiesse, C., Hetey, L., Berkenbosch, S., Clairquin, R., Queirolo, C., Beeckman, B., Neefs, E., Patel, M. R., Bellucci, G., López-Moreno, J.-J., Wilson, C. F., Etiope, G., Zelenyi, L., Svedhem, H., Vago, J. L., and The ACS and NOMAD Science Teams: No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations, Nature, 568, 517–520, https://doi.org/10.1038/s41586-019-1096-4, 2019.
Kossacki, K. J., Markiewicz, W. J., Smith, M. D., Page, D., and Murray., J.:
Possible remnants of a frozen mud lake in southern Elysium, Mars, Icarus, 181, 363–374, https://doi.org/10.1016/j.icarus.2005.11.018, 2006.
Krasnopolsky, V. A., Maillard, J. P., and Owen, T. O.:
Detection of methane in the martian atmosphere: evidence for life?, Icarus, 172, 537–547, https://doi.org/10.1016/j.icarus.2004.07.004, 2004.
Kreslavsky, M. A. and Head, J. W.: Fate of outflow channel effluents in the northern lowlands of Mars: The Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water, J. Geophys. Res.-Planets, 107, 4-1–4-25, https://doi.org/10.1029/2001je001831, 2002.
Kumar, P. S., Krishna, N., Prasanna Lakshmi, K. J., Raghukanth, S. T. G., Dhabu, A., and Platz, T.:
Recent seismicity in Valles Marineris, Mars: Insights from young faults, landslides, boulder falls and possible mud volcanoes, Earth Planet. Sc. Lett., 505, 51–64, https://doi.org/10.1016/j.epsl.2018.10.008, 2019.
Lee, D.-H., Kim, J.-H., Lee, Y. M., Kim, J.-H., Jin, Y. K., Paull, C., Ryu, J.-S., and Shin, K.-H.:
Geochemical and Microbial Signatures of Siboglinid Tubeworm Habitats at an Active Mud Volcano in the Canadian Beaufort Sea, Front. Mar. Sci., 8, 656171, https://doi.org/10.3389/fmars.2021.656171, 2021.
Lefèvre, F. and Forget F.:
Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics, Nature, 460, 720–72, https://doi.org/10.1038/nature08228, 2009.
Li, J., Beghein, C., Lognonné, P., McLennan, S. M., Wieczorek, M. A., Panning, M. A., Knapmeyer-Endrun, B., Davis, P., and Banerdt, W. B.: Different Martian Crustal Seismic Velocities across the Dichotomy Boundary from Multi-Orbiting Surface Waves, Geophys. Res. Lett., 49, e2022GL101243, https://doi.org/10.1029/2022GL101243, 2022.
Lin, Y., Zhao, J., Wang, L., Huang, J., Zhang, L., and Xiao, L.:
Evaluation of small-sized mounds formation mechanisms in China's Zhurong landing region, Icarus, 389, 115256, https://doi.org/10.1016/j.icarus.2022.115256, 2023.
Liu, J., Li, C., Zhang, R., Rao, W., Cui, X., Geng, Y., Jia, Y., Huang, H., Ren, X., Yan, W., Zeng, X., Wen, W., Wang, X., Gao, X., Fu, Q., Zhu, Y., Dong, J., Li, H., Wang, X., Zuo, W., Su, Y., Kong, D., and Zhang, H.: Geomorphic Contexts and Science Focus of the Zhurong Landing Site on Mars, Nat. Astron., 6, 65–71, https://doi.org/10.1038/s41550-021-01519-5, 2021.
Lognonné, P., Banerdt, W. B., Clinton, J., Garcia, R.F, Giardini, D., Knapmeyer-Endrun, B., Panning, M., and Pike, W. T.:
Mars Seismology, Annu. Rev. Earth Pl. Sc., 51, 643–670, https://doi.org/10.1146/annurev-earth-031621-073318, 2023.
Lucchitta, B. K.:
Young volcanic deposits in the Valles Marineris, Mars?, Icarus, 86, 476–509, https://doi.org/10.1016/0019-1035(90)90230-7, 1990.
Lucchitta, B. K., Ferguson, H. M., and Summers, C.:
Sedimentary deposits in the Northern Lowland Plains, Mars, J. Geophys. Res., 91, E166–E174, https://doi.org/10.1029/JB091iB13p0E166, 1986.
Mahaney, W. C., Milner, M. W., Netoff, D. I., Malloch, D., Dohm, J. M., Baker, V. R., Miyamoto, H., Hare, T. M., and Komatsu, G.:
Ancient wet aeolian environments on Earth: clues to presence of fossil/live microorganisms on Mars, Icarus, 171, 39–53, 2004.
Malin, M. C. and Edgett, K. S.: Sedimentary rocks of early Mars, Science, 290, 1927–1937, https://doi.org/10.1126/science.290.5498.1927, 2000.
Mazzini, A. and Etiope, G.:
Mud volcanism: an updated review, Earth Sci. Rev., 168, 81–112, https://doi.org/10.1016/j.earscirev.2017.03.001, 2017.
Mazzini, A., Svensen, H., Planke, S., Guliyev, I., Akhmanov, G. G., Fallik, T., and Banks, D.:
When mud volcanoes sleep: Insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan, Mar. Petrol. Geol., 26, 1704–1715, 2009.
Mazzini A., Etiope, G., and Svensen H.:
A new hydrothermal scenario for the 2006 Lusi eruption, Indonesia. Insights from gas geochemistry, Earth Planet. Sc. Lett., 317–318, 305–318, 2012.
Mazzini, A., Akhmanov, G., Manga, M., Sciarra, A., Huseynova, A., Huseynov, A., and Guliyev, I.: Explosive mud volcano eruptions and rafting of mud breccia blocks, Earth Planet. Sc. Lett., 555, 116699, https://doi.org/10.1016/j.epsl.2020.116699, 2021.
McCauley, C. A., White, D. M., Lilly, M. R., and Nyman, D. M.:
A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils, Cold Reg. Sci. Technol., 34, 117–125, https://doi.org/10.1016/S0165-232X(01)00064-7, 2002.
McGill, G. E.: Buried topography of Utopia, Mars: Persistence of a giant impact depression, J. Geophys. Res.-Sol. Ea., 94, 5622935, https://doi.org/10.1029/JB094iB03p02753, 1989.
McGowan, E.:
Spatial distribution of putative water related features in Southern Acidalia/Cydonia Mensae, Mars, Icarus, 202, 78–89, 2009.
McGowan, E. M. and McGill, G. E.: The Utopia/Isidis overlap; possible conduit for mud volcanism, in: 41st Lunar and Planetary Science Conference, 1–5 March 2010, The Woodlands, TX, Abs. # 1070, 2010.
McNeil, J. D., Fawdon, P., Balme, M. R., and Coe, A. L.:
Morphology, morphometry and distribution of isolated landforms in southern Chryse Planitia, Mars, J. Geophys. Res.-Planet., 126, e2020JE006775, https://doi.org/10.1029/2020JE006775, 2021.
Meresse, S., Costard, F.,Mangold, N., Masson, P., Neukum, G., and the HRSC Co-I Team:
Formation and evolution of the chaotic terrains by subsidence and magmatism: Hydraotes Chaos, Mars, Icarus, 194, 487–500. https://doi.org/10.1016/j.icarus.2007.10.023, 2008.
Miall, A. D.: Principles of Sedimentary Basin Analysis, Springer, New York, https://doi.org/10.1007/978-1-4757-4235-0, 1984.
Michalski, J. R., Cuadros, J., Niles, P. B., Parnell, J., Rogers, A. D., and Wright, S. P.:
Groundwater activity on Mars and implications for a deep biosphere, Nat. Geosci., 6, 133–138, https://doi.org/10.1038/ngeo1706, 2013.
Milkov, A. V., Sassen, R., Apanasovich, T. V., and Dadashev, F. G.:
Global gas flux from mud volcanoes: A significant source of fossil methane in the atmosphere and the ocean, Geophys. Res. Lett., 30, 1037, https://doi.org/10.1029/2002GL016358, 2003.
Milliken, R. E., Grotzinger, J. P., and Thomson, B. J.:
Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater, Geophys. Res. Lett., 37, L04201, https://doi.org/10.1029/2009GL041870, 2010.
Miyake, N., Ishimaru, R., Komatsu, G., and Matsui, T.:
Characterization of archaeal and bacterial communities thriving in methane-seeping on-land mud volcanoes, Niigata, Japan, Int. Microbiol., 26, 191–204, https://doi.org/10.1007/s10123-022-00288-z, 2023.
Möhlmann, D. T. F.:
Water in the upper martian surface at mid- and low-latitudes: presence, state, and consequences, Icarus, 168, 318–323, https://doi.org/10.1016/j.icarus.2003.11.008, 2004.
Moscardelli, L., Dooley, T., Dunlap, D., Jackson, M., and Wood, L.:
Deep-water polygonal fault systems as terrestrial analogs for large-scale Martian polygonal terrains, GSA Today, 22, 4–9, https://doi.org/10.1130/GSATG147A.1, 2012.
Mouginis-Mark, P. J.: A unique young flow southwest of Cerberus Fossae, Mars, in: 44th Lunar and Planetary Science Conference, 18–22 March 2013, The Woodlands, TX, abstract #1203, 2013.
Mueller, K. and Golombek, M.:
Compressional Structures on Mars. Annu. Rev. Earth Pl. Sc., 32, 435–464, https://doi.org/10.1146/annurev.earth.32.101802.120553, 2004.
Mumma, M. J., Villanueva, G. L., Novak, R. E., Hewagama, T., Bonev, B. P., DiSanti, M. A., Mandell, A. M., and Smith, M. D.:
Strong Release of Methane on Mars in Northern Summer 2003, Science, 323, 1041–1045, https://doi.org/10.1126/science.1165243, 2009.
Mustard, J. F., Ehlmann, B. L., Murchie, S. L., Poulet, F., Mangold, N., Head, J. W., Bibring, J.-P., and Roach, L. H.: Composition, morphology and stratigraphy of Noachian crust around the Isidis Basin, J. Geophys. Res., 114, E00D12, https://doi.org/10.1029/2009JE003349, 2009.
Oberst, J., Wickhusen, K., Gwinner, K., Hauber, E., Stark, A., Elgner, S., Grott, M., Fanara, L., Hussmann, H., Steinbrügge, G., Lewis, S., Balme, M., Maugeri, M., Diolaiuti, G., Karlsson, N., Johnsson, A., Ivanov, A., and Hiesinger, H.: Planetary polar explorer – the case for a next-generation remote sensing mission to low Mars orbit, Exp. Astron., 54, 695–711, https://doi.org/10.1007/s10686-021-09820-x, 2022.
Oehler, D. and Etiope G.:
Methane Seepage on Mars: Where to Look and Why, Astrobiology, 17, 1233–1264, https://doi.org/10.1089/ast.2017.1657, 2017.
Oehler, D. and Etiope G.: Methane on Mars: subsurface sourcing and conflicting atmospheric measurements, in: Mars Geological Enigmas: From the Late Noachian Epoch to the Present Day, 1st edn., edited by: Soare, R., Conway, S., Williams, J. P., and Oehler D., Elsevier, 149–174, https://doi.org/10.1016/b978-0-12-820245-6.00007-0, 2021.
Oehler, D. Z. and Allen, C. C.: Mud volcanoes in the martian lowlands: potential windows to fluid-rich samples from depth, 40th Lunar and Planetary Science Conference, 23–27 March 2009, The Woodlands, TX, Abs. # 1034, 2009.
Oehler, D. Z. and Allen, C. C.:
Evidence for pervasive mud volcanism in Acidalia Planitia, Mars, Icarus, 208, 636–657, 2010.
Oehler, D. Z. and Allen, C. C.: Habitability of a large ghost crater in Chryse Planitia, Mars, in: International Conference: Exploring Mars Habitability, 13–15 June 2011, Lisbon, Portugal, https://sci.esa.int/documents/33431/35950/1567258599260-Oehler.pdf (last access: 17 July 2023), 2011.
Oehler, D. Z. and Allen, C. C.: Giant polygons and mounds in the lowlands of Mars: Signatures of an ancient ocean?, Astrobiology, 12, 601–615, https://doi.org/10.1089/ast.2011.0803, 2012a.
Oehler, D. Z. and Allen, C. C.: Focusing the search for biosignatures on Mars: Facies prediction with an example from Acidalia Planitia, in: Sedimentary Geology of Mars, SEPM Special Publ., No. 102, Society for Sedimentary Geology, 183–194, https://doi.org/10.2110/pec.12.102.0183, 2012b.
Oehler, D. Z., Salvatore, M., Etiope, G., and Allen. C. C.: Focusing the search for organic biosignatures on Mars, 52nd Lunar and Planetary Science Conference, 15–19 March 2021, The Woodlands, TX, Abs. # 1353, 2021.
Okubo, C. H.:
Morphologic evidence of subsurface sediment mobilization and mud volcanism in Candor and Coprates Chasmata, Valles Marineris, Mars, Icarus, 269, 23–37, https://doi.org/10.1016/j.icarus.2015.12.051, 2016.
Orgel, C., Hauber, E., Skinner Jr., J. A., van Gasselt, S., Ransdale, J., Balme, M., Séjourné, A., and Keresz-Turi, A.: Distribution, origin and evolution of hypothesized mud volcanoes, thumbprint terrain and giant polygons in Acidalia, Utopia and Arcadia Planitae: Implications for sedimentary processes in the northern lowlands of Mars, in: 46th Lunar and Planetary Science Conference, 16–20 March 2015, The Woodlands, TX, Abs. 1862, 2015.
Orgel, C., Hauber, E., Van Gasselt, S., Reiss, D., Johnsson, A., Ramsdale, J. D., Smith, I., Swirad, Z. M., Séjourné, A., Wilson, J. T., Balme, M. R., Conway, S. J., Costard, F., Eke, V. R., Gallagher, C., Kereszturi, A., Losiak, A., Massey, R. J., Platz, T., Skinner, J. A., and Teodoro, L. R. F.:
Grid mapping the northern plains of Mars: A new overview of recent water- and ice-related landforms in Acidalia Planitia, J. Geophys. Res.-Planet., 124, 454–482, https://doi.org/10.1029/2018JE005664, 2019.
Ori, G. G., Marinangeli, L., and Komatsu, G.: Gas (methane?)-related features on the surface of Mars and subsurface reservoirs, in: Proceedings of the Lunar Planetary Science Conference XXXI, 13–17 March 2000, Houston, TX, #1550, abstract [CD-ROM], 2000.
Ori, G. G., Komatsu, G., Ormö, J., and Marinangeli, L.: Subsurface models for the formation of mound-like morphologies on Mars, in: Proceedings of the Lunar Planetary Science Conference XXXII, 12–16 March 2001, Houston, TX, #1539, abstract [CD-ROM], 2001.
Ormö, J., Komatsu, G., Chan, M. A., Beitler, B., and Parry, W. T.:
Geological features indicative of processes related to the hematite formation in Meridiani Planum and Aram Chaos, Mars: A comparison with diagenetic hematite deposits in southern Utah, USA, Icarus, 171, 295–316, https://doi.org/10.1016/j.icarus.2004.06.001, 2004.
Pajola, M., Rossato, S., Baratti, E., Mangili, C., Mancarella, F., McBride, K., and Coradini, M.:
The Simud–Tiu Valles hydrologic system: A multidisciplinary study of a possible site for future Mars on-site exploration, Icarus, 268, 355–381, https://doi.org/10.1016/j.icarus.2015.12.049, 2016.
Pan, L., Ehlmann, B. L., Carter, J., and Ernst, C. M.:
The stratigraphy and history of Mars' northern lowlands through mineralogy of impact craters: A comprehensive survey, J. Geophys. Res.-Planet., 122, 1824–1854, https://doi.org/10.1002/2017JE005276, 2017.
Parfitt, E. A. and Wilson, L.: Fundamentals of Physical Volcanology, Blackwell, Oxford, UK, 256 pp., ISBN 978-0-632-05443-5, 2008.
Pavlov, A. A., McLain, H. L., Glavin, D. P., Roussel, A.,Dworkin, J. P., Elsila, J. E., and Yocum, K. M.: Rapid Radiolytic Degradation of Amino Acids in the Martian Shallow Subsurface: Implications for the Search for Extinct Life, Astrobiology, 22, 1099–1115, https://doi.org/10.1089/ast.2021.0166, 2022.
Pfeffer, W. and Humphrey, N.:
Formation of ice layers by infiltration and refreezing of meltwater, Ann. Glaciol., 26, 83–91, https://doi.org/10.3189/1998AoG26-1-83-91, 1998.
Plümper, O., King, H. E., Geisler, T., Liu, Y., Pabst, S., Savov, I. P., Rost, D., and Zack, T.:
Subduction zone forearc serpentinites as incubators for deep microbial life, P. Natl. Acad. Sci. USA, 114, 4324–4329, https://doi.org/10.1073/pnas.1612147114, 2017.
Polteau, S., Mazzini, A., Galland, O., Planke, S., and Malthe-Sorenssen, A.:
Saucer-shaped intrusions: Occurrences, emplacement and implications, Earth Planet. Sc. Lett., 266, 195–204, https://doi.org/10.1016/j.epsl.2007.11.015, 2008.
Pondrelli, M., Rossi, A. P., Ori, G. G., Van Gasselt, S., Praeg, D., and Ceramicola, S.:
Mud volcanoes in the geologic record of Mars: the case of Firsoff Crater, Earth Planet. Sc. Lett., 304, 511–519, https://doi.org/10.1016/j.epsl.2011.02.027, 2011.
Pons, M.-L., Quitté, G., Fujii, T., Rosing, M. T., Reynard, B., Moynier, F., Douchet, C., and Albarède, F.:
Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life, P. Natl. Acad. Sci. USA, 108, 17639–17643, https://doi.org/10.1073/pnas.1108061108, 2011.
Procesi, M., Ciotoli, G., Mazzini, A., and Etiope, G.:
Sediment-Hosted Geothermal Systems: review and first global mapping, Earth Sci. Rev., 192, 529–544, https://doi.org/10.1016/j.earscirev.2019.03.020, 2019.
Quantin, C., Flahut, J., Clenet, H., Allemand, P., and Thomas, P.:
Composition and structures of the subsurface in the vicinity of Valles Marineris as revealed by central uplifts of impact craters, Icarus, 221, 436–452, https://doi.org/10.1016/j.icarus.2012.07.031, 2012.
Rice Jr., J. W., and Edgett, K. S.:
Catastrophic flood sediments in Chryse basin, Mars, and Quincy basin, Washington: application of sandar facies model, J. Geophys. Res., 102, 4185–4200, https://doi.org/10.1029/96JE02824, 1997.
Rodríguez, J. A. P., Tanaka, K. L., Kargel, J. S., Dohm, J. M., Kuzmin, R., Fairén, A. G., Sasaki, S., Komatsu, G., Schulze-Makuch, D., and Jianguo, Y.:
Formation and disruption of aquifers in southwestern Chryse Planitia, Mars, Icarus, 191, 545–567, https://doi.org/10.1016/j.icarus.2007.05.021, 2007.
Rodríguez, J. A. P., Fairén, A.G., Tanaka, K. L., Zarroca, M., Linares, R., Platz, T., Komatsu, G., Miyamoto, H., Kargel, J. S., Yan, J., Gulick, V., Higuchi, K., Baker, V. R., and Glines, N.: Tsunami waves extensively resurfaced the shorelines of a receding, early Martian ocean, Sci. Rep.-UK, 6, 25106, https://doi.org/10.1038/srep25106, 2016.
Rodríguez, J. A. P., Kargel, J. S., Oehler, D. Z., Crown, D. A., Baker, V. R., and Komatsu, G.: Potential cryospheric mud volcanism in the northern plains of Mars, Geologic and astrobiological implications, in: 50th Lunar and Planetary Science Conference, 18–22 March 2019, The Woodlands, TX, Abs. # 2580, 2019.
Rowland, S. K., Harris, A., L., and Garbeil, H.:
Effects of Martian conditions on numerically modeled, cooling-limited, channelized lava flows, J. Geophys. Res.-Planet., 109, Issue E10, https://doi.org/10.1029/2004JE002288, 2004.
Rubin, D. M., Faíren, A., Martínez-Frías, J., Frydenvang, J., Gasnault, O., Galfenbaum, G., Goetz, W., Grotzinger, J. P., Le Mouélic, S., Mangold, N., Newsom, H., Oehler, D. Z., Rapin, W., Schieber, J., and Weins, R. C.: Fluidized-sediment pipes in Gale Crater, Mars, and possible Earth analogs, Geology 45, 7–10, https://doi.org/10.1130/G38339.1, 2016.
Salvatore, M. R. and Christensen, P. R.:
Evidence for widespread aqueous sedimentation in the northern plains of Mars, Geology 42, 423–426, https://doi.org/10.1130/G35319.1, 2014a.
Salvatore, M. R. and Christensen, P. R.:
On the origin of the Vastitas Borealis Formation in Chryse and Acidalia Planitiae, Mars, J. Geophys. Res.-Planet., 119, 2437–2456, https://doi.org/10.1002/2014JE004682, 2014b.
Scott, D. H. and Tanaka, K. L.: Geologic map of the western equatorial region of Mars, U.S. Geological Survey Miscellaneous Investigations Series Map I-1802, Scale , U.S. Geological Survey, https://doi.org/10.3133/i1802A, 1986.
Scott, D. H. and Underwood Jr., J. R.: Mottled terrain – A continuing martian enigma, in: 21st Lunar and Planetary Science Conference, 12–16 March 1991, The Woodlands, TX, 627–634, 1991.
Skinner Jr., J. A. and Mazzini, A.:
Martian mud volcanism: terrestrial analogs and implications for formational scenarios, Mari. Petrol. Geol., 26, 1866–1878, https://doi.org/10.1016/j.marpetgeo.2009.02.006, 2009.
Skinner Jr., J. A. and Tanaka, K. L.:
Evidence for and implications of sedimentary diapirism and mud volcanism in the southern Utopia highland–lowland boundary plain, Mars, Icarus, 186, 41–59, https://doi.org/10.1016/j.icarus.2006.08.013, 2007.
Smrekar, S. E., Lognonné, P., Spohn, T., Banerdt, W. B., Breuer, D., Christensen, U., Dehant, V., Drilleau, M., Folkner, W., Fuji, N., Garcia, R.F., Giardini, D., Golombek, M., Grott, M., Gudkova, T., Johnson, C., Khan, A., Langlais, B., Mittelholz, A., Mocquet, A., Myhill, R., Panning, M., Perrin, C., Pike, T., Plesa, A-C., Rivoldini, A., Samuel, H., Stähler, S. C., van Driel, M., Van Hoolst, T., Verhoeven, O., Weber, R., and Wieczorek, M.: Pre-mission InSights on the Interior of Mars, Space Sci. Rev., 215, 3, https://doi.org/10.1007/s11214-018-0563-9, 2019.
Solomon, S. C.:
On volcanism and thermal tectonics on one-plate planets, Geophys. Res. Lett., 5, 461-464, https://doi.org/10.1029/GL005i006p00461, 1978.
Stamenković, V., and 98 co-authors: Deep Trek: Science of Subsurface Habitability & Life on Mars, Bulletin of the AAS, 53, 250, https://doi.org/10.3847/25c2cfeb.dc18f731, 2021.
Svensen, H., Jamtveit, B., Planke, S., and Chevallier, L.:
Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa, J. Geol. Soc. London, 163, https://doi.org/10.1144/1144-764905-037, 671–682, 2006.
Tanaka, K. L.:
Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars, J. Geophys. Res., 102, 4131–4150, https://doi.org/10.1029/96JE02862, 1997.
Tanaka, K. L.:
Debris-flow origin for the Simud/Tiu deposit on Mars, J. Geophys. Res.-Planet., 104, 8637–8652, https://doi.org/10.1029/98JE02552, 1999.
Tanaka, K. L.:
Geology and insolation-driven climatic history of Amazonian north polar materials on Mars, Nature, 437, 991–994, https://doi.org/10.1038/nature04065, 2005.
Tanaka, K. L., Joyal, T., and Wenker, A.: The Isidis Plains Unit, Mars: Possible catastrophic origin, tectonic tilting, and sediment loading, in: 31st Lunar and Planetary Science Conference, 13–17 March 2000, The Woodlands, TX, Abs. # 2023. 2000.
Tanaka, K. L., Skinner Jr., J. A., Hare, T. M., Joyal, T., and Wenker, A.:
Resurfacing history of the Northern Plains of Mars based on geologic mapping of Mars Global Surveyor data, J. Geophys. Res., 108, GDS 24-1–GDS 24-32, https://doi.org/10.1029/2002JE001908, 2003.
Tanaka, K. L., Skinner Jr., J. A., and Hare, T. M.: Geologic Map of the Northern Plains of Mars, U.S. Geological Survey Science Investigations Map 2888, scale , U.S. Geological Survey, https://pubs.usgs.gov/sim/2005/2888 (last access: 14 July 2023), 2005.
Tanaka, K. L., Rodríguez, J. A. P., Skinner Jr., J. A., Mourke, M. C., Fortezzo, C. M., Herkenhoff, K. E., Kolb, E. J., and Okubo, C. H.:
North polar region of Mars: Advances in stratigraphy, structure, and erosional modification, Icarus, 196, 318–358, https://doi.org/10.1016/j.icarus.2008.01.021, 2008.
Tanaka, K. L., Skinner Jr., J. A., Dohm, J. M., Irwin III, R. P., Kolb, E. J., Fortezzo, C. M., Platz, T., Michael, G. G., and Hare T. M.:
Geologic Map of Mars, U.S. Geological Survey Scientific Investigations Map 3292, scale , U.S. Geological Survey,, https://doi.org/10.3133/sim3292, 2014.
Tewelde, Y. and Zuber, M. T.: Determining the fill thickness and densities of Mars' northern lowlands, in: 44th Lunar and Planetary Science Conference, 18–22 March 2013, The Woodlands, TX, Abs. #2151, 2013.
Tosi, N. and Padovan, S.: Mercury, Moon, Mars, in: Mantle Convection and Surface Expressions, edited by: Marquardt, H., Ballmer, M., Cottaar, S., and Konter, J., Wiley, https://doi.org/10.1002/9781119528609.ch17, 2021.
Vago, J. L., Westall, F., Coates, A. J., Jaumann, R., Korablev, O., Ciarletti, V., Mitrofanov, I., Josset, J. L., De Sanctis, M. C., Bibring, J. P., Pasteur Teams, and Landing Site Selection Working Group: Habitability on Early Mars and the Search for Biosignatures with the Exomars Rover, Astrobiology, 17, 471–510, https://doi.org/10.1089/ast.2016.1533, 2017.
van Rensbergen, P., Hillis, R. R., Maltman, A. J., and Morley, C. K.:
Subsurface sediment mobilization: Introduction, Geological Society, London, Special Publications, 216, 1–8, https://doi.org/10.1144/GSL.SP.2003.216.01.01, 2003.
Wallace, D. and Sagan, C.:
Evaporation of ice in planetary atmospheres: ice-covered rivers on Mars, Icarus, 39, 385–400, https://doi.org/10.1016/0019-1035(79)90148-9, 1979.
Warner, N. H., Sowe, M., Gupta, S., Dumke, A., and Goddard, K.:
Fill and spill of giant lakes in the eastern Valles Marineris region of Mars, Geology, 41, 675–678, https://doi.org/10.1130/G34172.1, 2013.
Warner, N. H., Gupta, S., Calef, F. Grindrod, P., Boll, N., and Goddard, K.:
Minimum effective area for high resolution crater counting of martian terrains, Icarus, 245, 198–240, https://doi.org/10.1016/j.icarus.2014.09.024, 2015.
Webster, C. R., Mahaffy, P. R., Atreya, S. K., Moores, J. E., Flesch, G. J., Malespin, C., McKay, C. P., Martinez, G., Smith, C. L., Martin-Torres, J., Gomez-Elvira, J., Zorzano, M. P., Wong, M. H., Trainer, M. G., Steele, A., Archer, D. Jr., Sutter, B., Coll, P. J., Freissinet, C., Meslin, P. Y., Gough, R. V., House, C. H., Pavlov, A., Eigenbrode, J. L., Glavin, D. P., Pearson, J. C., Keymeulen, D., Christensen, L. E., Schwenzer, S. P., Navarro-Gonzalez, R., Pla-García, J., Rafkin, S. C. R., Vicente-Retortillo, Á., Kahanpää, H., Viudez-Moreiras, D., Smith, M. D., Harri, A. M., Genzer, M., Hassler, D. M., Lemmon, M., Crisp, J., Sander, S. P., Zurek, R. W., and Vasavada, A. R.: Background levels of methane in Mars' atmosphere show strong seasonal variations, Science, 360, 1093–1096, https://doi.org/10.1126/science.aaq0131, 2018.
Werner, S. C., Ody, A., and Poulet, F.:
The Source Crater of Martian Shergottite Meteorites, Science, 343, 1343–1346, https://doi.org/10.1126/science.1247282, 2014.
Westall, F., Foucher, F., Bost, N., Bertrand, M., Loizeau, D., Vago, J. L., Kminek, G., Gaboyer, F., Campbell, K. A., Bréhéret, J. G., Gautret, P., and Cockell, CS.:
Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life, Astrobiology, 11, 998–1029, https://doi.org/10.1089/ast.2015.1374, 2015.
Wheatley, D. F., Chan, M. A., and Sprinkel, D. A.:
Clastic pipe characteristics and distributions throughout the Colorado Plateau: Implications for paleoenvironment and paleoseismic controls, Sediment. Geol., 344, 20–33, https://doi.org/10.1016/j.sedgeo.2016.03.027, 2016.
Wheatley, D. F., Chan, M. A., and Okubo, C. H.:
Clastic pipes and mud volcanism across Mars: Terrestrial analog evidence of past martian groundwater and subsurface fluid mobilization, Icarus, 328, 141–151, https://doi.org/10.1016/j.icarus.2019.02.002, 2019.
Wieczorek, M. A., Broquet, A., McLennan, S. M., Rivoldini, A., Golombek, M., Antonangeli, D., Beghein, C., Giardini, D., Gudkova, T., Gyalay, S., and Johnson, C. L.: InSight constraints on the global character of the Martian crust, J. Geophys. Res.-Planet., 127, e2022JE007298, https://doi.org/10.1029/2022JE007298, 2022.
Wilson, L. and Head, J. W.:
Review and analysis of volcanic eruption theory and relationships to observed landforms, Rev. Geophys., 32, 221–263, https://doi.org/10.1029/94RG01113, 1994.
Wilson, L. and Head, J. W.:
Evidence for a massive phreatomagmatic eruption in the initial stages of formation of the Mangala Valles outflow channel, Mars, Geophys. Res. Lett., 31, L15701, https://doi.org/10.1029/2004GL020322, 2004.
Wilson, L. and Mouginis-Mark, P. J.:
Dynamics of a fluid flow on Mars: Lava or mud?, Icarus, 233, 268–280, https://doi.org/ {10.1016/j.icarus.2014.01.041}, 2014.
Wordsworth, R. D.:
The Climate of Early Mars. Annu. Rev. Earth Pl. Sc., 44, 381–408, https://doi.org/10.1146/annurev-earth-060115-012355, 2016.
Wray, J. J.:
Contemporary Liquid Water on Mars? Annu. Rev. Earth Pl. Sc., 49, 141–171, https://doi.org/10.1146/annurev-earth-072420-071823, 2021.
Wrede, C., Brady, S., Rockstroh, S., Dreier, A., Kokoschka, S., Heinzelmann, S. M., and Heller, C.:
Aerobic and anaerobic methane oxidation in terrestrial mud volcanoes in the Northern Apennines, Sediment. Geol., 263–264, 210–219, 2012.
Ye, B., Qian, Y., Xiao, L., Michalski, J. R., Li, Y., Wu, B., and Qiao, L.:
Geomorphologic exploration targets at the Zhurong landing site in the southern Utopia Planitia of Mars, Earth Planet. Sc. Lett., 576, 117199, https://doi.org/10.1016/j.epsl.2021.117199, 2021.
Zhao, J., Xiao, Z., Huang, J., Head, J. W., Wang, J., Shi, Y., Wu, B., and Wang, L.:
Geological characteristics and targets of high scientific interest in the Zhurong landing region on Mars, Geophys. Res. Lett., 48, e2021GL094903, https://doi.org/10.1029/2021GL094903, 2021.
Short summary
The aim of this review is to summarise the current knowledge about mud-volcano-like structures on Mars, address critical aspects of the process of sedimentary volcanism, identify key open questions, and point to areas where further research is needed to understand this phenomenon and its importance in the Red Planet's geological evolution.
The aim of this review is to summarise the current knowledge about mud-volcano-like structures...
Special issue