Articles | Volume 11, issue 5
https://doi.org/10.5194/esurf-11-849-2023
https://doi.org/10.5194/esurf-11-849-2023
Research article
 | 
08 Sep 2023
Research article |  | 08 Sep 2023

Spatially coherent variability in modern orographic precipitation produces asymmetric paleo-glacier extents in flowline models: Olympic Mountains, USA

Andrew A. Margason, Alison M. Anders, Robert J. C. Conrick, and Gerard H. Roe

Data sets

Olympic Mountains Climate Analysis Andrew A. Margason https://doi.org/10.4211/hs.0ae232525f984007ba96c1762f21dd3d

Model code and software

Olympic Mountains Glacier Flowline Model Andrew A. Margason https://doi.org/10.4211/hs.fe28143081434b0d90f8cffc88e1bfff

Download
Short summary
We examine differences in glacier extent in the Olympic Mountains, USA, where modern precipitation in east-facing valleys is only 50 % of that in west-facing valleys. During the Last Glacial Period, there were very small glaciers in the east and very large glaciers in the west. We use climate data and glacier models to show that the modern spatial pattern of precipitation is likely to have been similar during the past glaciation and may be sufficient to explain the asymmetry of glacier extent.