Articles | Volume 11, issue 5
https://doi.org/10.5194/esurf-11-849-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-849-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatially coherent variability in modern orographic precipitation produces asymmetric paleo-glacier extents in flowline models: Olympic Mountains, USA
Andrew A. Margason
Department of Geology, University of Illinois, Urbana, IL 61801, USA
now at: Site Solutions Department, Ramboll, Chicago, IL 60606, USA
Department of Geology, University of Illinois, Urbana, IL 61801, USA
Robert J. C. Conrick
Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
Gerard H. Roe
Department of Earth and Space Sciences, University of Washington,
Seattle, WA 98195, USA
Related authors
No articles found.
Daniel R. Otto, Gerard H. Roe, and John Erich Christian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3309, https://doi.org/10.5194/egusphere-2024-3309, 2024
Short summary
Short summary
Glaciers respond slowly to changes in climate, meaning that they are not yet adjusted to the present-day level of warming. Using a simple model, we find that the median Alaskan glacier has undergone only 27 % of the retreat necessary to equilibrate to the current climate. Our findings hold even when accounting for large uncertainties, suggesting that substantial retreat is inevitable even if future warming slows or stabilizes.
Jingtao Lai and Alison M. Anders
Earth Surf. Dynam., 9, 845–859, https://doi.org/10.5194/esurf-9-845-2021, https://doi.org/10.5194/esurf-9-845-2021, 2021
Short summary
Short summary
Glaciers are strong erosive agents, and they have created many unique landforms in mountain belts. Climate has been viewed as a primary control on glacial erosion, yet our understanding of the mechanism by which climate impacts glacial erosion remains limited. Using computer simulations, we find that climate controls glacial erosion by modulating the temperature of the basal ice. Our results suggest that a warm and/or wet climate can create warm basal ice and, therefore, enhance erosion.
Gerard H. Roe, John Erich Christian, and Ben Marzeion
The Cryosphere, 15, 1889–1905, https://doi.org/10.5194/tc-15-1889-2021, https://doi.org/10.5194/tc-15-1889-2021, 2021
Short summary
Short summary
The worldwide retreat of mountain glaciers and consequent loss of ice mass is one of the most obvious signs of a changing climate and has significant implications for the hydrology and natural hazards in mountain landscapes. Consistent with our understanding of the human role in temperature change, we demonstrate that the central estimate of the size of the human-caused mass loss is essentially 100 % of the observed loss. This assessment resolves some important inconsistencies in the literature.
Alan Huston, Nicholas Siler, Gerard H. Roe, Erin Pettit, and Nathan J. Steiger
The Cryosphere, 15, 1645–1662, https://doi.org/10.5194/tc-15-1645-2021, https://doi.org/10.5194/tc-15-1645-2021, 2021
Short summary
Short summary
We simulate the past 1000 years of glacier length variability using a simple glacier model and an ensemble of global climate model simulations. Glaciers with long response times are more likely to record global climate changes caused by events like volcanic eruptions and greenhouse gas emissions, while glaciers with short response times are more likely to record natural variability. This difference stems from differences in the frequency spectra of natural and forced temperature variability.
Cited articles
Adams, B. A. and Ehlers, T. A.: Tectonic controls of Holocene erosion in a
glaciated orogen, Earth Surf. Dynam., 6, 595–610, https://doi.org/10.5194/esurf-6-595-2018, 2018.
Anders, A. M., Roe, G. H., Durran, D. R., and Minder, J. R.: Small-Scale
Spatial Gradients in Climatological Precipitation on the Olympic Peninsula,
J. Hydrometeorol., 8, 1068–1081, https://doi.org/10.1175/JHM610.1, 2007.
Anders, A. M., Mitchell, S. G., and Tomkin, J. H.: Cirques, peaks, and
precipitation patterns in the Swiss Alps: Connections among climate, glacial
erosion, and topography, Geology, 38, 239–242, https://doi.org/10.1130/G30691.1, 2010.
Baccus, W. D., A Park Interpreter's Guide to the Climate of Hurricane Ridge,
Olympic National Park, Climate Summary for Water Years 2000 to 2017, Natural
Resources Report NPS/NCCN/NRR 2018/1741, US Department of the Interior,
Fort Collins, Colorado, http://npshistory.com/publications/olym/nrr-2018-1714.pdf (last access: 5 February 2023), 2018.
Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and
Persistence of Low-Frequency Atmospheric Circulation Patterns, Mon. Weather
Rev., 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987.
Braithwaite, R. J., Zhang, Y., and Raper, S. C. B.: Temperature sensitivity
of the mass balance of mountain glaciers and ice caps as a climatological characteristic, Z. Gletscherkd. Glazialgeol., 38, 35–61, 2003.
Brandon, M. T., Roden-Tice, M. K., and Garver, J. I.: Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains,
northwest Washington State, Geol. Soc. Am. Bull., 110, 985–1009, https://doi.org/10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO;2, 1998.
Budd, W. F., Keage, P. L., and Blundy, N. A.: Empirical studies of ice
sliding, J. Glaciol., 23, 157–170, https://doi.org/10.3189/S0022143000029804, 1979.
Cao, Q., Painter, T. H., Currier, W. R., Lundquist, J. D., and Lettenmaier,
D. P.: Estimation of Precipitation over the OLYMPEX Domain during Winter
2015/16, J. Hydrometeorol., 19, 143–160, https://doi.org/10.1175/JHM-D-17-0076.1, 2018.
Climate Explorer: https://climexp.knmi.nl/start.cgi (last access: 20 December 2022), 2022.
Conrick, R. and Mass, C. F.: An Evaluation of Simulated Precipitation
Characteristics during OLYMPEX, J. Hydrometeorol., 20, 1147–1164,
https://doi.org/10.1175/JHM-D-18-0144.1, 2019a.
Conrick, R. and Mass, C. F.: Evaluating Simulated Microphysics during OLYMPEX Using GPM Satellite Observations, J. Atmos. Sci., 76, 1093–1105,
https://doi.org/10.1175/JAS-D-18-0271.1, 2019b.
Daly, C., Slater, M. E., Roberti, J. A., Laseter, S. H., and Swift Jr., L.
W.: High-resolution precipitation mapping in a mountainous watershed: ground
truth for evaluating uncertainty in a national precipitation dataset, Int. J. Climatol., 37, 124–137, https://doi.org/10.1002/joc.4986, 2017.
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor,
G. H., Curtis, J., and Pasteris, P. P.: Physiographically sensitive mapping
of climatological temperature and precipitation across the conterminous United States, Int. J. Climatol. 28, 2031–2064, https://doi.org/10.1002/joc.1688, 2008.
DeBeer, C. M. and Sharp, M. J.: Topographic influences on recent changes of
very small glaciers in the Monashee Mountains, British Columbia, Canada, J.
Glaciol., 55, 691–700, https://doi.org/10.3189/002214309789470851, 2009.
Duda, J. J., Warrick, J. A., and Magirl, C. S.: Coastal Habitats of the Elwha River, Washington: Biological and Physical Patterns and Processes Prior to Dam Removal, US Department of the Interior, US Geological Survey, 276 pp., https://pubs.usgs.gov/sir/2011/5120/pdf/sir20115120.pdf (last access: 6 September 2023), 2011.
Easterbrook, D. J.: Stratigraphy and chronology of Quaternary deposits of the Puget Lowland and Olympic Mountains of Washington and the Cascade Mountains of Washington and Oregon, Quaternary Sci. Rev., 5, 145–159. 1986.
Fountain, A. G., Gray, C., Glenn, B., Menounos, B., Pflug, J., and Riedel, J. L.: Glaciers of the Olympic Mountains, Washington – The Past and Future
100 Years, J. Geophys. Res.-Earth, 127, e2022JF006670, https://doi.org/10.1029/2022JF006670, 2022.
GLIMS Glacier Database: GLIMS Glacier Database, Version 1, NASA National Snow
and Ice Data Center Distribute Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.7265/N5V98602, 2023.
Heusser, C. J., Heusser, L. E., and Peteet, D. M.: Humptulips revisited: a
revised interpretation of Quaternary vegetation and climate of western Washington, USA, Palaeogeogr. Palaeocl., 150, 191–221, https://doi.org/10.1016/S0031-0182(98)00225-9, 1999.
Hobbs, P. V.: Organization and structure of clouds and precipitation on the
mesoscale and microscale in cyclonic storms, Rev. Geophys., 16, 741–755,
https://doi.org/10.1029/RG016i004p00741, 1978.
Houze, R. A., McMurdie, L. A., Petersen, W. A., Schwaller, M. R., Baccus, W., Lundquist, J. D., Mass, C. F., Nijssen, B., Rutledge, S. A., Hudak, D. R., Tanelli, S., Mace, G. G., Poellot, M. R., Lettenmaier, D. P., Zagrodnik, J. P., Rowe, A. K., DeHart, J. C., Madaus, L. E., Barnes, H. C., and Chandrasekar, V.: The Olympic Mountains Experiment (OLYMPEX), B. Am. Meteorol. Soc., 98, 2167–2188, https://doi.org/10.1175/BAMS-D-16-0182.1, 2017.
Huss, M., Funk, M., and Ohmura, A.: Strong Alpine glacier melt in the 1940s
due to enhanced solar radiation, Geophys. Res. Lett., 36, L23501, https://doi.org/10.1029/2009GL040789, 2009.
Kessler, M. A., Anderson, R. S., and Stock, G. M.: Modeling topographic and
climatic control of east–west asymmetry in Sierra Nevada glacier length
during the Last Glacial Maximum, J. Geophys. Res.-Earth, 111, F02002, https://doi.org/10.1029/2005JF000365, 2006.
Margason, A.: Olympic Mountains Glacier Flowline Model, HydroShare [code], https://doi.org/10.4211/hs.fe28143081434b0d90f8cffc88e1bfff, 2023a.
Margason, A.: Olympic Mountains Climate Analysis, HydroShare [data set], https://doi.org/https://doi.org/10.4211/hs.0ae232525f984007ba96c1762f21dd3d, 2023b.
Marshall, K. J.: Expanded Late Pleistocene Glacial Chronology for Western
Washington, U.S.A. And the Wanaka-Hawea Basin, New Zealand, Using Luminescence Dating of Glaciofluvial Outwash, MS Thesis, Idaho State
University, Pocatello, ID, USA, 357 pp., https://isu.app.box.com/v/Marshall-2013 (last access: 6 September 2023), 2013.
Michel, L., Ehlers, T. A., Glotzbach, C., Adams, B. A., and Stübner, K.:
Tectonic and glacial contributions to focused exhumation in the Olympic
Mountains, Washington, USA, Geology, 46, 491–494, https://doi.org/10.1130/G39881.1, 2018.
Michelangeli, P.-A., Vautard, R., and Legras, B.: Weather Regimes: Recurrence and Quasi Stationarity, J. Atmos. Sci., 52, 1237–1256,
https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2, 1995.
Minder, J. R., Durran, D. R., Roe, G. H., and Anders, A. M.: The climatology
of small-scale orographic precipitation over the Olympic Mountains: Patterns
and processes, Q. J. Roy. Meteorol. Soc., 134, 817–839, https://doi.org/10.1002/qj.258, 2008.
Nino3.4: Nino3.4 index based on NOAA ERSSTv5, https://climexp.knmi.nl/data/iersst_nino3.4a.dat (last access:
20 December 2022), 2022.
Oerlemans, J.: Climate Sensitivity of Franz Josef Glacier, New Zealand, as
Revealed by Numerical Modeling, Arct. Alp. Res., 29, 233–239, https://doi.org/10.2307/1552052, 1997.
Oerlemans, J., Anderson, B., Hubbard, A., Huybrechts, P., Jóhannesson, T., Knap, W. H., Schmeits, M., Stroeven, A. P., van de Wal, R. S. W., Wallinga, J., and Zuo, Z.: Modelling the response of glaciers to climate
warming, Clim. Dynam., 14, 267–274, https://doi.org/10.1007/s003820050222, 1998.
Pazzaglia, F. J. and Brandon, M. T.: A Fluvial Record of Long-term Steady-state Uplift and Erosion Across the Cascadia Forearc High, Western
Washington State, Am. J. Sci., 301, 385–431, https://doi.org/10.2475/ajs.301.4-5.385, 2001.
PDO – Pacific Decadal Oscillation index: https://climexp.knmi.nl/data/ipdo.dat (last access: 20 December 2022), 2022.
PNA – Pacific/North American Pattern: https://climexp.knmi.nl/data/icpc_pna.dat (last access:
20 December 2022), 2022.
Polenz, M., Wegmann, K. W., and Schasse, H. W.: Geologic Map of the Elwha
and Angeles Point 7.5-minute Quadrangles, Clallam County, Washington,
https://www.dnr.wa.gov/publications/ger_ofr2004-14_geol_map_elwha_angelespoint_24k.pdf
(last access: 6 September 2023), 2004.
PRISM: PRISM 30-Year Normals, https://prism.oregonstate.edu/normals/ (last access: 5 October 2020), 2020.
Purnell, D. J. and Kirshbaum, D. J.: Synoptic Control over Orographic
Precipitation Distributions during the Olympics Mountains Experiment (OLYMPEX), Mon. Weather Rev., 146, 1023–1044, https://doi.org/10.1175/MWR-D-17-0267.1, 2018.
Rasmussen, L. A., Conway, H., and Hayes, P. S. : The accumulation regime of
Blue Glacier, U.S.A., 1914–96, J. Glaciol., 46, 326-334,
https://doi.org/10.3189/172756500781832846, 2000.
Riedel, J. L., Wilson, S., Baccus, W., Larrabee, M., Fudge, T. J., and Fountain, A.: Glacier status and contribution to streamflow in the Olympic
Mountains, Washington, USA, J. Glaciol., 61, 8–16, https://doi.org/10.3189/2015JoG14J138, 2015.
Robertson, A. W. and Ghil, M.: Large-Scale Weather Regimes and Local Climate
over the Western United States, J. Climate, 12, 1796–1813, https://doi.org/10.1175/1520-0442(1999)012<1796:LSWRAL>2.0.CO;2, 1999.
Robertson, A. W. and Metz, W.: Transient-Eddy Feedbacks Derived from Linear
Theory and Observations, J. Atmos. Sci., 47, 2743–2764, https://doi.org/10.1175/1520-0469(1990)047<2743:TEFDFL>2.0.CO;2, 1990.
Roe, G. H.: Orographic Precipitation, Annu. Rev. Earth Planet. Sci., 33,
645–671, https://doi.org/10.1146/annurev.earth.33.092203.122541, 2005.
Roe, G. H.: What do glaciers tell us about climate variability and climate
change?, J. Glaciol., 57, 567–578, https://doi.org/10.3189/002214311796905640, 2011.
Roe, G. H. and O'Neal, M. A.: The response of glaciers to intrinsic climate
variability: observations and models of late-Holocene variations in the
Pacific Northwest, J. Glaciol., 55, 839–854, https://doi.org/10.3189/002214309790152438, 2009.
Rupper, S. and Roe, G.: Glacier Changes and Regional Climate: A Mass and Energy Balance Approach, J. Climate, 21, 5384–5401, https://doi.org/10.1175/2008JCLI2219.1, 2008.
Rutledge, S. A. and Ciesielski, P.: Quality-Control of Upper-Air Soundings
for OLYMPEX, https://ghrc.nsstc.nasa.gov/pub/fieldCampaigns/gpmValidation/olympex/upa_soundings/doc/OLYMPEX_sonde_qc.pdf
(last access: 6 September 2023), 2016.
Serreze, M. C., Clark, M. P., Armstrong, R. L., McGinnis, D. A., and Pulwarty, R. S.: Characteristics of the western United States snowpack from
snowpack telemetry (SNOTEL) data, Water Resour. Res., 35, 2145–2160,
https://doi.org/10.1029/1999WR900090, 1999.
Siler, N., Roe, G., and Durran, D.: On the Dynamical Causes of Variability in the Rain-Shadow Effect: A Case Study of the Washington Cascades, J.
Hydrometeorol., 14, 122–139, https://doi.org/10.1175/JHM-D-12-045.1, 2012.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A description of the Advanced Research WRF version 3, NCAR Technical note-475+STR, NCAR, https://doi.org/10.5065/D68S4MVH, 2008.
Staley, A. E.: Glacial Geomorphology and Chronology of the Quinault Valley,
Washington and Broader Evidence of MarineIsotope Stages 4 and 2 Glaciation
Across the Northwestern United States, MS Thesis, Idaho State University,
Pocatello, ID, USA., 100 pp., https://isu.app.box.com/v/Staley-2015
(last access: 6 September 2023), 2015.
Stuart-Smith, R. F., Roe, G. H., Li, S., and Allen, M. R.: Increased outburst flood hazard from Lake Palcacocha due to human-induced glacier retreat, Nat. Geosci., 14, 85–90, 2001.
Tabor, R. W. and Cady, W. M.: The Structure of the Olympic Mountains, Washington: Analysis of a Subduction Zone, US Government Printing Office,
52 pp., https://doi.org/10.3133/pp1033, 1978.
Thackray, G. D.: Extensive Early and Middle Wisconsin Glaciation on the Western Olympic Peninsula, Washington, and the Variability of Pacific Moisture Delivery to the Northwestern United States, Quatern. Res., 55,
257–270, https://doi.org/10.1006/qres.2001.2220, 2001.
TNH – Tropical/Northern Hemisphere Pattern: https://climexp.knmi.nl/data/icpc_tnh.dat (last access: 20 December 2022), 2022.
USGS: Water Resources Data, Elwha River, https://waterdata.usgs.gov/wa/nwis/monthly/?referred_module=sw&site_no=12045500&por_12045500_148527=1179104,00060,148527,1897-10,2021-01&format=rdb&date_format=YYYY-MM-DD&rdb_compression=value&submitted_form=parameter_selection_list (last access: 20 December 2022), 2022a.
USGS: Quinault River, https://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=12039500&por_12039500_148486=1179001,00060,148486,1911-10,2020-09&format=rdb&date_format=YYYY-MM-DD&rdb_compression=value&submitted_form=parameter_selection_list (last access: 20 December 2022), 2022b.
Wagnon, P., Sicart, J.-E., Berthier, E., and Chazarin, J.-P.: Wintertime
high-altitude surface energy balance of a Bolivian glacier, Illimani, 6340 m
above sea level, J. Geophys. Res.-Atmos., 108, 4177, https://doi.org/10.1029/2002JD002088, 2003.
Western Regional Climate Center: RAWS data for Black Knob Washington,
https://raws.dri.edu/cgi-bin/rawMAIN.pl?waWBLA (last access: 27 April 2023), 2023.
Willett, S. D.: Orogeny and orography: The effects of erosion on the structure of mountain belts, J. Geophys. Res.-Sol. Ea., 104, 28957–28981, https://doi.org/10.1029/1999JB900248, 1999.
Zagrodnik, J. P., McMurdie, L. A., Houze, R. A., and Tanelli, S.: Vertical
Structure and Microphysical Characteristics of Frontal Systems Passing over
a Three-Dimensional Coastal Mountain Range, J. Atmos. Sci., 76, 1521–1546,
https://doi.org/10.1175/JAS-D-18-0279.1, 2019.
Short summary
We examine differences in glacier extent in the Olympic Mountains, USA, where modern precipitation in east-facing valleys is only 50 % of that in west-facing valleys. During the Last Glacial Period, there were very small glaciers in the east and very large glaciers in the west. We use climate data and glacier models to show that the modern spatial pattern of precipitation is likely to have been similar during the past glaciation and may be sufficient to explain the asymmetry of glacier extent.
We examine differences in glacier extent in the Olympic Mountains, USA, where modern...