Articles | Volume 12, issue 2
https://doi.org/10.5194/esurf-12-515-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-515-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Downstream rounding rate of pebbles in the Himalaya
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Department of Mines and Geology, Government of Nepal, Kathmandu, Nepal
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Hugh D. Sinclair
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Simon M. Mudd
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Mark Naylor
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Related authors
No articles found.
Jingqiu Huang and Hugh D. Sinclair
Earth Surf. Dynam., 13, 531–547, https://doi.org/10.5194/esurf-13-531-2025, https://doi.org/10.5194/esurf-13-531-2025, 2025
Short summary
Short summary
We develop a novel approach based on satellite radar images to quantify millimetre-scale sedimentation during monsoon floods over a 15 km stretch of four rivers, from the Himalayan mountain front to the gravel–sand transition. The results show how sediment accumulates more rapidly near the mountain front and decreases downstream, while the floodplain sinks. This method can improve river monitoring, enhance flood prediction, and benefit communities at risk of flooding in Nepal and India.
Anya H. Towers, Mikael Attal, Simon M. Mudd, and Fiona J. Clubb
EGUsphere, https://doi.org/10.5194/egusphere-2024-3084, https://doi.org/10.5194/egusphere-2024-3084, 2024
Short summary
Short summary
We explore controls on channel sediment characteristics in post-glacial landscapes. In contrast to other studies that have focused on landscapes with little glacial influence, we find no apparent controls. We propose that Scotland's post-glacial legacy drives the lack of sedimentological trends, and that changes in landscape morphology and sediment sources caused by glacial processes lead to a complete decoupling between fluvial sediment grain size and environmental variables.
Emma L. S. Graf, Hugh D. Sinclair, Mikaël Attal, Boris Gailleton, Basanta Raj Adhikari, and Bishnu Raj Baral
Earth Surf. Dynam., 12, 135–161, https://doi.org/10.5194/esurf-12-135-2024, https://doi.org/10.5194/esurf-12-135-2024, 2024
Short summary
Short summary
Using satellite images, we show that, unlike other examples of earthquake-affected rivers, the rivers of central Nepal experienced little increase in sedimentation following the 2015 Gorkha earthquake. Instead, a catastrophic flood occurred in 2021 that buried towns and agricultural land under up to 10 m of sediment. We show that intense storms remobilised glacial sediment from high elevations causing much a greater impact than flushing of earthquake-induced landslides.
Kirsty Bayliss, Mark Naylor, Farnaz Kamranzad, and Ian Main
Nat. Hazards Earth Syst. Sci., 22, 3231–3246, https://doi.org/10.5194/nhess-22-3231-2022, https://doi.org/10.5194/nhess-22-3231-2022, 2022
Short summary
Short summary
We develop probabilistic earthquake forecasts that include different spatial information (e.g. fault locations, strain rate) using a point process method. The performance of these models is tested over three different periods and compared with existing forecasts. We find that our models perform well, with those using simulated catalogues that make use of uncertainty in model parameters performing better, demonstrating potential to improve earthquake forecasting using Bayesian approaches.
Fiona J. Clubb, Eliot F. Weir, and Simon M. Mudd
Earth Surf. Dynam., 10, 437–456, https://doi.org/10.5194/esurf-10-437-2022, https://doi.org/10.5194/esurf-10-437-2022, 2022
Short summary
Short summary
River valleys are important components of mountain systems: they are the most fertile part of landscapes and store sediment which is transported from mountains to surrounding basins. Our knowledge of the location and shape of valleys is hindered by our ability to measure them over large areas. We present a new method for measuring the width of mountain valleys continuously along river channels from digital topography and show that our method can be used to test common models of river widening.
Cited articles
Abbott, P. L. and Peterson, G. L.: Effects of abrasion durability on conglomerate clast populations; examples from Cretaceous and Eocene conglomerates of the San Diego area, California, J. Sediment. Petrol., 48, 31–42, https://doi.org/10.1306/212F73EC-2B24-11D7-8648000102C1865D, 1978. a
Attal, M. and Lavé, J.: Changes of bedload characteristics along the Marsyandi River (central Nepal): Implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts, vol. 398, Geological Society of America, https://doi.org/10.1130/2006.2398(09), 2006. a
Attal, M. and Lavé, J.: Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers, J. Geophys. Res., 114, F04023, https://doi.org/10.1029/2009jf001328, 2009. a, b, c, d
Attal, M., Lavé, J., and Masson, J.-P.: New Facility to Study River Abrasion Processes, J. Hydraul. Eng., 132, 624–628, https://doi.org/10.1061/(ASCE)0733-9429(2006)132:6(624), 2006. a
Barrett, P. J.: The shape of rock particles, a critical review, Sedimentology, 27, 291–303, https://doi.org/10.1111/j.1365-3091.1980.tb01179.x, 1980. a, b
Bilham, R., Larson, K., and Freymueller, J.: GPS measurements of present-day convergence across the Nepal Himalaya, Nature, 386, 61–64, 1997. a
Blott, S. J. and Pye, K.: Particle shape: a review and new methods of characterization and classification, Sedimentology, 55, 31–63, https://doi.org/10.1111/j.1365-3091.2007.00892.x, 2008. a, b, c, d
Bodek, S. and Jerolmack, D. J.: Breaking down chipping and fragmentation in sediment transport: the control of material strength, Earth Surf. Dynam., 9, 1531–1543, https://doi.org/10.5194/esurf-9-1531-2021, 2021. a, b
Brewer, P. A. and Lewin, J.: In-Transport Modification of Alluvial Sediment: Field Evidence and Laboratory Experiments, Wiley, 23–35, https://doi.org/10.1002/9781444303995.ch3, 1993. a, b
Cottet, M.: Mesure et structures spatiales et temporelles de l'é mousse des galets dans le réseau hydrographique du Bez (On the measurement, the spatial and temporal distribution of pebble roundness in the hydrographic network of the Bez), Master's thesis, 72 pp., Université Jean Moulin Lyon 3, 2006. a
Cox, E. P.: A Method of Assigning Numerical and Percentage Values to the Degree of Roundness of Sand Grains, J. Paleontol., 1, 179–183, 1927. a
Cruz-Matías, I., Ayala, D., Hiller, D., Gutsch, S., Zacharias, M., Estradé, S., and Peiró, F.: Sphericity and roundness computation for particles using the extreme vertices model, J. Comput. Sci., 30, 28–40, https://doi.org/10.1016/j.jocs.2018.11.005, 2019. a
Dal Zilio, L., Ruh, J., and Avouac, J.-P.: Structural Evolution of Orogenic Wedges: Interplay Between Erosion and Weak Décollements, Tectonics, 39, e2020TC006210, https://doi.org/10.1029/2020TC006210, 2020. a
DeCelles, P. G., Gehrels, G. E., Quade, J., Ojha, T. P., Kapp, P. A., and Upreti, B. N.: Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal, Geol. Soc. Am. Bull., 110, 2–21, https://doi.org/10.1130/0016-7606(1998)110<0002:NFBDEU>2.3.CO;2, 1998. a
Department of Mines and Geology: Geological map of central Nepal, Geological Mapping section, DMG, https://dmgnepal.gov.np/ne/resources/geological-maps-150000-4749 (last access: 1 September 2020), 2011. a
Detert, M.: BASEGRAIN, ETH Zurich, https://doi.org/10.5905/ethz-1007-347, 2020. a
Dhital, M. R.: Geology of the Nepal Himalaya: Regional Perspective of the Classic Collided Orogen, 2015 edn., Springer International Publishing AG, Cham, https://doi.org/10.1007/978-3-319-02496-7, 2015. a, b, c
Diepenbroek, M., Bartholomä, A., and Ibbeken, H.: How round is round? A new approach to the topic “roundness” by Fourier grain shape analysis, Sedimentology, 39, 411–422, https://doi.org/10.1111/j.1365-3091.1992.tb02125.x, 1992. a, b
Dingle, E. H., Attal, M., and Sinclair, H. D.: Abrasion-set limits on Himalayan gravel flux, Nature, 544, 471–474, 2017. a
Dingle, L., Sinclair, H., Attal, M., Milodowski, D., and Singh, V.: Subsidence control on river morphology and grain size in the Ganga Plain, Am. J. Sci., 316, 778–812, https://doi.org/10.2475/08.2016.03, 2016. a
Dobkins, J. and Folk, R. L.: Shape development on Tahiti-Nui, J. Sediment. Petrol., 40, 1167–1203, https://doi.org/10.1306/74D72162-2B21-11D7-8648000102C1865D, 1970. a
Domokos, G., Sipos, A., Szabó, T., and Várkonyi, P.: Pebbles, Shapes, and Equilibria, Math. Geosci., 42, 29–47, https://doi.org/10.1007/s11004-009-9250-4, 2009. a
Domokos, G., Jerolmack, D. J., Sipos, A. A., and Torok, A.: How river rocks round: resolving the shape-size paradox, PLoS One, 9, e88657, https://doi.org/10.1371/journal.pone.0088657, 2014. a
Durian, D. J., Bideaud, H., Duringer, P., Schroder, A., Thalmann, F., and Marques, C. M.: What is in a pebble shape?, Phys. Rev. Lett., 97, 028001, https://doi.org/10.1103/PhysRevLett.97.028001, 2006. a
Gale, S. J.: The Shape of Fluvial Gravels: Insights from Fiji's Sabeto River, Geosciences, 11, 161, https://doi.org/10.3390/geosciences11040161, 2021. a, b, c
Japan Aerospace Exploration Agency: ALOS World 3D 30 m DEM. V3.2, https://doi.org/10.5069/G94M92HB, 2021. a
Jerolmack, D. J.: Pebbles on Mars, Science, 340, 1055–1056, https://doi.org/10.1126/science.1239343, 2013. a
Jouanne, F., Mugnier, J.-L., Gamond, J., Le Fort, P., Pandey, M., Bollinger, L., Flouzat, M., and Avouac, J.-P.: Current shortening across the Himalayas of Nepal, Geophys. J. Int., 157, 1–14, 2004. a
Kodama, Y.: Experimental study of abrasion and its role in producing downstream fining in gravel-bed rivers, J. Sediment. Res., 64, 76–85, https://doi.org/10.2110/jsr.64.76, 1994. a, b
Lajeunesse, E., Malverti, L., and Charru, F.: Bed load transport in turbulent flow at the grain scale: Experiments and modeling, J. Geophys. Res.-Earth, 115, F04001, https://doi.org/10.1029/2009JF001628, 2010. a
Lindsey, D. A., Langer, W. H., and Knepper, D. H.: Stratigraphy, lithology, and sedimentary features of Quaternary alluvial deposits of the South Platte River and some of its tributaries east of the Front Range, Colorado, USGS-Technical report, 1705, https://doi.org/10.3133/pp1705, 2005. a, b, c, d
Lindsey, D. A., Langer, W. H., and Van Gosen, B. S.: Using pebble lithology and roundness to interpret gravel provenance in piedmont fluvial systems of the Rocky Mountains, USA, Sediment. Geol., 199, 223–232, https://doi.org/10.1016/j.sedgeo.2007.02.006, 2007. a
Litwin Miller, K. and Jerolmack, D.: Controls on the rates and products of particle attrition by bed-load collisions, Earth Surf. Dynam., 9, 755–770, https://doi.org/10.5194/esurf-9-755-2021, 2021. a, b
McPherson, H. J.: Downstream Changes in Sediment Character in a High Energy Mountain Stream Channel, Arctic Alpine Res., 3, 65–79, https://doi.org/10.2307/1550383, 1971. a
Mills, H. H.: Downstream rounding of pebbles; a quantitative review, J. Sediment. Res., 49, 295–302, https://doi.org/10.1306/212F7720-2B24-11D7-8648000102C1865D, 1979. a, b, c, d
Mudd, S., Clubb, F., Grieve, S., Milodowski, D., Gailleton, B., Hurst, M., Valters, D., Wickert, A., and Hutton, E.: LSDtopotools/LSDTopoTools2: LSDTopoTools2 v0.7, https://doi.org/10.5281/zenodo.7076014, 2022. a, b
Nelder, J. A. and Mead, R.: A Simplex Method for Function Minimization, Comput. J., 7, 308–313, https://doi.org/10.1093/comjnl/7.4.308, 1965. a
Novák-Szabó, T., Sipos, A. Á., Shaw, S., Bertoni, D., Pozzebon, A., Grottoli, E., Sarti, G., Ciavola, P., Domokos, G., and Jerolmack, D. J.: Universal characteristics of particle shape evolution by bed-load chipping, Science Advances, 4, eaao4946, https://doi.org/10.1126/sciadv.aao4946, 2018. a, b
Pokhrel, P., Attal, M., Sinclair, H.-D., Mudd, S.-M., and Naylor, M.: Downstream rounding rate of pebbles in the Himalaya, University of Edinburgh. School of GeoSciences, Land Surface Dynamics Group [data set], https://doi.org/10.7488/ds/7515, 2023. a
Purinton, B. and Bookhagen, B.: Introducing PebbleCounts: a grain-sizing tool for photo surveys of dynamic gravel-bed rivers, Earth Surf. Dynam., 7, 859–877, https://doi.org/10.5194/esurf-7-859-2019, 2019. a
Russell, T.: Use of clast shape in determining the sedimentary history of the late devonian keepit conglomerate, Australia, Sediment. Geol., 25, 277–290, https://doi.org/10.1016/0037-0738(80)90065-2, 1980. a
Sakai, H.: Geology of the Tansen Group of the Lesser Himalaya in Nepal, Memoirs of the Faculty of Science, Kyūsyū University, Ser. D, Geology, 25, 27–74, https://doi.org/10.5109/1546083, 1983. a, b, c
Sakai, H., Sakai, H., Yahagi, W., Fujii, R., Hayashi, T., and Upreti, B. N.: Pleistocene rapid uplift of the Himalayan frontal ranges recorded in the Kathmandu and Siwalik basins, Palaeogeogr. Palaeocl., 241, 16–27, https://doi.org/10.1016/j.palaeo.2006.06.017, 2006. a
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9, 671–675, https://doi.org/10.1038/nmeth.2089, 2012. a
Sinclair, H., Stuart, F., Mudd, S., McCann, L., and Tao, Z.: Detrital cosmogenic 21Ne records decoupling of source-to-sink signals by sediment storage and recycling in Miocene to present rivers of the Great Plains, Nebraska, USA, Geology, 47, 3–6, https://doi.org/10.1130/G45391.1, 2018. a
Sinclair, H. D.: Thrust Wedge/Foreland Basin Systems, Tectonics of sedimentary basins: Recent advances, Wiley, 522–537, https://doi.org/10.1002/9781444347166.ch26, 2011. a
Steer, P., Guerit, L., Lague, D., Crave, A., and Gourdon, A.: Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds, Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022, 2022. a
Szabo, T., Domokos, G., Grotzinger, J. P., and Jerolmack, D. J.: Reconstructing the transport history of pebbles on Mars, Nat. Commun., 6, 8366, https://doi.org/10.1038/ncomms9366, 2015. a, b, c, d
Thiede, R. C., Arrowsmith, J. R., Bookhagen, B., McWilliams, M. O., Sobel, E. R., and Strecker, M. R.: From tectonically to erosionally controlled development of the Himalayan orogen, Geology, 33, 689–692, https://doi.org/10.1130/G21483AR.1, 2005. a
Tunwal, M., Mulchrone, K. F., and Meere, P. A.: Image based Particle Shape Analysis Toolbox (IPSAT), Comput. Geosci., 135, 104391, https://doi.org/10.1016/j.cageo.2019.104391, 2020. a
Vanbrabant, C., Regnauld, H., and Duchesne, F.: La détermination pratique des intervalles de confiance des comptages de cailloux et des mesures d'émoussé. Comparaison des mesures d'émoussé de Cailleux et de Krumbein/Determination of confidence limits characterizing gravel pétrographie counts and roundness values. Comparison of roundness values by the Cailleux and the Krumbein methods, Geomorphologie, 4, 195–214, https://doi.org/10.3406/morfo.1998.955, 1998. a
Villarino, M. B.: Ramanujan's Perimeter of an Ellipse, arXiv [preprint], https://doi.org/10.48550/arXiv.math/0506384, 2005. a
Wadell, H.: Volume, Shape, and Roundness of Quartz Particles, J. Geol., 43, 250–280, https://doi.org/10.1086/624298, 1935. a, b, c
Wentworth, C. K.: A Laboratory and Field Study of Cobble Abrasion, J. Geol., 27, 507–521, https://doi.org/10.1086/622676, 1919. a, b
Wentworth, C. K.: The Shapes of Rock Particles: A Discussion, J. Geol., 41, 306–309, 1933. a
Williams, R. M. E., Grotzinger, J. P., Dietrich, W. E., Gupta, S., Sumner, D. Y., Wiens, R. C., Mangold, N., Malin, M. C., Edgett, K. S., Maurice, S., Forni, O., Gasnault, O., Ollila, A., Newsom, H. E., Dromart, G., Palucis, M. C., Yingst, R. A., Anderson, R. B., Herkenhoff, K. E., Le Mouélic, S., Goetz, W., Madsen, M. B., Koefoed, A., Jensen, J. K., Bridges, J. C., Schwenzer, S. P., Lewis, K. W., Stack, K. M., Rubin, D., Kah, L. C., Bell, J. F., Farmer, J. D., Sullivan, R., Van Beek, T., Blaney, D. L., Pariser, O., Deen, R. G., Kemppinen, O., Bridges, N., Johnson, J. R., Minitti, M., Cremers, D., Edgar, L., Godber, A., Wadhwa, M., Wellington, D., McEwan, I., Newman, C., Richardson, M., Charpentier, A., Peret, L., King, P., Blank, J., Weigle, G., Schmidt, M., Li, S., Milliken, R., Robertson, K., Sun, V., Baker, M., Edwards, C., Ehlmann, B., Farley, K., Griffes, J., Miller, H., Newcombe, M., Pilorget, C., Rice, M., Siebach, K., Stolper, E., Brunet, C., Hipkin, V., Léveillé, R., Marchand, G., Sobrón Sánchez, P., Favot, L., Cody, G., Steele, A., Flückiger, L., Lees, D., Nefian, A., Martin, M., Gailhanou, M., Westall, F., Israël, G., Agard, C., Baroukh, J., Donny, C., Gaboriaud, A., Guillemot, P., Lafaille, V., Lorigny, E., Paillet, A., Pérez, R., Saccoccio, M., Yana, C., Aparicio, C. A., Caride Rodríguez, J., Carrasco Blázquez, I., et al.: Martian Fluvial Conglomerates at Gale Crater, Science, 340, 1068–1072, https://doi.org/10.1126/science.1237317, 2013. a
Yingst, R. A., Crumpler, L., Farrand, W. H., Li, R., Cabrol, N. A., and Neakrase, L. D.: Morphology and texture of particles along the Spirit rover traverse from sol 450 to sol 745, J. Geophys. Res.-Planets, 113, E12S41, https://doi.org/10.1029/2008JE003179, 2008. a
Yingst, R. A., Cropper, K., Gupta, S., Kah, L. C., Williams, R. M. E., Blank, J., Calef, F., Hamilton, V. E., Lewis, K., Shechet, J., McBride, M., Bridges, N., Frias, J. M., and Newsom, H.: Characteristics of pebble and cobble-sized clasts along the Curiosity rover traverse from sol 100 to 750: Terrain types, potential sources, and transport mechanisms, Icarus, 280, 72–92, https://doi.org/10.1016/j.icarus.2016.03.001, 2016. a
Yoshida, M. and Igarashi, Y.: Neogene to Quaternary lacustrine sediments in the Kathmandu Valley, Nepal, Journal of Nepal Geological Society, 1, 73–100, 1984. a
Zaheer, M., Khan, M. R., Mughal, M. S., Janjuhah, H. T., Makri, P., and Kontakiotis, G.: Petrography and Lithofacies of the Siwalik Group in the Core of Hazara-Kashmir Syntaxis: Implications for Middle Stage Himalayan Orogeny and Paleoclimatic Conditions, Minerals, 12, 1055, https://doi.org/10.3390/min12081055, 2022. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(9615 KB) - Full-text XML
Short summary
Pebbles become increasingly rounded during downstream transport in rivers due to abrasion. This study quantifies pebble roundness along the length of two Himalayan rivers. We demonstrate that roundness increases with downstream distance and that the rates are dependent on rock type. We apply this to reconstructing travel distances and hence the size of ancient Himalaya. Results show that the ancient river network was larger than the modern one, indicating that there has been river capture.
Pebbles become increasingly rounded during downstream transport in rivers due to abrasion. This...