Articles | Volume 12, issue 2
https://doi.org/10.5194/esurf-12-515-2024
https://doi.org/10.5194/esurf-12-515-2024
Research article
 | 
17 Apr 2024
Research article |  | 17 Apr 2024

Downstream rounding rate of pebbles in the Himalaya

Prakash Pokhrel, Mikael Attal, Hugh D. Sinclair, Simon M. Mudd, and Mark Naylor

Related authors

Sediment aggradation rates for Himalayan Rivers revealed through SAR remote sensing
Jingqiu Huang and Hugh D. Sinclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-2600,https://doi.org/10.5194/egusphere-2024-2600, 2024
Short summary
Geomorphological and hydrological controls on sediment export in earthquake-affected catchments in the Nepal Himalaya
Emma L. S. Graf, Hugh D. Sinclair, Mikaël Attal, Boris Gailleton, Basanta Raj Adhikari, and Bishnu Raj Baral
Earth Surf. Dynam., 12, 135–161, https://doi.org/10.5194/esurf-12-135-2024,https://doi.org/10.5194/esurf-12-135-2024, 2024
Short summary
Pseudo-prospective testing of 5-year earthquake forecasts for California using inlabru
Kirsty Bayliss, Mark Naylor, Farnaz Kamranzad, and Ian Main
Nat. Hazards Earth Syst. Sci., 22, 3231–3246, https://doi.org/10.5194/nhess-22-3231-2022,https://doi.org/10.5194/nhess-22-3231-2022, 2022
Short summary
Continuous measurements of valley floor width in mountainous landscapes
Fiona J. Clubb, Eliot F. Weir, and Simon M. Mudd
Earth Surf. Dynam., 10, 437–456, https://doi.org/10.5194/esurf-10-437-2022,https://doi.org/10.5194/esurf-10-437-2022, 2022
Short summary
Arable soil formation and erosion: a hillslope-based cosmogenic nuclide study in the United Kingdom
Daniel L. Evans, John N. Quinton, Andrew M. Tye, Ángel Rodés, Jessica A. C. Davies, Simon M. Mudd, and Timothy A. Quine
SOIL, 5, 253–263, https://doi.org/10.5194/soil-5-253-2019,https://doi.org/10.5194/soil-5-253-2019, 2019
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Testing floc settling velocity models in rivers and freshwater wetlands
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
Earth Surf. Dynam., 12, 1267–1294, https://doi.org/10.5194/esurf-12-1267-2024,https://doi.org/10.5194/esurf-12-1267-2024, 2024
Short summary
River suspended-sand flux computation with uncertainty estimation using water samples and high-resolution ADCP measurements
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024,https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Barchan swarm dynamics from a Two-Flank Agent-Based Model
Dominic T. Robson and Andreas C. W. Baas
Earth Surf. Dynam., 12, 1205–1226, https://doi.org/10.5194/esurf-12-1205-2024,https://doi.org/10.5194/esurf-12-1205-2024, 2024
Short summary
A landslide runout model for sediment transport, landscape evolution, and hazard assessment applications
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024,https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Tracking slow-moving landslides with PlanetScope data: new perspectives on the satellite's perspective
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024,https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary

Cited articles

Abbott, P. L. and Peterson, G. L.: Effects of abrasion durability on conglomerate clast populations; examples from Cretaceous and Eocene conglomerates of the San Diego area, California, J. Sediment. Petrol., 48, 31–42, https://doi.org/10.1306/212F73EC-2B24-11D7-8648000102C1865D, 1978. a
Attal, M. and Lavé, J.: Changes of bedload characteristics along the Marsyandi River (central Nepal): Implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts, vol. 398, Geological Society of America, https://doi.org/10.1130/2006.2398(09), 2006. a
Attal, M. and Lavé, J.: Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers, J. Geophys. Res., 114, F04023, https://doi.org/10.1029/2009jf001328, 2009. a, b, c, d
Attal, M., Lavé, J., and Masson, J.-P.: New Facility to Study River Abrasion Processes, J. Hydraul. Eng., 132, 624–628, https://doi.org/10.1061/(ASCE)0733-9429(2006)132:6(624), 2006. a
Barrett, P. J.: The shape of rock particles, a critical review, Sedimentology, 27, 291–303, https://doi.org/10.1111/j.1365-3091.1980.tb01179.x, 1980. a, b
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Pebbles become increasingly rounded during downstream transport in rivers due to abrasion. This study quantifies pebble roundness along the length of two Himalayan rivers. We demonstrate that roundness increases with downstream distance and that the rates are dependent on rock type. We apply this to reconstructing travel distances and hence the size of ancient Himalaya. Results show that the ancient river network was larger than the modern one, indicating that there has been river capture.