Articles | Volume 12, issue 2
https://doi.org/10.5194/esurf-12-621-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-621-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evolution of submarine canyons and hanging-wall fans: insights from geomorphic experiments and morphodynamic models
Steven Y. J. Lai
CORRESPONDING AUTHOR
Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, Taiwan
David Amblas
GRC Geociències Marines, Dept. de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain
Aaron Micallef
Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
Hervé Capart
Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
Related authors
John F. Harrison, Steven Yueh-Jen Lai, and Yu-Hsiang Yeh
Abstr. Int. Cartogr. Assoc., 7, 55, https://doi.org/10.5194/ica-abs-7-55-2024, https://doi.org/10.5194/ica-abs-7-55-2024, 2024
Sam Y. J. Huang, Steven Y. J. Lai, Ajay B. Limaye, Brady Z. Foreman, and Chris Paola
Earth Surf. Dynam., 11, 615–632, https://doi.org/10.5194/esurf-11-615-2023, https://doi.org/10.5194/esurf-11-615-2023, 2023
Short summary
Short summary
We use experiments and a model to study the effects of confinement width and the inflow-to-sediment discharge ratio on the evolution of submarine braided channels. We find that confinement width controls most of the morphological changes. These trends are consistent for submarine braided channels both with and without confinement width effects and similar to fluvial braided rivers. Furthermore, we built a model that can simulate the flow bifurcation and confluence of submarine braided channels.
James M. Ciarlo', Monique Borg Inguanez, Erika Coppola, Aaron Micallef, and David Mifsud
Earth Syst. Dynam., 16, 1391–1407, https://doi.org/10.5194/esd-16-1391-2025, https://doi.org/10.5194/esd-16-1391-2025, 2025
Short summary
Short summary
Climate change threatens biodiversity, especially that of arthropods, by altering species' habitats and ecological roles. This study presents a proof of concept for a novel index that models species distributions based on climatic niches, using regional climate model data and focusing on Mediterranean arthropods. The index enables quick assessments of species' climate resilience and offers potential applications for projecting ecological impacts of future climate changes.
Alberto C. Naveira Garabato, Carl P. Spingys, Andrew J. Lucas, Tiago S. Dotto, Christian T. Wild, Scott W. Tyler, Ted A. Scambos, Christopher B. Kratt, Ethan F. Williams, Mariona Claret, Hannah E. Glover, Meagan E. Wengrove, Madison M. Smith, Michael G. Baker, Giuseppe Marra, Max Tamussino, Zitong Feng, David Lloyd, Liam Taylor, Mikael Mazur, Maria-Daphne Mangriotis, Aaron Micallef, Jennifer Ward Neale, Oleg A. Godin, Matthew H. Alford, Emma P. M. Gregory, Michael A. Clare, Angel Ruiz Angulo, Kathryn L. Gunn, Ben I. Moat, Isobel A. Yeo, Alessandro Silvano, Arthur Hartog, and Mohammad Belal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3624, https://doi.org/10.5194/egusphere-2025-3624, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Distributed optical fibre sensing (DOFS) is a technology that enables continuous, real-time measurements of environmental parameters along a fibre optic cable. Here, we review the recently emerged applications of DOFS in physical oceanography, and offer a perspective on the technology’s potential for future growth in the field.
Helena Fos, Jesús Peña-Izquierdo, David Amblas, Marta Arjona-Camas, Laia Romero, Victor Estella-Pérez, Cristian Florindo-Lopez, Antoni Calafat-Frau, Marc Cerdà-Domènech, Pere Puig, Xavier Durrieu de Madron, and Anna Sanchez-Vidal
EGUsphere, https://doi.org/10.22541/essoar.174060515.57729804/v2, https://doi.org/10.22541/essoar.174060515.57729804/v2, 2025
Short summary
Short summary
Dense Shelf Water Cascading (DSWC) is an oceanographic process where dense shelf water rapidly spills over the shelf edge and cascades into the deep ocean. Using a high-resolution model that incorporates real observations from the water column and sea surface (MedSea Reanalysis), this study compares over 30 years of simulated intense DSWC with actual observations in the NW Mediterranean. We identified all the cascading events since 1987, with results closely matching the observations.
Marta Arjona-Camas, Xavier Durrieu de Madron, François Bourrin, Helena Fos, Anna Sanchez-Vidal, and David Amblas
EGUsphere, https://doi.org/10.5194/egusphere-2025-1310, https://doi.org/10.5194/egusphere-2025-1310, 2025
Short summary
Short summary
This study examines dense shelf-water and sediment transport in the Cap de Creus Canyon during the mild winter of 2021–2022, using multiplatform-observational data and the MedSea Reanalysis model. Results show dense shelf waters on the shelf and upper canyon, contributing to Western Intermediate Water. The canyon acts as a partial sink, with most dense water transport occurring along the coast. These events are expected to increase with climate change, favoring intermediate-water formation.
John F. Harrison, Steven Yueh-Jen Lai, and Yu-Hsiang Yeh
Abstr. Int. Cartogr. Assoc., 7, 55, https://doi.org/10.5194/ica-abs-7-55-2024, https://doi.org/10.5194/ica-abs-7-55-2024, 2024
Sam Y. J. Huang, Steven Y. J. Lai, Ajay B. Limaye, Brady Z. Foreman, and Chris Paola
Earth Surf. Dynam., 11, 615–632, https://doi.org/10.5194/esurf-11-615-2023, https://doi.org/10.5194/esurf-11-615-2023, 2023
Short summary
Short summary
We use experiments and a model to study the effects of confinement width and the inflow-to-sediment discharge ratio on the evolution of submarine braided channels. We find that confinement width controls most of the morphological changes. These trends are consistent for submarine braided channels both with and without confinement width effects and similar to fluvial braided rivers. Furthermore, we built a model that can simulate the flow bifurcation and confluence of submarine braided channels.
Tzu-Yin Kasha Chen, Ying-Chen Wu, Chi-Yao Hung, Hervé Capart, and Vaughan R. Voller
Earth Surf. Dynam., 11, 325–342, https://doi.org/10.5194/esurf-11-325-2023, https://doi.org/10.5194/esurf-11-325-2023, 2023
Short summary
Short summary
Predicting the extent and thickness of debris flow deposits is important for assessing and mitigating hazards. We propose a simplified mass balance model for predicting the morphology of terminated debris flows depositing over complex topography. A key element in this model is that the termination of flow of the deposit is determined by prescribed values of yield stress and friction angle. The model results are consistent with available analytical solutions and field and laboratory observations.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Cited articles
Babault, J., Bonnet, S., Crave, A., and Van Den Driessche, J.: Influence of piedmont sedimentation on erosion dynamics of an uplifting landscape: An experimental approach, Geology, 33, 301, https://doi.org/10.1130/g21095.1, 2005.
Barrett, B. J., Hodgson, D. M., Jackson, C. A. L., Lloyd, C., Casagrande, J., and Collier, R. E. L.: Quantitative analysis of a footwall-scarp degradation complex and syn-rift stratigraphic architecture, Exmouth Plateau, NW Shelf, offshore Australia, Basin Res., 33, 1135–1169, https://doi.org/10.1111/bre.12508, 2021.
Bernhardt, A. and Schwanghart, W.: Where and why do submarine canyons remain connected to the shore during sea-level rise? Insights from global topographic analysis and Bayesian regression, Geophys. Res. Lett., 48, e2020GL092234, https://doi.org/10.1029/2020GL092234, 2021.
Bonnet, S. and Crave, A.: Landscape response to climate change: Insights from experimental modeling and implications for tectonic versus climatic uplift of topography, Geology, 31, 123-126, https://doi.org/10.1130/0091-7613(2003)031<0123:LRTCCI>2.0.CO;2, 2003.
Bonnet, S. and Crave, A.: Macroscale dynamics of experimental landscapes, analogue and numerical modeling of crustal-scale processes, Special Publications, Geological Society, London, https://doi.org/10.1144/GSL.SP.2006.253.01.17, 2006.
Bourget, J., Zaragosi, S., Ellouz-Zimmermann, N., Mouchot, N., Garlan, T., Schneider, J.-L., Lanfumey, V., and Lallemant, S.: Turbidite system architecture and sedimentary processes along topographically complex slopes: the Makran convergent margin, Sedimentology, 58, 376-406, https://doi.org/10.1111/j.1365-3091.2010.01168.x, 2011.
Bührig, L. H., Colombera, L., Patacci, M., Mountney, N. P., and McCaffrey, W. D.: Tectonic influence on the geomorphology of submarine canyons: implications for deep-water sedimentary systems, Source or Sink? Erosional and Depositional Signatures of Tectonic Activity in Deep-Sea Sedimentary Systems, Front. Earth Sci., 10, 836823, https://doi.org/10.3389/feart.2022.836823, 2022a.
Bührig, L. H., Colombera, L., Patacci, M., Mountney, N. P., and McCaffrey, W. D.: A global analysis of controls on submarine-canyon geomorphology, Earth-Sci. Rev., 104150, https://doi.org/10.1016/j.earscirev.2022.104150, 2022b.
Bull, W. B.: Relations of alluvial fan size and slope to drainage basin size and lithology in western Fresno County, California, US Geological Survey Professional Paper 450, US Geological Survey, 51–53, https://books.google.com.tw/books?hl=zh-TW&lr=&id=HQbs8uBocCMC&oi=fnd&pg=PA51&dq=Bull,+W.+B.+(1962),+Relations+of+alluvial-fan+size+and+slope+to+drainage-basin+size+and+lithology+in+western+Fresno+County,+California+U.S.+Geol.+Surv.+Prof.+Pap.+450-B.&ots=iDArpjipLb&sig=1rffBDshQHMfhgvFQZuOAYHSGS0&redir_esc=y#v=onepage&q&f=false (last access: 1 November 2022), 1962.
Cantelli, A., Pirmez, C., Johnson, S., and Parker, G.: Morphodynamic and stratigraphic evolution of self-channelized subaqueous fans emplaced by turbidity currents, J. Sediment. Res., 81, 233-247, https://doi.org/10.2110/jsr.2011.20, 2011.
Capart, H., Bellal, M., and Young, D. L.: Self-similar evolution of semi-infinite alluvial channels with moving boundaries, J. Sediment. Res., 77, 13–22, https://doi.org/10.2110/jsr.2007.009, 2007.
Covault, J. A., Fildani, A., Romans, B. W., and McHargue, T.: The natural range of submarine canyon-and-channel longitudinal profiles, Geosphere, 7, 313–332, https://doi.org/10.1130/GES00610.1, 2011.
Denny, C. S.: Alluvial fans in the Death Valley region, California and Nevada, US Government Printing Office, 466 pp., https://pubs.usgs.gov/pp/0466/report.pdf (last access: 1 November 2022), 1965.
Fernandez, R. L., Cantelli, A., Pirmez, C., Sequeiros, O., and Parker, G.: Growth patterns of subaqueous depositional channel lobe systems developed over a basement with a downdip break in slope: Laboratory experiments, J. Sediment. Res., 84, 168-182, https://doi.org/10.2110/jsr.2014.10, 2014.
Foreman, B. Z., Lai, S. Y. J., Komatsu, Y., and Paola, C.: Braiding of submarine channels controlled by aspect ratio similar to rivers, Nat. Geosci., 8, 700–703, https://doi.org/10.1038/ngeo2505, 2015.
Ferguson, R. A., Kane, I. A., Eggenhuisen, J. T., Pohl, F., Tilston, M., Spychala, Y. T., and Brunt, R. L.: Entangled external and internal controls on submarine fan evolution: an experimental perspective, Depos. Rec., 6, 605–624, https://doi.org/10.1002/dep2.109, 2020.
Hanks, T. C., Bucknam, R. C., Lajoie, K. R., and Wallace, R. E.: Modification of wave-cut and faulting-controlled landforms, J. Geophys. Res.-Solid, 89, 5771–5790, https://doi.org/10.1029/JB089iB07p05771, 1984.
Harris, P. T. and Whiteway, T.: Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins, Mar. Geol., 285, 69–86, https://doi.org/10.1016/j.margeo.2011.05.008, 2011.
Harris, P. T., Macmillan-Lawler, M., Rupp, J., and Baker, E. K.: Geomorphology of the oceans, Mar. Geol., 352, 4–24, https://doi.org/10.1016/j.margeo.2014.01.011, 2014.
Hasbargen, L. E. and Paola, C.: Landscape instability in an experimental drainage basin, Geology, 28, 1067–1070, https://doi.org/10.1130/0091-7613(2000)28<1067:LIIAED>2.0.CO;2, 2000.
Hovius, N.: Regular spacing of drainage outlets from linear mountain belts, Basin Res., 8, 29-44, https://doi.org/10.1111/j.1365-2117.1996.tb00113.x, 1996.
Huang, S. Y., Lai, S. Y., Limaye, A. B., Foreman, B. Z., and Paola, C.: Confinement width and inflow-to-sediment discharge ratio control the morphology and braiding intensity of submarine channels: insights from physical experiments and reduced-complexity models, Earth Surf. Dynam., 11, 615–632, https://doi.org/10.5194/esurf-11-615-2023, 2023.
Hudock, J. W., Flaig, P. P., and Wood, L. J.: Washover fans: A modern geomorphologic analysis and proposed classification scheme to improve reservoir models, J. Sediment. Res., 84, 854–865, https://doi.org/10.2110/jsr.2014.64, 2014.
Kraal, E. R., Asphaug, E., Moore, J. M., Howard, A., and Bredt, A.: Catalogue of large alluvial fans in martian impact craters, Icarus, 194, 101–110, https://doi.org/10.1016/j.icarus.2007.09.028, 2008.
Lai, S. Y., Hung, S. S., Foreman, B. Z., Limaye, A. B., Grimaud, J. L., and Paola, C.: Stream power controls the braiding intensity of submarine channels similarly to rivers, Geophys. Res. Lett., 44, 5062–5070, https://doi.org/10.1002/2017GL072964, 2017.
Lai, S. Y. J.: Experiments of submarine canyon-fan systems in fault-controlled margins, Zenodo [data set], https://doi.org/10.5281/zenodo.7271139, 2022.
Lai, S. Y. J. and Wu, F. C.: Two-stage transition from Gilbert to hyperpycnal delta in reservoir, Geophys. Res. Lett., 48, e2021GL093661, https://doi.org/10.1029/2021GL093661, 2021.
Lai, S. Y. J., Gerber, T. P., and Amblas, D.: An experimental approach to submarine canyon evolution, Geophys. Res. Lett., 43, 2741–2747, https://doi.org/10.1002/2015GL067376, 2016.
Lajeunesse, E., Malverti, L., Lancien, P., Armstrong, L., Metivier, F., Coleman, S., Smith, C. E., Davies, T., Cantelli, A., and Parker, G.: Fluvial and submarine morphodynamics of laminar and near-laminar flows: a synthesis, Sedimentology, 57, 1–26, https://doi.org/10.1111/j.1365-3091.2009.01109.x, 2010.
Lazarus, E. D.: Scaling laws for coastal overwash morphology, Geophys. Res. Lett., 43, 12113–12119, https://doi.org/10.1002/2016GL071213, 2016.
Leeder, M. and Gawthorpe, R.: Sedimentary models for extensional tilt-block/half-graben basins, Geol. Soc. Lond. Spec. Publ., 28, 139–152, 1987.
McArthur, A. D., Hartley, A. J., and Jolley, D. W.: Stratigraphic development of an Upper Jurassic deep marine syn-rift succession, Inner Moray Firth Basin, Scotland, Basin Res., 25, 285–309, https://doi.org/10.1111/j.1365-2117.2012.00557.x, 2013.
McArthur, A. D., Crisóstomo-Figueroa, A., Wunderlich, A., Karvelas, A., and McCaffrey, W. D.: Sedimentation on structurally complex slopes: neogene to recent deep-water sedimentation patterns across the central Hikurangi subduction margin, New Zealand, Basin Res., 34, 1807–1837, https://doi.org/10.1111/bre.12686, 2022.
Métivier, F., Lajeunesse, E., and Cacas, M.-C.: Submarine canyons in the bathtub, J. Sediment. Res., 75, 6–11, https://doi.org/10.2110/jsr.2005.002, 2005.
Micallef, A., Ribó, M., Canals, M., Puig, P., Lastras, G., and Tubau, X.: Space-for-time substitution and the evolution of a submarine canyon–channel system in a passive progradational margin, Geomorphology, 221, 34–50, https://doi.org/10.1016/j.geomorph.2014.06.008, 2014.
Mitchell, N. C.: Interpreting long-profiles of canyons in the USA Atlantic continental slope, Mar. Geol., 214, 75–99, https://doi.org/10.1016/j.margeo.2004.09.005, 2005.
Mitchell, N. C.: Morphologies of knickpoints in submarine canyons, Geol. Soc. Am. Bull., 118, 589–605, https://doi.org/10.1130/B25772.1, 2006.
Montgomery, D. R. and Dietrich, W. E.: Source areas, drainage density, and channel initiation, Water Resour. Res., 25, 1907–1918, https://doi.org/10.1029/WR025i008p01907, 1989.
Montgomery, D. R. and Dietrich, W. E.: Channel initiation and the problem of landscape scale, Science, 255, 826–830, https://doi.org/10.1126/science.255.5046.826, 1992.
Nyberg, B., Helland-Hansen, W., Gawthorpe, R. L., Sandbakken, P., Eide, C. H., Sømme, T., Hadler-Jacobsen, F., and Leiknes, S.: Revisiting morphological relationships of modern source-to-sink segments as a first-order approach to scale ancient sedimentary systems, Sediment. Geol., 373, 111–133, https://doi.org/10.1016/j.sedgeo.2018.06.007, 2018.
Paola, C., Straub, K., Mohrig, D., and Reinhardt, L.: The “unreasonable effectiveness” of stratigraphic and geomorphic experiments, Earth-Sci. Rev., 97, 1–43, https://doi.org/10.1016/j.earscirev.2009.05.003, 2009.
Petit, C., Migeon, S., and Coste, M.: Numerical models of continental and submarine erosion: application to the northern Ligurian Margin (Southern Alps, France/Italy), Earth Surf. Proc. Land., 40, 681–695, https://doi.org/10.1002/esp.3685, 2015.
Pettinga, L., Jobe, Z., Shumaker, L., and Howes, N.: Morphometric scaling relationships in submarine channel–lobe systems, Geology, 46, 819–822, https://doi.org/10.1130/G45142.1, 2018.
Prélat, A., Covault, J. A., Hodgson, D. M., Fildani, A., and Flint, S. S.: Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes, Sediment. Geol., 232, 66–76, https://doi.org/10.1016/j.sedgeo.2010.09.010, 2010.
Sequeiros, O. E., Spinewine, B., Beaubouef, R. T., Sun, T. A. O., Garcia, M. H., and Parker, G.: Bedload transport and bed resistance associated with density and turbidity currents, Sedimentology, 57, 1463–1490, https://doi.org/10.1111/j.1365-3091.2010.01152.x, 2010.
Sømme, T. O., Helland-Hansen, W., Martinsen, O. J., and Thurmond, J. B.: Relationships between morphological and sedimentological parameters in source-to-sink systems: a basis for predicting semi-quantitative characteristics in subsurface systems, Basin Res., 21, 361–387, https://doi.org/10.1111/j.1365-2117.2009.00397.x, 2009.
Soutter, E. L., Bell, D., Cumberpatch, Z. A., Ferguson, R. A., Spychala, Y. T., Kane, I. A., and Eggenhuisen, J. T.: The influence of confining topography orientation on experimental turbidity currents and geological implications, Front. Earth Sci., 8, 1–25, https://doi.org/10.3389/feart.2020.540633, 2021a.
Soutter, E. L., Kane, I. A., Hodgson, D. M., and Flint, S.: The concavity of submarine canyon longitudinal profiles, J. Geophys. Res.-Earth, 126, e2021JF006185, https://doi.org/10.1029/2021JF006185, 2021b.
Spinewine, B., Sequeiros, O. E., Garcia, M. H., Beaubouef, R. T., Sun, T., Savoye, B., and Parker, G.: Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. Part II. Morphodynamic evolution of the wedge and of the associated bedforms, J. Sediment. Res., 79, 608–628, https://doi.org/10.2110/jsr.2009.065, 2009.
Strak, V., Dominguez, S., Petit, C., Meyer, B., and Loget, N.: Interaction between normal fault slip and erosion on relief evolution: Insights from experimental modelling, Tectonophysics, 513, 1–19, https://doi.org/10.1016/j.tecto.2011.10.005, 2011.
Talling, P. J., Stewart, M. D., Stark, C. P., Gupta, S., and Vincent, S. J.: Regular spacing of drainage outlets from linear fault blocks, Basin Res., 9, 275–302, https://doi.org/10.1046/j.1365-2117.1997.00048.x, 1997.
Vörösmarty, C., Fekete, B. M., Meybeck, M., and Lammers, R. B.: Geomorphometric attributes of the global system of rivers at 30-minute spatial resolution, J. Hydrol., 237, 17–39, https://doi.org/10.1016/S0022-1694(00)00282-1, 2000.
Wan, L., Bianchi, V., Hurter, S., Salles, T., Zhang, Z., and Yuan, X.: Morphological controls on delta-canyon-fan systems: Insights from stratigraphic forward models, Sedimentology, 69, 864–890, https://doi.org/10.1111/sed.12930, 2022a.
Wan, L., Hurter, S., Bianchi, V., Salles, T., Zhang, Z., and Yuan, X.: Combining stratigraphic forward modeling and susceptibility mapping to investigate the origin and evolution of submarine canyons, Geomorphology, 398, 108047, https://doi.org/10.1016/j.geomorph.2021.108047, 2022b.
Weill, P., Lajeunesse, E., Devauchelle, O., Metiver, F., Limare, A., Chauveau, B., and Mouaze, D.: Experimental investigation on self-channelized erosive gravity currents, J. Sediment. Res., 84, 487–498, https://doi.org/10.2110/jsr.2014.41, 2014.
Short summary
This study explores the creation of submarine canyons and hanging-wall fans on active faults, which can be defined by gravity-dominated breaching and underflow-dominated diffusion processes. The study reveals the self-similarity in canyon–fan long profiles, uncovers Hack’s scaling relationship and proposes a formula to estimate fan volume using canyon length. This is validated by global data from source-to-sink systems, providing insights into deep-water sedimentary processes.
This study explores the creation of submarine canyons and hanging-wall fans on active faults,...