Articles | Volume 12, issue 3
Research article
03 May 2024
Research article |  | 03 May 2024

Machine learning prediction of the mass and the velocity of controlled single-block rockfalls from the seismic waves they generate

Clément Hibert, François Noël, David Toe, Miloud Talib, Mathilde Desrues, Emmanuel Wyser, Ombeline Brenguier, Franck Bourrier, Renaud Toussaint, Jean-Philippe Malet, and Michel Jaboyedoff

Related authors

Surface dynamics and history of the calving cycle of the Astrolabe glacier (Antarctica) derived from optical imagery
Floriane Provost, Dimitri Zigone, Emmanuel Le Meur, Jean-Philippe Malet, and Clément Hibert
EGUsphere,,, 2023
Short summary
Rockfall trajectory reconstruction: a flexible method utilizing video footage and high-resolution terrain models
François Noël, Michel Jaboyedoff, Andrin Caviezel, Clément Hibert, Franck Bourrier, and Jean-Philippe Malet
Earth Surf. Dynam., 10, 1141–1164,,, 2022
Short summary
Near-real-time automated classification of seismic signals of slope failures with continuous random forests
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361,,, 2021
Short summary
Towards a standard typology of endogenous landslide seismic sources
Floriane Provost, Jean-Philippe Malet, Clément Hibert, Agnès Helmstetter, Mathilde Radiguet, David Amitrano, Nadège Langet, Eric Larose, Clàudia Abancó, Marcel Hürlimann, Thomas Lebourg, Clara Levy, Gaëlle Le Roy, Patrice Ulrich, Maurin Vidal, and Benjamin Vial
Earth Surf. Dynam., 6, 1059–1088,,, 2018
Short summary
Single-block rockfall dynamics inferred from seismic signal analysis
Clément Hibert, Jean-Philippe Malet, Franck Bourrier, Floriane Provost, Frédéric Berger, Pierrick Bornemann, Pascal Tardif, and Eric Mermin
Earth Surf. Dynam., 5, 283–292,,, 2017

Related subject area

Physical: Geophysics
3D shear wave velocity imaging of the subsurface structure of granite rocks in the arid climate of Pan de Azúcar, Chile, revealed by Bayesian inversion of HVSR curves
Rahmantara Trichandi, Klaus Bauer, Trond Ryberg, Benjamin Heit, Jaime Araya Vargas, Friedhelm von Blanckenburg, and Charlotte M. Krawczyk
Earth Surf. Dynam., 12, 747–763,,, 2024
Short summary
Subaerial and subglacial seismic characteristics of the largest measured jökulhlaup from the eastern Skaftá cauldron, Iceland
Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, and Thoralf Dietrich
Earth Surf. Dynam., 11, 933–959,,, 2023
Short summary
Short communication: Potential of Sentinel-1 interferometric synthetic aperture radar (InSAR) and offset tracking in monitoring post-cyclonic landslide activities on Réunion
Marcello de Michele, Daniel Raucoules, Claire Rault, Bertrand Aunay, and Michael Foumelis
Earth Surf. Dynam., 11, 451–460,,, 2023
Short summary
Automated classification of seismic signals recorded on the Åknes rock slope, Western Norway, using a convolutional neural network
Nadège Langet and Fred Marcus John Silverberg
Earth Surf. Dynam., 11, 89–115,,, 2023
Short summary
Short communication: A tool for determining multiscale bedform characteristics from bed elevation data
Judith Y. Zomer, Suleyman Naqshband, and Antonius J. F. Hoitink
Earth Surf. Dynam., 10, 865–874,,, 2022
Short summary

Cited articles

Aki, K. and Chouet, B.: Origin of coda waves: source, attenuation, and scattering effects, J. Geophys. Res., 80, 3322–3342, 1975. a
Allstadt, K.: Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms, J. Geophys. Res., 118, 1472–1490,, 2013. a, b
Allstadt, K., Matoza, R. S., Lockhart, A., Moran, S. C., Caplan-Auerbach, J., Haney, M., Thelen, W. A., and Malone, S. D.: Seismic and acoustic signatures of surficial mass movements at volcanoes, J. Volcanol. Geoth. Res., 364, 76–106, 2018. a
Ao, Y., Li, H., Zhu, L., Ali, S., and Yang, Z.: Identifying channel sand-body from multiple seismic attributes with an improved random forest algorithm, J. Petrol. Sci. Eng., 173, 781–792, 2019. a
Arran, M. I., Mangeney, A., de Rosny, J., Farin, M., Toussaint, R., and Roche, O.: Laboratory landquakes: Insights from experiments into the high-frequency seismic signal generated by geophysical granular flows, J. Geophys. Res.-Earth, 126, e2021JF006172,, 2020. a, b
Short summary
Natural disasters such as landslides and rockfalls are mostly difficult to study because of the impossibility of making in situ measurements due to their destructive nature and spontaneous occurrence. Seismology is able to record the occurrence of such events from a distance and in real time. In this study, we show that, by using a machine learning approach, the mass and velocity of rockfalls can be estimated from the seismic signal they generate.