Articles | Volume 13, issue 6
https://doi.org/10.5194/esurf-13-1133-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-1133-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil slope monitoring with Distributed Acoustic Sensing under wetting and drying cycles
Swiss Federal Institute for Forest, Snow and Landscape Research, Zurich, Switzerland
Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
Fabian Walter
Swiss Federal Institute for Forest, Snow and Landscape Research, Zurich, Switzerland
Tobias Halter
Swiss Federal Institute for Forest, Snow and Landscape Research, Zurich, Switzerland
Department of Earth and Planetary Sciences, ETH Zurich, Zurich, Switzerland
WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland
Patrick Paitz
Grün Stadt Zurich, Zurich, Switzerland
Andreas Fichtner
Department of Earth and Planetary Sciences, ETH Zurich, Zurich, Switzerland
Related authors
No articles found.
Francois Kamper, Fabian Walter, Patrick Paitz, Matthias Meyer, Michele Volpi, and Mathieu Salzmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3864, https://doi.org/10.5194/egusphere-2025-3864, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We use anomaly detection to automatically find patterns in seismic data that may signal dangerous mass-movement events such as landslides, glacier collapses, or debris flows. Because such movements are rare, our approach reduces the amount of data that must be analyzed to find them, whether by experts or clustering procedures. We demonstrate the usefulness of our approach by mining for mass movements in Switzerland and Greenland.
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
The Cryosphere, 19, 1469–1490, https://doi.org/10.5194/tc-19-1469-2025, https://doi.org/10.5194/tc-19-1469-2025, 2025
Short summary
Short summary
This study on Glacier de la Plaine Morte in Switzerland employs various passive seismic analysis methods to identify complex hydraulic behaviours at the ice–bedrock interface. In 4 months of seismic records, we detect spatio-temporal variations in the glacier's basal interface, following the drainage of an ice-marginal lake. We identify a low-velocity layer, whose properties are determined using modelling techniques. This low-velocity layer results from temporary water storage subglacially.
Fabian Walter, Elias Hodel, Erik S. Mannerfelt, Kristen Cook, Michael Dietze, Livia Estermann, Michaela Wenner, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 22, 4011–4018, https://doi.org/10.5194/nhess-22-4011-2022, https://doi.org/10.5194/nhess-22-4011-2022, 2022
Short summary
Short summary
Debris flows are dangerous sediment–water mixtures in steep terrain. Their formation takes place in poorly accessible terrain where instrumentation cannot be installed. Here we propose to monitor such source terrain with an autonomous drone for mapping sediments which were left behind by debris flows or may contribute to future events. Short flight intervals elucidate changes of such sediments, providing important information for landscape evolution and the likelihood of future debris flows.
Małgorzata Chmiel, Fabian Walter, Lukas Preiswerk, Martin Funk, Lorenz Meier, and Florent Brenguier
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-205, https://doi.org/10.5194/nhess-2021-205, 2021
Preprint withdrawn
Short summary
Short summary
The hanging glacier on Switzerland’s Mount Eiger regularly produces ice avalanches which threaten tourist activity and nearby infrastructure. Reliable forecasting remains a challenge as physical processes leading to ice rupture are not fully understood yet. We propose a new method for hanging glacier monitoring using repeating englacial seismic signals. Our approach allows monitoring temperature and meltwater driven changes occurring in the hanging glacier at seasonal and diurnal timescales.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Cited articles
Ajo-Franklin, J. B., Dou, S., Lindsey, N. J., Monga, I., Tracy, C., Robertson, M., Rodriguez Tribaldos, V., Ulrich, C., Freifeld, B., Daley, T., and Li, X.: Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection, Scientific Reports, 9, 1328, https://doi.org/10.1038/s41598-018-36675-8, 2019. a, b
Anbazhagan, P. and Sitharam, T. G.: Spatial Variability of the Depth of Weathered and Engineering Bedrock using Multichannel Analysis of Surface Wave Method, Pure and Applied Geophysics, 166, 409–428, https://doi.org/10.1007/s00024-009-0450-0, 2009. a
Bakku, S. K.: Fracture characterization from seismic measurements in a borehole, Massachusetts Institute of Technology, https://api.semanticscholar.org/CorpusID:130579345 (last access: 28 October 2025), 2015. a
Biot, M. A.: General Theory of Three‐Dimensional Consolidation, Journal of Applied Physics, 12, 155–164, https://doi.org/10.1063/1.1712886, 1941. a
Bisanti, B., Molnar, P., and Burlando, P.: Predicting rainfall triggered soil slips: a case study in the Emmental Region (Switzerland), Water Resour. Res, 36, 1897–1910, 2005. a
Bishop, A. W.: The principle of effective stress, Teknisk ukeblad., 106, https://www.scribd.com/document/860228696/Bishop-1960 (last access: 28 October 2025), 1959. a
Bogaard, T. A. and Greco, R.: Landslide hydrology: from hydrology to pore pressure, WIREs Water, 3, 439–459, https://doi.org/10.1002/wat2.1126, 2016. a, b
Boness, N. L. and Zoback, M. D.: Stress-induced seismic velocity anisotropy and physical properties in the SAFOD Pilot Hole in Parkfield, CA, Geophysical Research Letters, 31, https://doi.org/10.1029/2003GL019020, 2004. a
Bontemps, N., Lacroix, P., Larose, E., Jara, J., and Taipe, E.: Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state, Nature Communications, 11, 780, https://doi.org/10.1038/s41467-020-14445-3, 2020. a
Carr, J. J., Saikkonen, S. L., and Williams, D. H.: Refractive index measurements on single-mode fiber as functions of product parameters, tensile stress, and temperature, Fiber and Integrated Optics, 9, 393–396, https://doi.org/10.1080/01468039008202927, 1990. a
Carri, A., Savi, R., and Segalini, A.: Role of Geotechnical Monitoring: State of the Art and new perspectives, 19–26, https://doi.org/10.35123/GEO-EXPO_2017_3, 2017. a
Cha, M., Santamarina, J. C., Kim, H.-S., and Cho, G.-C.: Small-Strain Stiffness, Shear-Wave Velocity, and Soil Compressibility, Journal of Geotechnical and Geoenvironmental Engineering, 140, 06014011, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001157, 2014. a
Christian, S., Alfred, I., Jürg, J., Christian, G., Jürg, W., Reto, M., Stefan, S., Andreas, G., and Beda, H.: 1148 Sumiswald, 1149 Wolhusen, 1168 Langnau i.E : Topographie: Landeskarte der Schweiz 1 : 25 000, Erläut, Bundesamt für Landestopographie, Wabern, 236 pp., ISBN: 9783302400952, 2019. a
Cleveland, R. B., Cleveland, W. S., and Terpenning, I.: STL: A Seasonal-Trend Decomposition Procedure Based on Loess, Journal of Official Statistics, 6, 3, https://www.math.unm.edu/~lil/Stat581/STL.pdf (last access: 28 October 2025), 1990. a
Colesanti, C. and Wasowski, J.: Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry, Engineering Geology, 88, 173–199, https://doi.org/10.1016/j.enggeo.2006.09.013, 2006. a
Collins, B. D. and Stock, G. M.: Rockfall triggering by cyclic thermal stressing of exfoliation fractures, Nature Geoscience, 9, 395–400, https://doi.org/10.1038/ngeo2686, 2016. a
Diel, J., Vogel, H.-J., and Schlüter, S.: Impact of wetting and drying cycles on soil structure dynamics, Geoderma, 345, 63–71, https://doi.org/10.1016/j.geoderma.2019.03.018, 2019. a
Dif, A. and Bluemel, W.: Expansive Soils under Cyclic Drying and Wetting, Geotechnical Testing Journal, 14, 96–102, https://doi.org/10.1520/GTJ10196J, 1991. a, b
Diffenbaugh, N. S. and Field, C. B.: Changes in Ecologically Critical Terrestrial Climate Conditions, Science, 341, 486–492, https://doi.org/10.1126/science.1237123, 2013. a
Ding, X., Ren, D., Montgomery, B., and Swindells, C.: Automatic Monitoring of Slope Deformations Using Geotechnical Instruments, Journal of Surveying Engineering, 126, 57–68, https://doi.org/10.1061/(ASCE)0733-9453(2000)126:2(57), 2000. a
Dong, Y. and Lu, N.: Dependencies of Shear Wave Velocity and Shear Modulus of Soil on Saturation, Journal of Engineering Mechanics, 142, 04016083, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001147, 2016. a
Dong, Y., Lu, N., and Fox, P. J.: Drying-Induced Consolidation in Soil, Journal of Geotechnical and Geoenvironmental Engineering, 146, 04020092, https://doi.org/10.1061/(ASCE)GT.1943-5606.0002327, 2020. a, b, c, d
Dou, S., Lindsey, N., Wagner, A. M., Daley, T. M., Freifeld, B., Robertson, M., Peterson, J., Ulrich, C., Martin, E. R., and Ajo-Franklin, J. B.: Distributed Acoustic Sensing for Seismic Monitoring of The Near Surface: A Traffic-Noise Interferometry Case Study, Scientific Reports, 7, 11620, https://doi.org/10.1038/s41598-017-11986-4, 2017. a, b
Dvorkin, J., Prasad, M., Sakai, A., and Lavoie, D.: Elasticity of marine sediments: Rock physics modeling, Geophysical Research Letters, 26, 1781–1784, https://doi.org/10.1029/1999GL900332, 1999. a
Federal Office of Topography swisstopo: swissALTIRegio, https://www.swisstopo.admin.ch/en/height-model-swissaltiregio (last access: 12 August 2024), 2024a. a
Federal Office of Topography swisstopo: SWISSIMAGE 10 cm, https://www.swisstopo.admin.ch/en/orthoimage-swissimage-10 (last access: 12 August 2024), 2024b. a
Fichtner, A., Hofstede, C., N. Kennett, B. L., Nymand, N. F., Lauritzen, M. L., Zigone, D., and Eisen, O.: Fiber‐Optic Airplane Seismology on the Northeast Greenland Ice Stream, The Seismic Record, 3, 125–133, https://doi.org/10.1785/0320230004, 2023. a
Forbriger, T., Karamzadeh, N., Azzola, J., Gaucher, E., Widmer‐Schnidrig, R., and Rietbrock, A.: Calibration of the Strain Amplitude Recorded with DAS Using a Strainmeter Array, Seismological Research Letters, 96, 2356–2367, https://doi.org/10.1785/0220240308, 2025. a
Fredlund, D. and Rahardjo, H.: Soil Mechanics for Unsatured Soils, John Wiley & Sons, Ltd, ISBN 9780470172759, https://doi.org/10.1002/9780470172759, 1993. a, b, c, d
Gabella, M., Speirs, P., Hamann, U., Germann, U., and Berne, A.: Measurement of Precipitation in the Alps Using Dual-Polarization C-Band Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges, Remote Sensing, 9, https://doi.org/10.3390/rs9111147, 2017. a
Gao, H., Jiang, Y., Cui, Y., Zhang, L., Jia, J., and Jiang, L.: Investigation on the Thermo-Optic Coefficient of Silica Fiber Within a Wide Temperature Range, Journal of Lightwave Technology, 36, 5881–5886, https://doi.org/10.1109/JLT.2018.2875941, 2018. a
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate, Earth-Science Reviews, 162, 227–252, https://doi.org/10.1016/j.earscirev.2016.08.011, 2016. a
Gassmann, F.: Über die Elastizität poröser Medien, Mitteilungen aus dem Institut für Geophysik an der Eidgenössischen Technischen Hochschule Zürich, Eidgenössische Technische Hochschule Zürich, Institut für Geophysik, https://books.google.ch/books?id=DseMZwEACAAJ, 1951. a
Gens, A.: Soil–environment interactions in geotechnical engineering, Géotechnique, 60, 3–74, https://doi.org/10.1680/geot.9.P.109, 2010. a
Gens, A., Sánchez, M., and Sheng, D.: On constitutive modelling of unsaturated soils, Acta Geotechnica, 1, 137–147, https://doi.org/10.1007/s11440-006-0013-9, 2006. a
Germann, U., Boscacci, M., Clementi, L., Gabella, M., Hering, A., Sartori, M., Sideris, I. V., and Calpini, B.: Weather Radar in Complex Orography, Remote Sensing, 14, https://doi.org/10.3390/rs14030503, 2022. a
Hall, K.: The role of thermal stress fatigue in the breakdown of rock in cold regions, Geomorphology, 31, 47–63, https://doi.org/10.1016/S0169-555X(99)00072-0, 1999. a
Halter, T., Lehmann, P., Wicki, A., Aaron, J., and Stähli, M.: Optimising landslide initiation modelling with high-resolution saturation prediction based on soil moisture monitoring data, Landslides, https://doi.org/10.1007/s10346-024-02304-x, 2024. a, b, c, d
Hanasoge, S. M.: The influence of noise sources on cross-correlation amplitudes, Geophysical Journal International, 192, 295–309, https://doi.org/10.1093/gji/ggs015, 2012. a
Hardin, B. O. and Drnevich, V. P.: Shear Modulus and Damping in Soils: Measurement and Parameter Effects (Terzaghi Leture), Journal of the Soil Mechanics and Foundations Division, 98, 603–624, https://doi.org/10.1061/JSFEAQ.0001756, 1972. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hicks, M. A. and Samy, K.: Influence of heterogeneity on undrained clay slope stability, Quarterly Journal of Engineering Geology and Hydrogeology, 35, 41–49, https://doi.org/10.1144/qjegh.35.1.41, 2002. a
Hill, R.: The Elastic Behaviour of a Crystalline Aggregate, Proceedings of the Physical Society. Section A, 65, 349, https://doi.org/10.1088/0370-1298/65/5/307, 1952. a
Hussien, M. N. and Karray, M.: Shear wave velocity as a geotechnical parameter: an overview, Canadian Geotechnical Journal, 53, 252–272, https://doi.org/10.1139/cgj-2014-0524, 2016. a
IPCC Core Writing Team, Lee, H., and Romero, J. (Eds.): Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 35–115, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023. a
Iverson, R. M.: Landslide triggering by rain infiltration, Water Resources Research, 36, 1897–1910, https://doi.org/10.1029/2000WR900090, 2000. a, b, c, d
Kang, J., Walter, F., Halter, T., Paitz, P., and Fichtner, A.: Soil slope monitoring with Distributed Acoustic Sensing under wetting and drying cycles, Zenodo, https://doi.org/10.5281/zenodo.15191409, 2025. a
Keurfon, L.: disba: Numba-accelerated computation of surface wave dispersion, Zenodo, https://doi.org/10.5281/zenodo.3987395, 2021. a
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C., and Jupyter Development Team: Jupyter Notebooks – a publishing format for reproducible computational workflows, in: IOS Press, 87–90, https://doi.org/10.3233/978-1-61499-649-1-87, 2016. a
Labhart, T. P.: Geologie der Schweiz, Bern, 8th edn., ISBN 978-3-7225-0116-1, 2009. a
Lan, H., Zhao, X., Macciotta, R., Peng, J., Li, L., Wu, Y., Zhu, Y., Liu, X., Zhang, N., Liu, S., Zhou, C., and Clague, J. J.: The cyclic expansion and contraction characteristics of a loess slope and implications for slope stability, Scientific Reports, 11, 2250, https://doi.org/10.1038/s41598-021-81821-4, 2021. a, b
Larose, E. and Hall, S.: Monitoring stress related velocity variation in concrete with a 2 × 10−5 relative resolution using diffuse ultrasound, The Journal of the Acoustical Society of America, 125, 1853–1856, https://doi.org/10.1121/1.3079771, 2009. a
Larose, E., Carrière, S., Voisin, C., Bottelin, P., Baillet, L., Guéguen, P., Walter, F., Jongmans, D., Guillier, B., Garambois, S., Gimbert, F., and Massey, C.: Environmental seismology: What can we learn on earth surface processes with ambient noise?, Journal of Applied Geophysics, 116, 62–74, https://doi.org/10.1016/j.jappgeo.2015.02.001, 2015. a
Le, T. M. H., Gallipoli, D., Sánchez, M., and Wheeler, S.: Stability and failure mass of unsaturated heterogeneous slopes, Canadian Geotechnical Journal, 52, 1747–1761, https://doi.org/10.1139/cgj-2014-0190, 2015. a
Leggett, S. E., Zhu, D., and Hill, A. D.: Thermal Effects on Far-Field Distributed Acoustic Strain-Rate Sensors, SPE Journal, 27, 1036–1048, https://doi.org/10.2118/205178-PA, 2022. a, b
Li, D. and Selig, E. T.: Cumulative Plastic Deformation for Fine-Grained Subgrade Soils, Journal of Geotechnical Engineering, 122, 1006–1013, https://doi.org/10.1061/(ASCE)0733-9410(1996)122:12(1006), 1996. a
Lindsey, N. J. and Martin, E. R.: Fiber-Optic Seismology, Annual Review of Earth and Planetary Sciences, 49, 309–336, https://doi.org/10.1146/annurev-earth-072420-065213, 2021. a
Mainsant, G., Larose, E., Brönnimann, C., Jongmans, D., Michoud, C., and Jaboyedoff, M.: Ambient seismic noise monitoring of a clay landslide: Toward failure prediction, Journal of Geophysical Research: Earth Surface, 117, https://doi.org/10.1029/2011JF002159, 2012. a, b
Martin, E. R. and Biondi, B. L.: Ambient noise interferometry across two-dimensional DAS arrays, SEG Technical Program Expanded Abstracts 2017, 2642–2646, https://doi.org/10.1190/segam2017-17677759.1, 2017. a
Mavko, G., Mukerji, T., and Dvorkin, J.: The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media, 2nd edn., Cambridge University Press, https://doi.org/10.1017/CBO9780511626753, 2009. a
Melinda, F., Rahardjo, H., Han, K. K., and Leong, E. C.: Shear Strength of Compacted Soil under Infiltration Condition, Journal of Geotechnical and Geoenvironmental Engineering, 130, 807–817, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(807), 2004. a
Mindlin, R. D.: Compliance of Elastic Bodies in Contact, Journal of Applied Mechanics, 16, 259–268, https://doi.org/10.1115/1.4009973, 1949. a
Mordret, A., Landès, M., Shapiro, N. M., Singh, S. C., Roux, P., and Barkved, O. I.: Near-surface study at the Valhall oil field from ambient noise surface wave tomography, Geophysical Journal International, 193, 1627–1643, https://doi.org/10.1093/gji/ggt061, 2013. a
Ng, C. and Zhan, L.: Comparative Study of Rainfall Infiltration into a Bare and a Grassed Unsaturated Expansive Soil Slope, Soils and Foundations, 47, 207–217, https://doi.org/10.3208/sandf.47.207, 2007. a
Ng, C. and Zhou, C.: Cyclic behaviour of an unsaturated silt at various suctions and temperatures, Géotechnique, 64, 709–720, https://doi.org/10.1680/geot.14.P.015, 2014. a
Or, D., Wraith, J. M., Robinson, D. A., and Jones, S. B.: Soil water content and water potential relationships [Chapter 4], CRC press, ISBN 9781439803059, 2011. a
Ouellet, S. M., Dettmer, J., Lato, M. J., Cole, S., Hutchinson, D. J., Karrenbach, M., Dashwood, B., Chambers, J. E., and Crickmore, R.: Previously hidden landslide processes revealed using distributed acoustic sensing with nanostrain-rate sensitivity, Nature Communications, 15, 6239, https://doi.org/10.1038/s41467-024-50604-6, 2024. a, b
Park, C. B., Miller, R. D., and Xia, J.: Multichannel analysis of surface waves, Geophysics, 64, 800–808, https://doi.org/10.1190/1.1444590, 1999. a
Parker, T., Shatalin, S., and Farhadiroushan, M.: Distributed Acoustic Sensing – a new tool for seismic applications, First Break, 32, https://doi.org/10.3997/1365-2397.2013034, 2014. a, b
Pasculli, A., Sciarra, N., Esposito, L., and Esposito, A. W.: Effects of wetting and drying cycles on mechanical properties of pyroclastic soils, CATENA, 156, 113–123, https://doi.org/10.1016/j.catena.2017.04.004, 2017. a
Pavlis, G. L. and Vernon, F. L.: Array processing of teleseismic body waves with the USArray, Computers & Geosciences, 36, 910–920, https://doi.org/10.1016/j.cageo.2009.10.008, 2010. a
Petley, D. N.: The evolution of slope failures: mechanisms of rupture propagation, Nat. Hazards Earth Syst. Sci., 4, 147–152, https://doi.org/10.5194/nhess-4-147-2004, 2004. a
Rahardjo, H., Kim, Y., and Satyanaga, A.: Role of unsaturated soil mechanics in geotechnical engineering, International Journal of Geo-Engineering, 10, 8, https://doi.org/10.1186/s40703-019-0104-8, 2019. a
Renalier, F., Jongmans, D., Campillo, M., and Bard, P.-Y.: Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation, Journal of Geophysical Research: Earth Surface, 115, https://doi.org/10.1029/2009JF001538, 2010. a
Rodríguez Tribaldos, V. and Ajo-Franklin, J. B.: Aquifer Monitoring Using Ambient Seismic Noise Recorded With Distributed Acoustic Sensing (DAS) Deployed on Dark Fiber, Journal of Geophysical Research: Solid Earth, 126, e2020JB021004, https://doi.org/10.1029/2020JB021004, 2021. a, b, c
Rotta Loria, A. F. and Laloui, L.: Thermally induced group effects among energy piles, Géotechnique, 67, 374–393, https://doi.org/10.1680/jgeot.16.P.039, 2017. a
Santamarina, J. C. and Cho, G. C: Soil behaviour: The role of particle shape, in: Advances in geotechnical engineering: The Skempton conference, Proceedings of a three day conference on advances in geotechnical engineering, Institution of Civil Engineers, Royal Geographical Society, London, UK, 29–31 March 2004, https://doi.org/10.1680/aigev1.32644.0035, 2004. a
Sens-Schönfelder, C. and Wegler, U.: Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia, Geophysical Research Letters, 33, https://doi.org/10.1029/2006GL027797, 2006. a
Shen, Z., Yang, Y., Fu, X., Adams, K. H., Biondi, E., and Zhan, Z.: Fiber-optic seismic sensing of vadose zone soil moisture dynamics, Nature Communications, 15, 6432, https://doi.org/10.1038/s41467-024-50690-6, 2024. a, b
Sidenko, E., Tertyshnikov, K., Lebedev, M., and Pevzner, R.: Experimental study of temperature change effect on distributed acoustic sensing continuous measurements, Geophysics, 87, D111–D122, https://doi.org/10.1190/geo2021-0524.1, 2022. a
Simeoni, L. and Mongiovì, L.: Inclinometer Monitoring of the Castelrotto Landslide in Italy, Journal of Geotechnical and Geoenvironmental Engineering, 133, 653–666, https://doi.org/10.1061/(ASCE)1090-0241(2007)133:6(653), 2007. a
Skipper, S. and Josef, P.: statsmodels: Econometric and statistical modeling with python, 9th Python in Science Conference, https://doi.org/10.25080/Majora-92bf1922-011, 2010. a
Snieder, R.: The Theory of Coda Wave Interferometry, Pure and Applied Geophysics, 163, 455–473, https://doi.org/10.1007/s00024-005-0026-6, 2006. a
Solazzi, S. G., Bodet, L., Holliger, K., and Jougnot, D.: Surface-Wave Dispersion in Partially Saturated Soils: The Role of Capillary Forces, Journal of Geophysical Research: Solid Earth, 126, https://doi.org/10.1029/2021JB022074, 2021. a
Stähli, M. and Wicki, A.: The Value of Soil Wetness Measurements for Regional Landslide Early Warning Systems, Understanding and Reducing Landslide Disaster Risk: Volume 3 Monitoring and Early Warning 5th, 203–208, https://doi.org/10.1007/978-3-030-60311-3_23, 2021. a
Stähli, M., Badoux, A., Ludwig, A., Steiner, K., Zappa, M., and Hegg, C.: One century of hydrological monitoring in two small catchments with different forest coverage, Environmental Monitoring and Assessment, 174, 91–106, https://doi.org/10.1007/s10661-010-1757-0, 2011. a
Stokoe, K. H. and Santamarina, J. C.: Seismic-Wave-Based Testing In Geotechnical Engineering, Paper presented at the ISRM International Symposium, Melbourne, Australia, November 2000, ISRM-IS-2000-038, 2000. a
Tang, C.-S., Wang, D.-Y., Shi, B., and Li, J.: Effect of wetting–drying cycles on profile mechanical behavior of soils with different initial conditions, CATENA, 139, 105–116, https://doi.org/10.1016/j.catena.2015.12.015, 2016. a, b
Tang, C.-S., Cheng, Q., Leng, T., Shi, B., Zeng, H., and Inyang, H. I.: Effects of wetting-drying cycles and desiccation cracks on mechanical behavior of an unsaturated soil, CATENA, 194, 104721, https://doi.org/10.1016/j.catena.2020.104721, 2020. a
Terzaghi, K.: Stress Conditions for Failure in Soils, John Wiley & Sons, Ltd, ISBN 9780470172766, https://doi.org/10.1002/9780470172766, 1943. a
Topp, G. C., Davis, J. L., and Annan, A. P.: Electromagnetic determination of soil water content: measurements in coaxial transmission lines, Water Resources Research, 16, 574–582, https://doi.org/10.1029/WR016i003p00574, 1980. a
van den Ende, M., Ferrari, A., Sladen, A., and Richard, C.: Deep Deconvolution for Traffic Analysis With Distributed Acoustic Sensing Data, IEEE Transactions on Intelligent Transportation Systems, 24, 2947–2962, https://doi.org/10.1109/TITS.2022.3223084, 2023. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wang, J., Zhen, J., Hu, W., Chen, S., Lizaga, I., Zeraatpisheh, M., and Yang, X.: Remote sensing of soil degradation: Progress and perspective, International Soil and Water Conservation Research, 11, 429–454, https://doi.org/10.1016/j.iswcr.2023.03.002, 2023. a
Wathelet, M., Jongmans, D., and Ohrnberger, M.: Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements, Near Surface Geophysics, 2, 211–221, https://doi.org/10.3997/1873-0604.2004018, 2004. a
Wicki, A. and Hauck, C.: Monitoring critically saturated conditions for shallow landslide occurrence using electrical resistivity tomography, Vadose Zone Journal, 21, e20204, https://doi.org/10.1002/vzj2.20204, 2022. a, b, c
Wicki, A., Lehmann, P., Hauck, C., and Stähli, M.: Impact of topography on in situ soil wetness measurements for regional landslide early warning – a case study from the Swiss Alpine Foreland, Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023, 2023. a, b, c, d, e, f, g, h, i, j
Wicki, A., Halter, T., and Stähli, M.: In-situ soil moisture measurements Napf-region, EnviDat [data set], https://doi.org/10.16904/envidat.395, 2024. a, b
Wu, H., Guo, Y., Xiong, L., Liu, W., Li, G., and Zhou, X.: Optical Fiber-Based Sensing, Measuring, and Implementation Methods for Slope Deformation Monitoring: A Review, IEEE Sensors Journal, 19, 2786–2800, https://doi.org/10.1109/JSEN.2019.2891734, 2019. a
Yilmaz, O.: Seismic Data Analysis, vol. 10 of Investigations in Geophysics, Society of Exploration Geophysicists, 2nd edn., ISBN 1560800941, https://doi.org/10.1190/1.9781560801580, 2001. a
Zhan, Z.: Distributed Acoustic Sensing Turns Fiber‐Optic Cables into Sensitive Seismic Antennas, Seismological Research Letters, 91, 1–15, https://doi.org/10.1785/0220190112, 2019. a
Zheng, Y., Zhu, Z.-W., Xiao, W., and Deng, Q.-X.: Review of fiber optic sensors in geotechnical health monitoring, Optical Fiber Technology, 54, 102127, https://doi.org/10.1016/j.yofte.2019.102127, 2020. a
Short summary
Soil strength is influenced by wetness conditions, affecting slope stability, agricultural productivity, etc. Monitoring soil moisture is essential for risk management. We used Distributed Acoustic Sensing to monitor the deformation of a grass-covered slope over two summer months. We observed both long-term drying and daily "breathing" cycles: nighttime swelling and daytime shrinkage. By integrating strain and soil moisture data, we provide new field-scale insights into soil strength evolution.
Soil strength is influenced by wetness conditions, affecting slope stability, agricultural...