Articles | Volume 13, issue 6
https://doi.org/10.5194/esurf-13-1205-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-1205-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial assessment of sediment production in a badland catchment using repeat LiDAR surveys, Draix, Alpes de Haute-Provence, France
Institut de physique du globe de Paris, Université Paris Cité, CNRS, 75005 Paris, France
Institut de physique du globe de Paris, Université Paris Cité, CNRS, 75005 Paris, France
Caroline Le Bouteiller
Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Sébastien Klotz
Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Gabrielle Chabaud
Institut de physique du globe de Paris, Université Paris Cité, CNRS, 75005 Paris, France
Stéphane Jacquemoud
Institut de physique du globe de Paris, Université Paris Cité, CNRS, 75005 Paris, France
Related authors
No articles found.
Tobias Roylands, Robert G. Hilton, Erin L. McClymont, Mark H. Garnett, Guillaume Soulet, Sébastien Klotz, Mathis Degler, Felipe Napoleoni, and Caroline Le Bouteiller
Earth Surf. Dynam., 12, 271–299, https://doi.org/10.5194/esurf-12-271-2024, https://doi.org/10.5194/esurf-12-271-2024, 2024
Short summary
Short summary
Chemical weathering of sedimentary rocks can release carbon dioxide and consume oxygen. We present a new field-based method to measure the exchange of these gases in real time, which allows us to directly compare the amount of reactants and products. By studying two sites with different rock types, we show that the chemical composition is an important factor in driving the weathering reactions. Locally, the carbon dioxide release changes alongside temperature and precipitation.
Sebastien Klotz, Caroline Le Bouteiller, Nicolle Mathys, Firmin Fontaine, Xavier Ravanat, Jean-Emmanuel Olivier, Frédéric Liébault, Hugo Jantzi, Patrick Coulmeau, Didier Richard, Jean-Pierre Cambon, and Maurice Meunier
Earth Syst. Sci. Data, 15, 4371–4388, https://doi.org/10.5194/essd-15-4371-2023, https://doi.org/10.5194/essd-15-4371-2023, 2023
Short summary
Short summary
Mountain badlands are places of intense erosion. They deliver large amounts of sediment to river systems, with consequences for hydropower sustainability, habitat quality and biodiversity, and flood hazard and river management. Draix-Bleone Observatory was created in 1983 to understand and quantify sediment delivery from such badland areas. Our paper describes how water and sediment fluxes have been monitored for almost 40 years in the small mountain catchments of this observatory.
Maxime Morel, Guillaume Piton, Damien Kuss, Guillaume Evin, and Caroline Le Bouteiller
Nat. Hazards Earth Syst. Sci., 23, 1769–1787, https://doi.org/10.5194/nhess-23-1769-2023, https://doi.org/10.5194/nhess-23-1769-2023, 2023
Short summary
Short summary
In mountain catchments, damage during floods is generally primarily driven by the supply of a massive amount of sediment. Predicting how much sediment can be delivered by frequent and infrequent events is thus important in hazard studies. This paper uses data gathered during the maintenance operation of about 100 debris retention basins to build simple equations aiming at predicting sediment supply from simple parameters describing the upstream catchment.
Amande Roque-Bernard, Antoine Lucas, Eric Gayer, Pascal Allemand, Céline Dessert, and Eric Lajeunesse
Earth Surf. Dynam., 11, 363–381, https://doi.org/10.5194/esurf-11-363-2023, https://doi.org/10.5194/esurf-11-363-2023, 2023
Short summary
Short summary
Sediment transport in rivers is an important matter in Earth surface dynamics. We offer a new framework of understanding of the suspended sediment transport through observatory chronicles and a simple model that is able to catch the behavior during a flood event as well as time series in a steep river catchment. We validate our approach in both tropical and alpine environments, which also offers additional estimates of the size of the suspended sediment.
Coline Ariagno, Caroline Le Bouteiller, Peter van der Beek, and Sébastien Klotz
Earth Surf. Dynam., 10, 81–96, https://doi.org/10.5194/esurf-10-81-2022, https://doi.org/10.5194/esurf-10-81-2022, 2022
Short summary
Short summary
The
critical zonenear the surface of the Earth is where geologic substrate, erosion, climate, and life meet and interact. This study focuses on mechanisms of physical weathering that produce loose sediment and make it available for transport. We show that the sediment export from a monitored catchment in the French Alps is modulated by frost-weathering processes and is therefore sensitive to complex modifications in a warming climate.
Cited articles
Alberti, S., Leshchinsky, B., Roering, J., Perkins, J., and Olsen, M. J.: Inversions of landslide strength as a proxy for subsurface weathering, Nature Communications, 13, 6049, https://doi.org/10.1038/s41467-022-33798-5, 2022. a
Antoine, P., Giraud, A., Meunier, M., and Van Asch, T.: Geological and geotechnical properties of the “Terres Noires” in southeastern France: Weathering, erosion, solid transport and instability, Engineering Geology, 40, 223–234, https://doi.org/10.1016/0013-7952(95)00053-4, 1995. a
Ariagno, C., Pasquet, S., Le Bouteiller, C., van der Beek, P., and Klotz, S.: Seasonal dynamics of marly badlands illustrated by field records of hillslope regolith properties, Draix–Bléone Critical Zone Observatory, South‐East France, Earth Surface Processes and Landforms, 48, 1526–1539, https://doi.org/10.1002/esp.5564, 2023. a, b, c, d
Badoux, A., Turowski, J. M., Mao, L., Mathys, N., and Rickenmann, D.: Rainfall intensity–duration thresholds for bedload transport initiation in small Alpine watersheds, Nat. Hazards Earth Syst. Sci., 12, 3091–3108, https://doi.org/10.5194/nhess-12-3091-2012, 2012. a
Ballais, J. L.: Apparition et évolution de roubines à Draix, in: Les Bassins Versants Expérimentaux de Draix, Laboratoire d'Étude de l'Erosion en montagne, Cemagref, Digne, 235–245, ISBN 2-85362-514-1, 1997. a
Bechet, J., Duc, J., Jaboyedoff, M., Loye, A., and Mathys, N.: Erosion processes in black marl soils at the millimetre scale: preliminary insights from an analogous model, Hydrol. Earth Syst. Sci., 19, 1849–1855, https://doi.org/10.5194/hess-19-1849-2015, 2015. a, b, c
Bechet, J., Duc, J., Loye, A., Jaboyedoff, M., Mathys, N., Malet, J.-P., Klotz, S., Le Bouteiller, C., Rudaz, B., and Travelletti, J.: Detection of seasonal cycles of erosion processes in a black marl gully from a time series of high-resolution digital elevation models (DEMs), Earth Surf. Dynam., 4, 781–798, https://doi.org/10.5194/esurf-4-781-2016, 2016. a, b, c, d, e
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrological Sciences Bulletin, 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. a, b
Boix-Fayos, C., Martínez-Mena, M., Arnau-Rosalén, E., Calvo-Cases, A., Castillo, V., and Albaladejo, J.: Measuring soil erosion by field plots: Understanding the sources of variation, Earth-Science Reviews, 78, 267–285, https://doi.org/10.1016/j.earscirev.2006.05.005, 2006. a
Borghuis, A. M., Chang, K., and Lee, H. Y.: Comparison between automated and manual mapping of typhoon‐triggered landslides from SPOT‐5 imagery, International Journal of Remote Sensing, 28, 1843–1856, https://doi.org/10.1080/01431160600935638, 2007. a
Brodu, N. and Lague, D.: 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology, ISPRS Journal of Photogrammetry and Remote Sensing, 68, 121–134, https://doi.org/10.1016/j.isprsjprs.2012.01.006, 2012. a
Bryan, R. and Yair, A.: Badland Geomorphology and Piping, Geo Books Norwich, England, ISBN 0860941140, 408 pp., 1982. a
Bull, J., Miller, H., Gravley, D., Costello, D., Hikuroa, D., and Dix, J.: Assessing debris flows using LIDAR differencing: 18 May 2005 Matata event, New Zealand, Geomorphology, 124, 75–84, https://doi.org/10.1016/j.geomorph.2010.08.011, 2010. a
Bunel, R., Copard, Y., Caroline, L. B., Massei, N., and Lecoq, N.: Impact of vegetation cover on hydro-sedimentary fluxes in the marly badlands of the Southern Alps (Draix-Bléone Critical Zone Observatory, SE France), Geomorphology, 109726, https://doi.org/10.1016/j.geomorph.2025.109726, 2025. a, b, c
Burylo, M., Hudek, C., and Rey, F.: Soil reinforcement by the roots of six dominant species on eroded mountainous manly slopes (Southern Alps, France), Catena, 84, 70–78, https://doi.org/10.1016/j.catena.2010.09.007, 2011. a, b
Burylo, M., Rey, F., Mathys, N., and Dutoit, T.: Plant root traits affecting the resistance of soils to concentrated flow erosion, Earth Surface Processes and Landforms, 37, 1463–1470, https://doi.org/10.1002/esp.3248, 2012. a
Carriere, A.: Impact de la végétation sur l'érosion de bassins versants marneux, PhD thesis, https://theses.hal.science/tel-02271551 (last access: 29 October 2025), 2019. a
Carriere, A., Le Bouteiller, C., Tucker, G. E., Klotz, S., and Naaim, M.: Impact of vegetation on erosion: Insights from the calibration and test of a landscape evolution model in alpine badland catchments, Earth Surface Processes and Landforms, 45, 1085–1099, https://doi.org/10.1002/esp.4741, 2020. a, b, c, d
Chen, R.-F., Chan, Y.-C., Angelier, J., Hu, J.-C., Huang, C., Chang, K.-J., and Shih, T.-Y.: Large earthquake-triggered landslides and mountain belt erosion: The Tsaoling case, Taiwan, Comptes Rendus. Géoscience, 337, 1164–1172, https://doi.org/10.1016/j.crte.2005.04.017, 2005. a
Clément, P.: Taille des épandages torrentiels de la bordure méridionale du Dévoluy: rôle des héritages géomorphologiques, Patrimoine et développement, Serres, France, 26–40, 1996. a
Copard, Y., Eyrolle, F., Radakovitch, O., Poirel, A., Raimbault, P., Gairoard, S., and Di‐Giovanni, C.: Badlands as a hot spot of petrogenic contribution to riverine particulate organic carbon to the Gulf of Lion (NW Mediterranean Sea), Earth Surface Processes and Landforms, 43, 2495–2509, https://doi.org/10.1002/esp.4409, 2018. a, b
De Ploey, J.: Bassins versants ravinés: analyses et prévisions selon le modèle Es, Bulletin de la Société géographique de Liège, 27, 69–76, 1991. a
Descroix, L. and Gautier, E.: Water erosion in the southern French alps: climatic and human mechanisms, CATENA, 50, 53–85, https://doi.org/10.1016/S0341-8162(02)00068-1, 2002. a
Descroix, L. and Mathys, N.: Processes, spatio-temporal factors and measurements of current erosion in the French Southern Alps: A review, Earth Surface Processes and Landforms, 28, 993–1011, https://doi.org/10.1002/esp.514, 2003. a, b, c
Descroix, L. and Olivry, J. C.: Spatial and temporal factors of erosion by water of black marls in the badlands of the French southern Alps, Hydrological Sciences Journal – Journal Des Sciences Hydrologiques, 47, 227–242, https://doi.org/10.1080/02626660209492926, 2002. a
De Vente, J. and Poesen, J.: Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models, Earth-Science Reviews, 71, 95–125, https://doi.org/10.1016/j.earscirev.2005.02.002, 2005. a, b, c
De Vente, J., Poesen, J., Arabkhedri, M., and Verstraeten, G.: The sediment delivery problem revisited, Progress in Physical Geography: Earth and Environment, 31, 155–178, https://doi.org/10.1177/0309133307076485, 2007. a
Dietrich, W. E., Wilson, C. J., Montgomery, D. R., and McKean, J.: Analysis of Erosion Thresholds, Channel Networks, and Landscape Morphology Using a Digital Terrain Model, The Journal of Geology, 101, 259–278, https://doi.org/10.1086/648220, 1993. a
D'Oleire-Oltmanns, S., Marzolff, I., Peter, K. D., and Ries, J. B.: Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco, Remote Sensing, 4, 3390–3416, https://doi.org/10.3390/rs4113390, 2012. a
Erktan, A., Cecillon, L., Roose, E., Frascaria-Lacoste, N., and Rey, F.: Morphological diversity of plant barriers does not increase sediment retention in eroded marly gullies under ecological restoration, Plant and Soil, 370, 653–669, https://doi.org/10.1007/s11104-013-1738-5, 2013. a
Fressard, M. and Maquaire, O.: Morpho-structure and triggering conditions of the Laval landslide developed in clay-shales, Draix catchment (South French Alps), http://www.ano-omiv.cnrs.fr/images/Publications/PDFs/Ubaye/ConferenceProceedings/2009-Fressard_morpho-structure.pdf (last access: 29 October 2025), 2009. a
Gaillardet, J., Braud, I., Hankard, F., Anquetin, S., Bour, O., Dorfliger, N., de Dreuzy, J., Galle, S., Galy, C., Gogo, S., Gourcy, L., Habets, F., Laggoun, F., Longuevergne, L., Le Borgne, T., Naaim-Bouvet, F., Nord, G., Simonneaux, V., Six, D., Tallec, T., Valentin, C., Abril, G., Allemand, P., Arènes, A., Arfib, B., Arnaud, L., Arnaud, N., Arnaud, P., Audry, S., Comte, V., Batiot, C., Battais, A., Bellot, H., Bernard, E., Bertrand, C., Bessière, H., Binet, S., Bodin, J., Bodin, X., Boithias, L., Bouchez, J., Boudevillain, B., Moussa, I., Branger, F., Braun, J., Brunet, P., Caceres, B., Calmels, D., Cappelaere, B., Celle-Jeanton, H., Chabaux, F., Chalikakis, K., Champollion, C., Copard, Y., Cotel, C., Davy, P., Deline, P., Delrieu, G., Demarty, J., Dessert, C., Dumont, M., Emblanch, C., Ezzahar, J., Estèves, M., Favier, V., Faucheux, M., Filizola, N., Flammarion, P., Floury, P., Fovet, O., Fournier, M., Francez, A., Gandois, L., Gascuel, C., Gayer, E., Genthon, C., Gérard, M., Gilbert, D., Gouttevin, I., Grippa, M., Gruau, G., Jardani, A., Jeanneau, L., Join, J., Jourde, H., Karbou, F., Labat, D., Lagadeuc, Y., Lajeunesse, E., Lastennet, R., Lavado, W., Lawin, E., Lebel, T., Le Bouteiller, C., Legout, C., Lejeune, Y., Le Meur, E., Le Moigne, N., Lions, J., Lucas, A., Malet, J., Marais-Sicre, C., Maréchal, J., Marlin, C., Martin, P., Martins, J., Martinez, J., Massei, N., Mauclerc, A., Mazzilli, N., Molénat, J., Moreira-Turcq, P., Mougin, E., Morin, S., Ngoupayou, J., Panthou, G., Peugeot, C., Picard, G., Pierret, M., Porel, G., Probst, A., Probst, J., Rabatel, A., Raclot, D., Ravanel, L., Rejiba, F., René, P., Ribolzi, O., Riotte, J., Rivière, A., Robain, H., Ruiz, L., Sanchez-Perez, J., Santini, W., Sauvage, S., Schoeneich, P., Seidel, J., Sekhar, M., Sengtaheuanghoung, O., Silvera, N., Steinmann, M., Soruco, A., Tallec, G., Thibert, E., Lao, D., Vincent, C., Viville, D., Wagnon, P., and Zitouna, R.: OZCAR: The French network of critical zone observatories, Vadose Zone Journal, 17, https://doi.org/10.2136/vzj2018.04.0067, 2018. a
Gailleton, B., Steer, P., Davy, P., Schwanghart, W., and Bernard, T.: GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for landscape evolution models, Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024, 2024. a, b, c
Gallart, F., Llorens, P., Latron, J., and Regüés, D.: Hydrological processes and their seasonal controls in a small Mediterranean mountain catchment in the Pyrenees, Hydrol. Earth Syst. Sci., 6, 527–537, https://doi.org/10.5194/hess-6-527-2002, 2002. a
Gallart, F., Marignani, M., Pérez-Gallego, N., Santi, E., and Maccherini, S.: Thirty years of studies on badlands, from physical to vegetational approaches. A succinct review, CATENA, 106, 4–11, https://doi.org/10.1016/j.catena.2012.02.008, 2013. a, b
Garel, E., Marc, V., Ruy, S., Cognard-Plancq, A. L., Klotz, S., Emblanch, C., and Simler, R.: Large scale rainfall simulation to investigate infiltration processes in a small landslide under dry initial conditions: the Draix hillslope experiment, Hydrological Processes, 26, 2171–2186, https://doi.org/10.1002/hyp.9273, 2012. a
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate, Earth-Science Reviews, 162, 227–252, https://doi.org/10.1016/j.earscirev.2016.08.011, 2016. a
Gaydon, C.: Myria3D: Deep Learning for the Semantic Segmentation of Aerial Lidar Point Clouds, GitHub, https://github.com/IGNF/myria3d (last access: 19 October 2025), 2022. a
Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S. R., Tiede, D., and Aryal, J.: Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection, Remote Sensing, 11, 196, https://doi.org/10.3390/rs11020196, 2019. a
Giorgi, F. and Lionello, P.: Climate change projections for the Mediterranean region, Global and Planetary Change, 63, 90–104, https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008. a
Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., and Valigi, D.: Landslide volumes and landslide mobilization rates in Umbria, central Italy, Earth and Planetary Science Letters, 279, 222–229, https://doi.org/10.1016/j.epsl.2009.01.005, 2009. a
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., and Chang, K.-T.: Landslide inventory maps: New tools for an old problem, Earth-Science Reviews, 112, 42–66, https://doi.org/10.1016/j.earscirev.2012.02.001, 2012. a, b
Harvey, A.: Badland, in: Encyclopedia of Geomorphology, edited by: Goudie, A. S., Routledge, 45–48, ISBN 0-415-27298-X, 2004. a
Hirschberg, J., Fatichi, S., Bennett, G. L., McArdell, B. W., Peleg, N., Lane, S. N., Schlunegger, F., and Molnar, P.: Climate Change Impacts on Sediment Yield and Debris‐Flow Activity in an Alpine Catchment, Journal of Geophysical Research: Earth Surface, 126, e2020JF005739, https://doi.org/10.1029/2020JF005739, 2021. a
Jantzi, H., Liebaulta, F., and Klotz, S.: Sediment residence time in alluvial storage of black marl badlands, Catena, 156, 82–91, https://doi.org/10.1016/j.catena.2017.03.026, 2017. a
Keyport, R. N., Oommen, T., Martha, T. R., Sajinkumar, K., and Gierke, J. S.: A comparative analysis of pixel- and object-based detection of landslides from very high-resolution images, International Journal of Applied Earth Observation and Geoinformation, 64, 1–11, https://doi.org/10.1016/j.jag.2017.08.015, 2018. a
Kinnell, P.: The influence of raindrop induced saltation on particle size distributions in sediment discharged by rain-impacted flow on planar surfaces, CATENA, 78, 2–11, https://doi.org/10.1016/j.catena.2009.01.008, 2009. a
Klotz, S., Le Bouteiller, C., Mathys, N., Fontaine, F., Ravanat, X., Olivier, J.-E., Liébault, F., Jantzi, H., Coulmeau, P., Richard, D., Cambon, J.-P., and Meunier, M.: A high-frequency, long-term data set of hydrology and sediment yield: the alpine badland catchments of Draix-Bléone Observatory, Earth Syst. Sci. Data, 15, 4371–4388, https://doi.org/10.5194/essd-15-4371-2023, 2023. a, b, c, d, e, f, g, h, i, j
Krenz, J. and Kuhn, N. J.: Assessing Badland Sediment Sources Using Unmanned Aerial Vehicles, in: Badlands Dynamics in a Context of Global Change, Elsevier, 255–276, ISBN 978-0-12-813054-4, https://doi.org/10.1016/B978-0-12-813054-4.00008-3, 2018. a, b, c
Larsen, I. J., Montgomery, D. R., and Korup, O.: Landslide erosion controlled by hillslope material, Nature Geoscience, 3, 247–251, https://doi.org/10.1038/ngeo776, 2010. a
Lavergne, M.: Méthodes sismiques, Éd. Technip, Paris, France, ISBN 2-7108-0514-6, 1986. a
Le Bouteiller, C.: 2015 LiDAR point-cloud for Draix-Bleone Observatory, Recherche Data Gouv, V1 [data set], https://doi.org/10.57745/DAEB1Z, 2025. a, b
Le Bouteiller, C., Klotz, S., Liébault, F., and Estèves, M.: Observatoire Draix-Bleone, Recherche Data Gouv, V1 [data set], https://doi.org/10.17180/obs.draix, 2024. a, b, c, d
Legout, C., Leguédois, S., Le Bissonnais, Y., and Malam Issa, O.: Splash distance and size distributions for various soils, Geoderma, 124, 279–292, https://doi.org/10.1016/j.geoderma.2004.05.006, 2005. a
Leguédois, S., Planchon, O., Legout, C., and Le Bissonnais, Y.: Splash Projection Distance for Aggregated Soils, Soil Science Society of America Journal, 69, 30, https://doi.org/10.2136/sssaj2005.0030, 2005. a
Li, G., West, A. J., Densmore, A. L., Jin, Z., Parker, R. N., and Hilton, R. G.: Seismic mountain building: Landslides associated with the 2008 Wenchuan earthquake in the context of a generalized model for earthquake volume balance: The Wenchuan Coseismic Landslide, Geochemistry, Geophysics, Geosystems, 15, 833–844, https://doi.org/10.1002/2013GC005067, 2014. a, b
Liébault, F., Laronne, J. B., Klotz, S., and Bel, C.: Seasonal bedload pulses in a small alpine catchment, Geomorphology, 398, 108055, https://doi.org/10.1016/j.geomorph.2021.108055, 2022. a
Llena, M., Smith, M. W., Wheaton, J. M., and Vericat, D.: Geomorphic process signatures reshaping sub‐humid Mediterranean badlands: 2. Application to 5‐year dataset, Earth Surface Processes and Landforms, 45, 1292–1310, https://doi.org/10.1002/esp.4822, 2020a. a
Llena, M., Vericat, D., Smith, M. W., and Wheaton, J. M.: Geomorphic process signatures reshaping sub‐humid Mediterranean badlands: 1. Methodological development based on high‐resolution topography, Earth Surface Processes and Landforms, 45, 1335–1346, https://doi.org/10.1002/esp.4821, 2020b. a
Lu, P., Qin, Y., Li, Z., Mondini, A. C., and Casagli, N.: Landslide mapping from multi-sensor data through improved change detection-based Markov random field, Remote Sensing of Environment, 231, 111235, https://doi.org/10.1016/j.rse.2019.111235, 2019. a
Lucas, A. and Gayer, E.: Decennial Geomorphic Transport From Archived Time Series Digital Elevation Models: A cookbook for tropical and alpine environments, IEEE Geoscience and Remote Sensing Magazine, 10, 120–134, https://doi.org/10.1109/MGRS.2021.3121370, 2022. a
Lukey, B., Sheffield, J., Bathurst, J., Hiley, R., and Mathys, N.: Test of the SHETRAN technology for modelling the impact of reforestation on badlands runoff and sediment yield at Draix, France, Journal of Hydrology, 235, 44–62, https://doi.org/10.1016/S0022-1694(00)00260-2, 2000. a
Malet, J.-P.: Les “glissements de type écoulement” dans les marnes noires des Alpes du Sud. Morphologie, fonctionnement et modélisation hydro-mécanique, PhD thesis, https://theses.hal.science/tel-00010298/ (last access: 29 October 2025), 2003. a
Maquaire, O., Ritzenthaler, A., Fabre, D., Ambroise, B., Thiery, Y., Truchet, E., Malet, J. P., and Monnet, J.: Characterisation of alteration profiles using dynamic penetrometry with variable energy. Application to weathered black marls, Draix (Alpes-de-Haute-Provence, France), Comptes Rendus Geoscience, 334, 835–841, https://doi.org/10.1016/s1631-0713(02)01788-1, 2002. a, b, c, d
Marc, O. and Hovius, N.: Amalgamation in landslide maps: effects and automatic detection, Nat. Hazards Earth Syst. Sci., 15, 723–733, https://doi.org/10.5194/nhess-15-723-2015, 2015. a
Marsico, A., De Santis, V., and Capolongo, D.: Erosion Rate of the Aliano Biancana Badlands Based on a 3D Multi-Temporal High-Resolution Survey and Implications for Wind-Driven Rain, Land, 10, 828, https://doi.org/10.3390/land10080828, 2021. a, b, c
Massey, C. I., Townsend, D., Jones, K., Lukovic, B., Rhoades, D., Morgenstern, R., Rosser, B., Ries, W., Howarth, J., Hamling, I., Petley, D., Clark, M., Wartman, J., Litchfield, N., and Olsen, M.: Volume Characteristics of Landslides Triggered by the MW 7.8 2016 Kaikōura Earthquake, New Zealand, Derived From Digital Surface Difference Modeling, Journal of Geophysical Research: Earth Surface, 125, e2019JF005163, https://doi.org/10.1029/2019JF005163, 2020. a
Mathys, N.: Analyse et modélisation à différentes échelles des mécanismes d'érosion et de transport de matériaux solides. Cas des petits bassins versants de montagne sur marne (Draix, Alpes-de-Haute-Provence), PhD thesis, https://hal.inrae.fr/tel-02588905 (last access: 29 October 2025), 2006. a, b, c
Mathys, N., Brochot, S., and Meunier, M.: L'érosion des Terres Noires dans les Alpes du sud: contribution à l'estimation des valeurs annuelles moyennes (bassins versants expérimentaux de Draix, Alpes de Haute Provence, France)/Erosion of the Terres Noires (Black Earth) in the southern French Alps: A contribution to an assessment of mean annual values (Draix experimental catchment areas), Revue de géographie alpine, 84, 17–27, https://doi.org/10.3406/rga.1996.3855, 1996. a, b
Mathys, N., Brochot, S., Meunier, M., and Richard, D.: Erosion quantification in the small marly experimental catchments of Draix (Alpes de Haute Provence, France). Calibration of the ETC rainfall-runoff-erosion model, Catena, 50, 527–548, https://doi.org/10.1016/s0341-8162(02)00122-4, 2003. a, b
Mathys, N., Klotz, S., Esteves, M., Descroix, L., and Lapetite, J. M.: Runoff and erosion in the Black Marls of the French Alps: Observations and measurements at the plot scale, Catena, 63, 261–281, https://doi.org/10.1016/j.catena.2005.06.010, 2005. a, b, c
Mondini, A., Guzzetti, F., Reichenbach, P., Rossi, M., Cardinali, M., and Ardizzone, F.: Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images, Remote Sensing of Environment, 115, 1743–1757, https://doi.org/10.1016/j.rse.2011.03.006, 2011. a
Montgomery, D. R. and Foufoula-Georgiou, E.: Channel network source representation using digital elevation models, Water Resources Research, 29, 3925–3934, https://doi.org/10.1029/93WR02463, 1993. a
Moore, I. D. and Wilson, J. P.: Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation, Journal of Soil and Water Conservation, https://doi.org/10.1080/00224561.1992.12456740, 1992. a
Moreno-de Las Heras, M. and Gallart, F.: The Origin of Badlands, in: Badlands Dynamics in a Context of Global Change, Elsevier, 27–59, ISBN 978-0-12-813054-4, https://doi.org/10.1016/B978-0-12-813054-4.00002-2, 2018. a
Nadal-Romero, E. and García-Ruiz, J. M.: Rethinking Spatial and Temporal Variability of Erosion in Badlands, in: Badlands Dynamics in a Context of Global Change, Elsevier, 217–253, ISBN 978-0-12-813054-4, https://doi.org/10.1016/B978-0-12-813054-4.00007-1, 2018. a, b
Nadal-Romero, E., Martínez-Murillo, J., Vanmaercke, M., and Poesen, J.: Corrigendum to “Scale-dependency of sediment yield from badland areas in Mediterranean environments” (Progress in Physical Geography 35 (3) (2011) 297–332), Progress in Physical Geography: Earth and Environment, 38, 381–386, https://doi.org/10.1177/0309133312447025, 2014. a
Nadal-Romero, E., Revuelto, J., Errea, P., and López-Moreno, J. I.: The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees), SOIL, 1, 561–573, https://doi.org/10.5194/soil-1-561-2015, 2015. a
Nadal‐Romero, E., Rodríguez‐Caballero, E., Chamizo, S., Juez, C., Cantón, Y., and García‐Ruiz, J. M.: Mediterranean badlands: Their driving processes and climate change futures, Earth Surface Processes and Landforms, 47, 17–31, https://doi.org/10.1002/esp.5088, 2022. a
Neugirg, F., Kaiser, A., Schmidt, J., Becht, M., and Haas, F.: Quantification, analysis and modelling of soil erosion on steep slopes using LiDAR and UAV photographs, Proc. IAHS, 367, 51–58, https://doi.org/10.5194/piahs-367-51-2015, 2015. a, b, c
Neugirg, F., Stark, M., Kaiser, A., Vlacilova, M., Della Seta, M., Vergari, F., Schmidt, J., Becht, M., and Haas, F.: Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys, Geomorphology, 269, 8–22, https://doi.org/10.1016/j.geomorph.2016.06.027, 2016. a
Okyay, U., Telling, J., Glennie, C. L., and Dietrich, W. E.: Airborne lidar change detection: An overview of Earth sciences applications, Earth-Science Reviews, 198, 102929, https://doi.org/10.1016/j.earscirev.2019.102929, 2019. a
Parker, R. N., Densmore, A. L., Rosser, N. J., De Michele, M., Li, Y., Huang, R., Whadcoat, S., and Petley, D. N.: Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth, Nature Geoscience, 4, 449–452, https://doi.org/10.1038/ngeo1154, 2011. a, b
Passalacqua, P., Belmont, P., Staley, D. M., Simley, J. D., Arrowsmith, J. R., Bode, C. A., Crosby, C., DeLong, S. B., Glenn, N. F., Kelly, S. A., Lague, D., Sangireddy, H., Schaffrath, K., Tarboton, D. G., Wasklewicz, T., and Wheaton, J. M.: Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review, Earth-Science Reviews, 148, 174–193, https://doi.org/10.1016/j.earscirev.2015.05.012, 2015. a, b
Prakash, N., Manconi, A., and Loew, S.: Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional Machine Learning Models, Remote Sensing, 12, 346, https://doi.org/10.3390/rs12030346, 2020. a
Puigdefábregas, J.: The role of vegetation patterns in structuring runoff and sediment fluxes in drylands, Earth Surface Processes and Landforms, 30, 133–147, https://doi.org/10.1002/esp.1181, 2005. a
Puigdefabregas, J., Sole, A., Gutierrez, L., Del Barrio, G., and Boer, M.: Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain, Earth-Science Reviews, 48, 39–70, https://doi.org/10.1016/S0012-8252(99)00046-X, 1999. a
Rey, F.: Influence of vegetation distribution on sediment yield in forested marly gullies, Catena, 50, 549–562, https://doi.org/10.1016/s0341-8162(02)00121-2, 2003. a, b
Riihimäki, H., Kemppinen, J., Kopecký, M., and Luoto, M.: Topographic Wetness Index as a Proxy for Soil Moisture: The Importance of Flow‐Routing Algorithm and Grid Resolution, Water Resources Research, 57, e2021WR029871, https://doi.org/10.1029/2021WR029871, 2021. a
Roque-Bernard, A., Lucas, A., Gayer, E., Allemand, P., Dessert, C., and Lajeunesse, E.: Phenomenological model of suspended sediment transport in a small catchment, Earth Surf. Dynam., 11, 363–381, https://doi.org/10.5194/esurf-11-363-2023, 2023. a, b
Rovéra, G. and Robert, Y.: Conditions climatiques hivernales et processus d'érosion périglaciaires dans les bad-lands marneux de Draix (800 m, Alpes du Sud, France), Géographie physique et Quaternaire, 59, 31–48, https://doi.org/10.7202/013735ar, 2006. a, b, c
Saez, J. L., Corona, C., Stoffel, M., Rovera, G., Astrade, L., and Berger, F.: Mapping of erosion rates in marly badlands based on a coupling of anatomical changes in exposed roots with slope maps derived from LiDAR data, Earth Surface Processes and Landforms, 36, 1162–1171, https://doi.org/10.1002/esp.2141, 2011. a, b
Serratrice, J.-F.: Divers aspects du comportement mécanique des marnes en laboratoire, Revue Française de Géotechnique, p. 3, https://doi.org/10.1051/geotech/2017007, 2017. a
Stock, J. D. and Dietrich, W. E.: Erosion of steepland valleys by debris flows, Geological Society of America Bulletin, 118, 1125–1148, https://doi.org/10.1130/b25902.1, 2006. a
Stöcker, C., Eltner, A., and Karrasch, P.: Measuring gullies by synergetic application of UAV and close range photogrammetry – A case study from Andalusia, Spain, CATENA, 132, 1–11, https://doi.org/10.1016/j.catena.2015.04.004, 2015. a
Stumpf, A. and Kerle, N.: Object-oriented mapping of landslides using Random Forests, Remote Sensing of Environment, 115, 2564–2577, https://doi.org/10.1016/j.rse.2011.05.013, 2011. a
Stumpf, A., Malet, J.-P., Allemand, P., Pierrot-Deseilligny, M., and Skupinski, G.: Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion, Geomorphology, 231, 130–145, https://doi.org/10.1016/j.geomorph.2014.10.039, 2015. a, b
Taccone, F., Antoine, G., Delestre, O., and Goutal, N.: A gravity-driven runoff and erosion model for sediment transfers at the catchment scale, in: E3S Web of Conferences, vol. 40, https://doi.org/10.1051/e3sconf/20184004019, 2018. a
Tanyaş, H., Van Westen, C. J., Allstadt, K. E., and Jibson, R. W.: Factors controlling landslide frequency–area distributions, Earth Surface Processes and Landforms, 44, 900–917, https://doi.org/10.1002/esp.4543, 2019. a
Travelletti, J., Sailhac, P., Malet, J. P., Grandjean, G., and Ponton, J.: Hydrological response of weathered clay-shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography, Hydrological Processes, 26, 2106–2119, https://doi.org/10.1002/hyp.7983, 2012. a
Turkington, T., Remaître, A., Ettema, J., Hussin, H., and Van Westen, C.: Assessing debris flow activity in a changing climate, Climatic Change, 137, 293–305, https://doi.org/10.1007/s10584-016-1657-6, 2016. a
Vallauri, D.: Aperçu sur l'évolution écologique des forêts dans les préalpes du sud depuis la révolution, Forêt méditerranéenne, p. 13, https://www.foret-mediterraneenne.org/fr/catalogue/id-522-apercu-sur-l-evolution-ecologique-des-forets-dans-les-prealpes-du-sud-depuis-la-revolution (last access: 29 October 2025), 1997. a
Vanmaercke, M., Poesen, J., Verstraeten, G., De Vente, J., and Ocakoglu, F.: Sediment yield in Europe: Spatial patterns and scale dependency, Geomorphology, 130, 142–161, https://doi.org/10.1016/j.geomorph.2011.03.010, 2011. a
Vergari, F., Troiani, F., Faulkner, H., Del Monte, M., Della Seta, M., Ciccacci, S., and Fredi, P.: The use of the slope–area function to analyse process domains in complex badland landscapes, Earth Surface Processes and Landforms, 44, 273–286, https://doi.org/10.1002/esp.4496, 2019. a
Vericat, D., Smith, M., and Brasington, J.: Patterns of topographic change in sub-humid badlands determined by high resolution multi-temporal topographic surveys, CATENA, 120, 164–176, https://doi.org/10.1016/j.catena.2014.04.012, 2014. a
Wischmeier, W. H. and Smith, D. D.: Rainfall energy and its relationship to soil loss, Eos, Transactions American Geophysical Union, 39, 285–291, https://doi.org/10.1029/TR039i002p00285, 1958. a
Yair, A., Bryan, R. B., Lavee, H., Schwanghart, W., and Kuhn, N. J.: The resilience of a badland area to climate change in an arid environment, CATENA, 106, 12–21, https://doi.org/10.1016/j.catena.2012.04.006, 2013. a, b
Yamakoshi, T., Mathys, N., and Klotz, S.: Time-lapse video observation of erosion processes on the Black Marls badlands in the Southern Alps, France, Earth Surface Processes and Landforms, 34, 314–318, https://doi.org/10.1002/esp.1701, 2009. a
Yunus, A. P., Xinyu, C., Catani, F., Subramaniam, S. S., Fan, X., Jie, D., Sajinkumar, K. S., Gupta, A., and Avtar, R.: Earthquake-induced soil landslides: volume estimates and uncertainties with the existing scaling exponents, Scientific Reports, 13, 8151, https://doi.org/10.1038/s41598-023-35088-6, 2023. a
Short summary
We combine aerial and drone Light Detection and Ranging surveys with sediment export and density measurements to assess catchment-scale mass balance in a badland environment. Landslides and crest failures are found to contribute 15 % of total mass export while affecting only 1 % of bare surfaces. Flood-condition drainage reconstruction shows low-drainage areas export 3.5 times more sediment than other slopes.
We combine aerial and drone Light Detection and Ranging surveys with sediment export and density...