Articles | Volume 13, issue 3
https://doi.org/10.5194/esurf-13-417-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-417-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Short communication: Multiscale topographic complexity analysis with pyTopoComplexity
Larry Syu-Heng Lai
CORRESPONDING AUTHOR
Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
Bureau of Economic Geology, The University of Texas at Austin, Austin, Texas, USA
Adam M. Booth
Department of Geology, Portland State University, Portland, Oregon, USA
Alison R. Duvall
Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
Erich Herzig
Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
Bureau of Economic Geology, The University of Texas at Austin, Austin, Texas, USA
Related authors
No articles found.
Paul Monroe Morgan, Alex Grant, Will Struble, Sean LaHusen, and Alison Duvall
EGUsphere, https://doi.org/10.5194/egusphere-2025-580, https://doi.org/10.5194/egusphere-2025-580, 2025
Short summary
Short summary
When landslides dam rivers, the impacts can include catastrophic outburst flooding. This work defines a function that combines river valley widths and landslide volumes to find the likelihood that a river will be dammed by a potential landslide or ‘damability’. We apply the method to the Oregon Coast Range and find widespread high damability especially where rivers flow through steep mountains with strong rocks. Our new workflow is flexible and can be applied more broadly to other regions.
Cited articles
Badgley, C., Smiley, T. M., Terry, R., Davis, E. B., DeSantis, L. R. G., Fox, D. L., Hopkins, S. S. B., Jezkova, T., Matocq, M. D., Matzke, N., McGuire, J. L., Mulch, A., Riddle, B. R., Roth, V. L., Samuels, J. X., Strömberg, C. A. E., and Yanites, B. J.: Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives, Trends Ecol. Evol., 32, 211–226, https://doi.org/10.1016/j.tree.2016.12.010, 2017.
Barnhart, K. R., Glade, R. C., Shobe, C. M., and Tucker, G. E.: Terrainbento 1.0: a Python package for multi-model analysis in long-term drainage basin evolution, Geosci. Model Dev., 12, 1267–1297, https://doi.org/10.5194/gmd-12-1267-2019, 2019.
Barnhart, K. R., Hutton, E. W. H., Tucker, G. E., Gasparini, N. M., Istanbulluoglu, E., Hobley, D. E. J., Lyons, N. J., Mouchene, M., Nudurupati, S. S., Adams, J. M., and Bandaragoda, C.: Short communication: Landlab v2.0: a software package for Earth surface dynamics, Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, 2020.
Benham, D. D.: Rugosity_calculator, GitHub Repository [code], https://github.com/drk944/Rugosity_Calculator (last access: 16 October 2024), 2022.
Berti, M., Corsini, A., and Daehne, A.: Comparative analysis of surface roughness algorithms for the identification of active landslides, Geomorphology, 182, 1–18, https://doi.org/10.1016/j.geomorph.2012.10.022, 2013.
Booth, A. M.: Automated Landslide Mapping toolkit (ALMtools): Matlab functions and example data for mapping landslides based on surface roughness, Portland State University [code], https://web.pdx.edu/~boothad/tools.html (last access: 16 October 2024), 2009.
Booth, A. M., Roering, J. J., and Perron, J. T.: Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon, Geomorphology, 109, 132–147, https://doi.org/10.1016/j.geomorph.2009.02.027, 2009.
Booth, A. M., LaHusen, S. R., Duvall, A. R., and Montgomery, D. R.: Holocene history of deep-seated landsliding in the North Fork Stillaguamish River valley from surface roughness analysis, radiocarbon dating, and numerical landscape evolution modeling, J. Geophys. Res.-Earth, 122, 456–472, https://doi.org/10.1002/2016JF003934, 2017.
Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution, Geomorphology, 180–181, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013.
Brubaker, L. B.: Climate change and the origin of old-growth Douglas-fir forests in the Puget Sound lowland, in: Wildlife and Vegetation of Unmanaged Douglas-Fir Forests, edited by: Aubry, K., General Technical Report PNW-GM-285, United States Department of Agriculture. Forest Service Pacific Northwest Research Station, 17–24, https://doi.org/10.2737/PNW-GTR-285, 1991.
Campforts, B., Shobe, C. M., Overeem, I., and Tucker, G. E.: The Art of Landslides: How Stochastic Mass Wasting Shapes Topography and Influences Landscape Dynamics, J. Geophys. Res.-Earth, 127, e2022JF006745, https://doi.org/10.1029/2022JF006745, 2022.
Collins, B. D. and Reid, M. E.: Enhanced landslide mobility by basal liquefaction: The 2014 State Route 530 (Oso), Washington, landslide, GSA Bulletin, 132, 451–476, https://doi.org/10.1130/b35146.1, 2019.
Culling, W. E. H.: Soil creep and the development of hillside slopes, J. Geol., 71, 127–161, https://doi.org/10.1086/626891, 1963.
Deumlich, D., Schmidt, R., and Sommer, M.: A multiscale soil–landform relationship in the glacial-drift area based on digital terrain analysis and soil attributes, J. Plant Nutr. Soil Sc., 173, 843–851, https://doi.org/10.1002/jpln.200900094, 2010.
Dietrich, W. E. and Perron, J. T.: The search for a topographic signature of life, Nature, 439, 411–418, https://doi.org/10.1038/nature04452, 2006.
Doane, T. H., Gearon, J. H., Martin, H. K., Yanites, B. J., and Edmonds, D. A.: Topographic Roughness as an Emergent Property of Geomorphic Processes and Events, AGU Advances, 5, e2024AV001264, https://doi.org/10.1029/2024AV001264, 2024.
Du Preez, C.: A new arc–chord ratio (ACR) rugosity index for quantifying three-dimensional landscape structural complexity, Landscape Ecol., 30, 181–192, https://doi.org/10.1007/s10980-014-0118-8, 2015.
Dubuc, B., Zucker, S. W., Tricot, C., Quiniou, J. F., Wehbi, D., and Berry, M. V.: Evaluating the fractal dimension of surfaces, P. Roy. Soc. Lond. A Mat., 425, 113–127, https://doi.org/10.1098/rspa.1989.0101, 1989.
Fairfield, J. and Leymarie, P.: Drainage networks from grid digital elevation models, Water Resour. Res., 27, 709–717, https://doi.org/10.1029/90WR02658, 1991.
Florinsky, I. V.: An illustrated introduction to general geomorphometry, Progress in Physical Geography: Earth and Environment, 41, 723–752, https://doi.org/10.1177/0309133317733667, 2017.
Frost, N. J., Burrows, M. T., Johnson, M. P., Hanley, M. E., and Hawkins, S. J.: Measuring surface complexity in ecological studies, Limnol. Oceanogr.-Meth., 3, 203–210, https://doi.org/10.4319/lom.2005.3.203, 2005.
Fu, Z., Li, D., Hararuk, O., Schwalm, C., Luo, Y., Yan, L., and Niu, S.: Recovery time and state change of terrestrial carbon cycle after disturbance, Environ. Res. Lett., 12, 104004, https://doi.org/10.1088/1748-9326/aa8a5c, 2017.
Ganti, V., Passalacqua, P., and Foufoula-Georgiou, E.: A sub-grid scale closure for nonlinear hillslope sediment transport models, J. Geophys. Res.-Earth, 117, F02012, https://doi.org/10.1029/2011JF002181, 2012.
Gasparini, N. M. and Brandon, M. T.: A generalized power law approximation for fluvial incision of bedrock channels, J. Geophys. Res.-Earth, 116, F02020, https://doi.org/10.1029/2009JF001655, 2011.
Glenn, N. F., Streutker, D. R., Chadwick, D. J., Thackray, G. D., and Dorsch, S. J.: Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity, Geomorphology, 73, 131–148, https://doi.org/10.1016/j.geomorph.2005.07.006, 2006.
GRASS Development Team: Geographic Resources Analysis Support System (GRASS GIS) Software (8.2), Open Source Geospatial Foundation [code], https://doi.org/10.5281/zenodo.5176030, 2024.
Herzig, E., Duvall, A., Booth, A., Stone, I., Wirth, E., LaHusen, S., Wartman, J., and Grant, A.: Evidence of Seattle Fault Earthquakes from Patterns in Deep-Seated Landslides, B. Seismol. Soc. Am., 114, 1084–1102, https://doi.org/10.1785/0120230079, 2024.
Hetz, G., Mushkin, A., Blumberg, D. G., Baer, G., and Ginat, H.: Estimating the age of desert alluvial surfaces with spaceborne radar data, Remote Sens. Environ., 184, 288–301, https://doi.org/10.1016/j.rse.2016.07.006, 2016.
Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics, Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, 2017.
Howard, A. D.: A detachment-limited model of drainage basin evolution, Water Resour. Res., 30, 2261–2285, https://doi.org/10.1029/94WR00757, 1994.
Huang, J. and Turcotte, D. L.: Fractal image analysis: application to the topography of Oregon and synthetic images, J. Opt. Soc. Am. A, 7, 1124–1130, https://doi.org/10.1364/JOSAA.7.001124, 1990.
Hunter, B. D., Roering, J. J., Silva, L. C. R., and Moreland, K. C.: Geomorphic controls on the abundance and persistence of soil organic carbon pools in erosional landscapes, Nat. Geosci., 17, 151–157, https://doi.org/10.1038/s41561-023-01365-2, 2024.
Hurst, M. D., Mudd, S. M., Walcott, R., Attal, M., and Yoo, K.: Using hilltop curvature to derive the spatial distribution of erosion rates, J. Geophys. Res.-Earth, 117, F02017, https://doi.org/10.1029/2011jf002057, 2012.
Iverson, R. M., George, D. L., Allstadt, K., Reid, M. E., Collins, B. D., Vallance, J. W., Schilling, S. P., Godt, J. W., Cannon, C. M., Magirl, C. S., Baum, R. L., Coe, J. A., Schulz, W. H., and Bower, J. B.: Landslide mobility and hazards: implications of the 2014 Oso disaster, Earth Planet. Sc. Lett., 412, 197–208, https://doi.org/10.1016/j.epsl.2014.12.020, 2015.
Jenness, J. S.: Calculating landscape surface area from digital elevation models, Wildlife Soc. B., 32, 829–839, https://doi.org/10.2193/0091-7648(2004)032[0829:CLSAFD]2.0.CO;2, 2004.
Johnstone, S. A., Hudson, A. M., Nicovich, S., Ruleman, C. A., Sare, R. M., and Thompson, R. A.: Establishing chronologies for alluvial-fan sequences with analysis of high-resolution topographic data: San Luis Valley, Colorado, USA, Geosphere, 14, 2487–2504, https://doi.org/10.1130/ges01680.1, 2018.
Kennedy, R. E., Yang, Z., Cohen, W. B., Pfaff, E., Braaten, J., and Nelson, P.: Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan, Remote Sens. Environ., 122, 117–133, https://doi.org/10.1016/j.rse.2011.09.024, 2012.
Kirby, E. and Whipple, K. X.: Expression of active tectonics in erosional landscapes, J. Struct. Geol., 44, 54–75, https://doi.org/10.1016/j.jsg.2012.07.009, 2012.
LaHusen, S. R., Duvall, A. R., Booth, A. M., and Montgomery, D. R.: Surface roughness dating of long-runout landslides near Oso, Washington (USA), reveals persistent postglacial hillslope instability, Geology, 44, 111–114, https://doi.org/10.1130/G37267.1, 2016.
LaHusen, S. R., Duvall, A. R., Booth, A. M., Grant, A., Mishkin, B. A., Montgomery, D. R., Struble, W., Roering, J. J., and Wartman, J.: Rainfall triggers more deep-seated landslides than Cascadia earthquakes in the Oregon Coast Range, USA, Science Advances, 6, eaba6790, https://doi.org/10.1126/sciadv.aba6790, 2020.
Lai, L. S.-H.: pyTopoComplexity (v1.1.1), Zenodo [code], https://doi.org/10.5281/zenodo.11239338, 2025.
Lashermes, B., Foufoula-Georgiou, E., and Dietrich, W. E.: Channel network extraction from high resolution topography using wavelets, Geophys. Res. Lett., 34, L23S04, https://doi.org/10.1029/2007GL031140, 2007.
Leopold, E. B., Nickmann, R., Hedges, J. I., and Ertel, J. R.: Pollen and Lignin Records of Late Quaternary Vegetation, Lake Washington, Science, 218, 1305–1307, https://doi.org/10.1126/science.218.4579.1305, 1982.
Lindsay, J. B.: Whitebox GAT: A case study in geomorphometric analysis, Comput. Geosci., 95, 75–84, https://doi.org/10.1016/j.cageo.2016.07.003, 2016.
Lindsay, J. B., Newman, D. R., and Francioni, A.: Scale-Optimized Surface Roughness for Topographic Analysis, Geosciences, 9, 322, https://doi.org/10.3390/geosciences9070322, 2019.
Liu, H., Bu, R., Liu, J., Leng, W., Hu, Y., Yang, L., and Liu, H.: Predicting the wetland distributions under climate warming in the Great Xing'an Mountains, northeastern China, Ecol. Res., 26, 605–613, https://doi.org/10.1007/s11284-011-0819-2, 2011.
Lundblad, E. R., Wright, D. J., Miller, J., Larkin, E. M., Rinehart, R., Naar, D. F., Donahue, B. T., Anderson, S. M., and Battista, T.: A Benthic Terrain Classification Scheme for American Samoa, Mar. Geod., 29, 89–111, https://doi.org/10.1080/01490410600738021, 2006.
Malamud, B. D. and Turcotte, D. L.: Wavelet analyses of Mars polar topography, J. Geophys. Res.-Planet., 106, 17497–17504, https://doi.org/10.1029/2000JE001333, 2001.
Mandelbrot, B. B. and Wheeler, J. A.: The Fractal Geometry of Nature, Am. J. Phys., 51, 286–287, https://doi.org/10.1119/1.13295, 1983.
Mark, D. M. and Aronson, P. B.: Scale-dependent fractal dimensions of topographic surfaces: An empirical investigation, with applications in geomorphology and computer mapping, J. Int. Ass. Math. Geol., 16, 671–683, https://doi.org/10.1007/BF01033029, 1984.
Miller, D. C. and Sias, J.: Environmental factors affecting the Hazel Landslide – Level 2 Watershed Analysis, M2 Environmental Services, Hazel, Washington, https://www.netmaptools.org/Pages/Hazel/Hazel.pdf (last access: 10 September 2024), 1998.
Newman, D. R., Lindsay, J. B., and Cockburn, J. M. H.: Evaluating metrics of local topographic position for multiscale geomorphometric analysis, Geomorphology, 312, 40–50, https://doi.org/10.1016/j.geomorph.2018.04.003, 2018.
Pardo-Igúzquiza, E. and Dowd, P. A.: Fractal Analysis of Karst Landscapes, Math. Geosci., 52, 543–563, https://doi.org/10.1007/s11004-019-09803-x, 2020.
Pardo-Igúzquiza, E. and Dowd, P. A.: Fractal analysis of the martian landscape: A study of kilometre-scale topographic roughness, Icarus, 372, 114727, https://doi.org/10.1016/j.icarus.2021.114727, 2022a.
Pardo-Igúzquiza, E. and Dowd, P. A.: The roughness of martian topography: A metre-scale fractal analysis of six selected areas, Icarus, 384, 115109, https://doi.org/10.1016/j.icarus.2022.115109, 2022b.
Perron, J. T., Dietrich, W. E., and Kirchner, J. W.: Controls on the spacing of first-order valleys, J. Geophys. Res.-Earth, 113, F04016, https://doi.org/10.1029/2007JF000977, 2008a.
Perron, J. T., Kirchner, J. W., and Dietrich, W. E.: Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes, J. Geophys. Res.-Earth, 113, F04003, https://doi.org/10.1029/2007JF000866, 2008b.
Perron, J. T., Kirchner, J. W., and Dietrich, W. E.: Formation of evenly spaced ridges and valleys, Nature, 460, 502–505, https://doi.org/10.1038/nature08174, 2009.
QGIS Development Team: QGIS Geographic Information System (3.38), Open-Source Geospatial Foundation [code], https://www.qgis.org (last access: 6 February 2024), 2024.
Richardson, P. W., Perron, J. T., and Schurr, N. D.: Influences of climate and life on hillslope sediment transport, Geology, 47, 423–426, https://doi.org/10.1130/g45305.1, 2019.
Ricker, N.: Further developments in the wavelet theory of seismogram structure, B. Seismol. Soc. Am., 33, 197–228, https://doi.org/10.1785/bssa0330030197, 1943.
Riley, S. J., DeGloria, S. D., and Elliot, R.: A Terrain Ruggedness Index that quantifies topographic heterogeneity, Intermountain Journal of Sciences, 5, 23–27, 1999.
Robbins, S. J.: The Fractal Nature of Planetary Landforms and Implications to Geologic Mapping, Earth and Space Science, 5, 211–220, https://doi.org/10.1002/2018EA000372, 2018.
Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology, Water Resour. Res., 35, 853–870, https://doi.org/10.1029/1998wr900090, 1999.
Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Hillslope evolution by nonlinear, slope-dependent transport: Steady state morphology and equilibrium adjustment timescales, J. Geophys. Res.-Sol. Ea., 106, 16499–16513, https://doi.org/10.1029/2001JB000323, 2001.
Roering, J. J., Marshall, J., Booth, A. M., Mort, M., and Jin, Q.: Evidence for biotic controls on topography and soil production, Earth Planet. Sc. Lett., 298, 183–190, https://doi.org/10.1016/j.epsl.2010.07.040, 2010.
Russell, W. and Michels, K. H.: Stand Development on a 127-year Chronosequence of Naturally Regenerating Sequoia sempervirens (Taxodiaceae) Forests, Madroño, 57, 229–241, 2011.
Seidl, R., Rammer, W., and Spies, T. A.: Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning, Ecol. Appl., 24, 2063–2077, https://doi.org/10.1890/14-0255.1, 2014.
Shary, P. A.: Land surface in gravity points classification by a complete system of curvatures, Math. Geol., 27, 373–390, https://doi.org/10.1007/BF02084608, 1995.
Shobe, C. M., Tucker, G. E., and Barnhart, K. R.: The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution, Geosci. Model Dev., 10, 4577–4604, https://doi.org/10.5194/gmd-10-4577-2017, 2017.
Stock, J. D. and Montgomery, D. R.: Geologic constraints on bedrock river incision using the stream power law, J. Geophys. Res.-Sol. Ea., 104, 4983–4993, https://doi.org/10.1029/98JB02139, 1999.
Struble, W. T., Roering, J. J., Dorsey, R. J., and Bendick, R.: Characteristic Scales of Drainage Reorganization in Cascadia, Geophys. Res. Lett., 48, e2020GL091413, https://doi.org/10.1029/2020GL091413, 2021.
Struble, W. T., Clubb, F. J., and Roering, J. J.: Regional-scale, high-resolution measurements of hilltop curvature reveal tectonic, climatic, and lithologic controls on hillslope morphology, Earth Planet. Sc. Lett., 647, 119044, https://doi.org/10.1016/j.epsl.2024.119044, 2024.
Taud, H. and Parrot, J.-F.: Measurement of DEM roughness using the local fractal dimension, Geomorphologie, 11, 327–338, 2005.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Tucker, G. E. and Whipple, K. X.: Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison, J. Geophys. Res.-Sol. Ea., 107, ETG 1-1–ETG 1-16, https://doi.org/10.1029/2001JB000162, 2002.
Underwood, A. C.: Most Recent Rupture on the Boulder Creek Fault Triggered Bedrock Landsliding in the Nooksack Watershed, Whatcom County, Washington, Master's thesis, Department of Geology, Portland State University, 59 pp., https://doi.org/10.15760/etd.8130, 2022.
Walbridge, S., Slocum, N., Pobuda, M., and Wright, D. J.: Unified Geomorphological Analysis Workflows with Benthic Terrain Modeler, Geosciences, 8, 94, https://doi.org/10.3390/geosciences8030094, 2018.
Wartman, J., Montgomery, D. R., Anderson, S. A., Keaton, J. R., Benoît, J., dela Chapelle, J., and Gilbert, R.: The 22 March 2014 Oso landslide, Washington, USA, Geomorphology, 253, 275–288, https://doi.org/10.1016/j.geomorph.2015.10.022, 2016.
Washington Geological Survey: “Stillaguamish 2014” project [lidar data], originally contracted by Washington State Department of Transportation (WSDOT), Washington Lidar Portal [data set], http://lidarportal.dnr.wa.gov (last access: 4 April 2024), 2023.
Weiss, A.: Topographic position and landforms analysis, Poster presentation, ESRI user conference, 9–13 July 2001, San Diego, CA, USA, vol. 200, Jenness Enterprises, https://www.jennessent.com/arcview/TPI_Weiss_poster.htm (last access: 16 October 2024), 2001.
Wen, R. and Sinding-Larsen, R.: Uncertainty in fractal dimension estimated from power spectra and variograms, Math. Geol., 29, 727–753, https://doi.org/10.1007/BF02768900, 1997.
Whipple, K. X.: Bedrock Rivers and the Geomorphology of Active Orogens, Annu. Rev. Earth Pl. Sc., 32, 151–185, https://doi.org/10.1146/annurev.earth.32.101802.120356, 2004.
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, J. Geophys. Res.-Sol. Ea., 104, 17661–17674, https://doi.org/10.1029/1999JB900120, 1999.
White, J. C., Hermosilla, T., Wulder, M. A., and Coops, N. C.: Mapping, validating, and interpreting spatio-temporal trends in post-disturbance forest recovery, Remote Sens. Environ., 271, 112904, https://doi.org/10.1016/j.rse.2022.112904, 2022.
Wilson, M. F. J., O'Connell, B., Brown, C., Guinan, J. C., and Grehan, A. J.: Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope, Mar. Geod., 30, 3–35, https://doi.org/10.1080/01490410701295962, 2007.
Woodard, J. B., LaHusen, S. R., Mirus, B. B., and Barnhart, K. R.: Constraining mean landslide occurrence rates for non-temporal landslide inventories using high-resolution elevation data, J. Geophys. Res.-Earth, 129, e2024JF007700, https://doi.org/10.1029/2024JF007700, 2024.
Xu, T., Moore, I. D., and Gallant, J. C.: Fractals, fractal dimensions and landscapes – a review, Geomorphology, 8, 245–262, https://doi.org/10.1016/0169-555X(93)90022-T, 1993.
Zwoliński, Z. and Stefańska, E.: Relevance of moving window size in landform classification by TPI, in: Geomorphometry for Geosciences, edited by: Jasiewicz, J., Zwoliński, Z., Mitasova, H., and Hengl, T., Bogucki Wydawnictwo Naukowe, 273–277, ISBN 978-83-7986-059-3, 2015.
Short summary
pyTopoComplexity is an open-source Python tool for multiscale land surface complexity analysis. Applied to a landslide-affected area in Washington, USA, it accurately identified landform features at various scales, enhancing our understanding of landform recovery after disturbances. By integrating with Landlab’s landscape evolution simulations, the software allows researchers to explore how different processes drive the evolution of surface complexity in response to natural forces.
pyTopoComplexity is an open-source Python tool for multiscale land surface complexity analysis....