Articles | Volume 13, issue 3
https://doi.org/10.5194/esurf-13-473-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-473-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling active layer thickness in permafrost rock walls based on an analytical solution of the heat transport equation, Kitzsteinhorn, Hohe Tauern Range, Austria
Department of Applied Ecology, Geisenheim University, Von-Lade-Straße 1, 65366 Geisenheim, Germany
Section of Ecological Plant Protection, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany
Ingo Hartmeyer
GEORESEARCH Forschungsgesellschaft mbH, Wissenspark Salzburg-Urstein, Urstein Süd 15, 5412 Puch bei Hallein, Austria
Carolyn-Monika Görres
Department of Applied Ecology, Geisenheim University, Von-Lade-Straße 1, 65366 Geisenheim, Germany
Daniel Uteau
Section of Soil Science, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany
Maike Offer
GEORESEARCH Forschungsgesellschaft mbH, Wissenspark Salzburg-Urstein, Urstein Süd 15, 5412 Puch bei Hallein, Austria
Chair of Landslide Research, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany
Stephan Peth
Institute of Soil Science, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hanover, Germany
Related authors
Wolfgang Aumer, Morten Möller, Carolyn-Monika Görres, Christian Eckhardt, Tobias Karl David Weber, Carolina Bilibio, Christian Bruns, Andreas Gattinger, Maria Renate Finckh, and Claudia Kammann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2862, https://doi.org/10.5194/egusphere-2025-2862, 2025
Short summary
Short summary
Arable soils emit or absorb greenhouse gases such as carbon dioxide, nitrous oxide and methane. This study compared two gas analysis techniques for determining greenhouse gas fluxes under field conditions using the closed chamber method. Fluxes were measured simultaneously using the widely applied gas chromatography (GC) and the emerging mid-infrared laser absorption spectroscopy (LAS) technique. Our results showed that LAS is a reliable alternative to GC, particularly for low flux rates.
Wolfgang Aumer, Morten Möller, Carolyn-Monika Görres, Christian Eckhardt, Tobias Karl David Weber, Carolina Bilibio, Christian Bruns, Andreas Gattinger, Maria Renate Finckh, and Claudia Kammann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2862, https://doi.org/10.5194/egusphere-2025-2862, 2025
Short summary
Short summary
Arable soils emit or absorb greenhouse gases such as carbon dioxide, nitrous oxide and methane. This study compared two gas analysis techniques for determining greenhouse gas fluxes under field conditions using the closed chamber method. Fluxes were measured simultaneously using the widely applied gas chromatography (GC) and the emerging mid-infrared laser absorption spectroscopy (LAS) technique. Our results showed that LAS is a reliable alternative to GC, particularly for low flux rates.
Maike Offer, Samuel Weber, Michael Krautblatter, Ingo Hartmeyer, and Markus Keuschnig
The Cryosphere, 19, 485–506, https://doi.org/10.5194/tc-19-485-2025, https://doi.org/10.5194/tc-19-485-2025, 2025
Short summary
Short summary
We present a unique long-term dataset of measurements of borehole temperature, repeated electrical resistivity tomography, and piezometric pressure to investigate the complex seasonal water flow in permafrost rockwalls. Our joint analysis shows that permafrost rocks are subjected to enhanced pressurised water flow during the thaw period, resulting in push-like warming events and long-lasting rock temperature regime changes.
Ingo Hartmeyer and Jan-Christoph Otto
DEUQUA Spec. Pub., 5, 3–12, https://doi.org/10.5194/deuquasp-5-3-2024, https://doi.org/10.5194/deuquasp-5-3-2024, 2024
Doris Hermle, Markus Keuschnig, Ingo Hartmeyer, Robert Delleske, and Michael Krautblatter
Nat. Hazards Earth Syst. Sci., 21, 2753–2772, https://doi.org/10.5194/nhess-21-2753-2021, https://doi.org/10.5194/nhess-21-2753-2021, 2021
Short summary
Short summary
Multispectral remote sensing imagery enables landslide detection and monitoring, but its applicability to time-critical early warning is rarely studied. We present a concept to operationalise its use for landslide early warning, aiming to extend lead time. We tested PlanetScope and unmanned aerial system images on a complex mass movement and compared processing times to historic benchmarks. Acquired data are within the forecasting window, indicating the feasibility for landslide early warning.
Cited articles
Allen, S. and Huggel, C.: Extremely warm temperatures as a potential cause of recent high mountain rockfall, Global Planet. Change, 107, 59–69, https://doi.org/10.1016/j.gloplacha.2013.04.007, 2013.
Aumer, W. and Hartmeyer, I.: Borehole temperatures and thaw depths in mountain permafrost, Kitzsteinhom, Hohe Tauern Range, Austria, Zenodo [data set], https://doi.org/10.5281/zenodo.10203390, 2024.
Balkan, E., Erkan, K., and Şalk, M.: Thermal conductivity of major rock types in western and central Anatolia regions, Turkey, J. Geophys. Eng., 14, 909–919, https://doi.org/10.1088/1742-2140/aa5831, 2017.
Biskaborn, B. K., Lanckman, J.-P., Lantuit, H., Elger, K., Streletskiy, D. A., Cable, W. L., and Romanovsky, V. E.: The new database of the Global Terrestrial Network for Permafrost (GTN-P), Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015, 2015.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Burn, C. R. and Smith, C.: Observations of the “Thermal Offset” in Near-Surface Mean Annual Ground Temperatures at Several Sites near Mayo, Yukon Territory, Canada, ARCTIC, 41, 99–104, https://doi.org/10.14430/arctic1700, 1988.
Burn, C. R. and Zhang, Y.: Permafrost and climate change at Herschel Island (Qikiqtaruq), Yukon Territory, Canada, J. Geophys. Res., 114, F02001, https://doi.org/10.1029/2008JF001087, 2009.
DeVries, D. A.: Thermal properties of soils, in: Physics of plant environment, edited by: van Wijk, D. R., North-Holland Publ. Comp., Amsterdam, 210–235, 1963.
Dobinski, W.: Permafrost, Earth-Sci. Rev., 108, 158–169, https://doi.org/10.1016/j.earscirev.2011.06.007, 2011.
Engelhardt, M., Hauck, C., and Salzmann, N.: Influence of atmospheric forcing parameters on modelled mountain permafrost evolution, Meteorol. Z., 19, 491–500, https://doi.org/10.1127/0941-2948/2010/0476, 2010.
Etzelmüller, B., Guglielmin, M., Hauck, C., Hilbich, C., Hoelzle, M., Isaksen, K., Noetzli, J., Oliva, M., and Ramos, M.: Twenty years of European mountain permafrost dynamics – the PACE legacy, Environ. Res. Lett., 15, 104070, https://doi.org/10.1088/1748-9326/abae9d, 2020.
Fischer, L., Kääb, A., Huggel, C., and Noetzli, J.: Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face, Nat. Hazards Earth Syst. Sci., 6, 761–772, https://doi.org/10.5194/nhess-6-761-2006, 2006.
Fischer, L., Purves, R. S., Huggel, C., Noetzli, J., and Haeberli, W.: On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas, Nat. Hazards Earth Syst. Sci., 12, 241–254, https://doi.org/10.5194/nhess-12-241-2012, 2012.
Garratt, J.: Review: the atmospheric boundary layer, Earth-Sci. Rev., 37, 89–134, https://doi.org/10.1016/0012-8252(94)90026-4, 1994.
GCOS: The Status of the Global Climate Observing System 2021: The GCOS Status Report (GCOS-240), World Meteorological Organization, Geneva, Italy, https://doi.org/10.5167/uzh-213734, 2021.
Gruber, S. and Haeberli, W.: Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res., 112, https://doi.org/10.1029/2006JF000547, 2007.
Gruber, S., Hoelzle, M., and Haeberli, W.: Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003, Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL020051, 2004.
Gubler, S., Fiddes, J., Keller, M., and Gruber, S.: Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain, The Cryosphere, 5, 431–443, https://doi.org/10.5194/tc-5-431-2011, 2011.
Gude, M. and Barsch, D.: Assessment of geomorphic hazards in connection with permafrost occurrence in the Zugspitze area (Bavarian Alps, Germany), Geomorphology, 66, 85–93, https://doi.org/10.1016/j.geomorph.2004.03.013, 2005.
Haeberli, W., Noetzli, J., Arenson, L., Delaloye, R., Gärtner-Roer, I., Gruber, S., Isaksen, K., Kneisel, C., Krautblatter, M., and Phillips, M.: Mountain permafrost: development and challenges of a young research field, J. Glaciol., 56, 1043–1058, https://doi.org/10.3189/002214311796406121, 2010.
Harris, C., Arenson, L. U., Christiansen, H. H., Etzelmüller, B., Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., Hölzle, M., Humlum, O., Isaksen, K., Kääb, A., Kern-Lütschg, M. A., Lehning, M., Matsuoka, N., Murton, J. B., Nötzli, J., Phillips, M., Ross, N., Seppälä, M., Springman, S. M., and Vonder Mühll, D.: Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses, Earth-Sci. Rev., 92, 117–171, https://doi.org/10.1016/j.earscirev.2008.12.002, 2009.
Harris, S. A., French, H. M., Heginbottom, J. A., Johnston, G. H., Ladanyi, B., Sego, D. C., and van Everdingen, R. O.: Glossary of permafrost and related ground-ice terms, National Research Council of Canada. Associate Committee on Geotechnical Research. Permafrost Subcommittee, ISBN: 0-660-12540-4, https://doi.org/10.4224/20386561, 1988.
Hartmeyer, I., Keuschnig, M., and Schrott, L.: Long-term monitoring of permafrost-affected rock faces – A scale-oriented approach for the investigation of ground thermal conditions in alpine terrain, Kitzsteinhorn, Austria, Austrian J. Earth Sc., 105, 128–139, 2012.
Hartmeyer, I., Delleske, R., Keuschnig, M., Krautblatter, M., Lang, A., Schrott, L., and Otto, J.-C.: Current glacier recession causes significant rockfall increase: the immediate paraglacial response of deglaciating cirque walls, Earth Surf. Dynam., 8, 729–751, https://doi.org/10.5194/esurf-8-729-2020, 2020a.
Hartmeyer, I., Keuschnig, M., Delleske, R., Krautblatter, M., Lang, A., Schrott, L., Prasicek, G., and Otto, J.-C.: A 6 year lidar survey reveals enhanced rockwall retreat and modified rockfall magnitudes/frequencies in deglaciating cirques, Earth Surf. Dynam., 8, 753–768, https://doi.org/10.5194/esurf-8-753-2020, 2020b.
Hasler, A., Gruber, S., and Haeberli, W.: Temperature variability and offset in steep alpine rock and ice faces, The Cryosphere, 5, 977–988, https://doi.org/10.5194/tc-5-977-2011, 2011.
Hinzman, L. D., Kane, D. L., Gieck, R. E., and Everett, K. R.: Hydrologic and thermal properties of the active layer in the Alaskan Arctic, Cold Reg. Sci. Technol., 19, 95–110, https://doi.org/10.1016/0165-232X(91)90001-W, 1991.
Hipp, T., Etzelmüller, B., Farbrot, H., Schuler, T. V., and Westermann, S.: Modelling borehole temperatures in Southern Norway – insights into permafrost dynamics during the 20th and 21st century, The Cryosphere, 6, 553–571, https://doi.org/10.5194/tc-6-553-2012, 2012.
Hjort, J., Streletskiy, D., Doré, G., Wu, Q., Bjella, K., and Luoto, M.: Impacts of permafrost degradation on infrastructure, Nat. Rev. Earth Environ., 3, 24–38, https://doi.org/10.1038/s43017-021-00247-8, 2022.
Hubbart, J., Link, T., Campbell, C., and Cobos, D.: Evaluation of a low-cost temperature measurement system for environmental applications, Hydrol. Process., 19, 1517–1523, https://doi.org/10.1002/hyp.5861, 2005.
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 3–32, https://doi.org/10.1017/9781009157896.001, 2023.
James, D. W.: The thermal diffusivity of ice and water between −40 and +60 °C, J. Mater. Sci., 3, 540–543, https://doi.org/10.1007/BF00549738, 1968.
Kaverin, D., Malkova, G., Zamolodchikov, D., Shiklomanov, N., Pastukhov, A., Novakovskiy, A., Sadurtdinov, M., Skvortsov, A., Tsarev, A., Pochikalov, A., Malitsky, S., and Kraev, G.: Long-term active layer monitoring at CALM sites in the Russian European North, Polar Geography, 44, 203–216, https://doi.org/10.1080/1088937X.2021.1981476, 2021.
Kenner, R. and Phillips, M.: Fels- und Bergstürze in Permafrost Gebieten: Einflussfaktoren, Auslösemechanismen und Schlussfolgerungen für die Praxis: Schlussbericht Arge Alp Projekt “Einfluss von Permafrost auf Berg- und Felsstürze”, WSL-Institute for Snow and Avalanche Research SLF, Graubünden, 2017.
Kim, D. and Oh, S.: Relationship between the thermal properties and degree of saturation of cementitious grouts used in vertical borehole heat exchangers, Energ. Buildings, 201, 1–9, https://doi.org/10.1016/j.enbuild.2019.07.017, 2019.
Krainer, K.: Nationalpark Hohe Tauern: Geologie, 2. überarb. und erw. Aufl., Wissenschaftliche Schriften / Nationalpark Hohe Tauern, Universitätsverlag Carinthia, Klagenfurt, 199 pp., ISBN: 3853785859, 2005.
Krautblatter, M., Funk, D., and Günzel, F. K.: Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space, Earth Surf. Proc. Land., 38, 876–887, https://doi.org/10.1002/esp.3374, 2013.
Legay, A., Magnin, F., and Ravanel, L.: Rock temperature prior to failure: Analysis of 209 rockfall events in the Mont Blanc massif (Western European Alps), Permafrost Periglac., 32, 520–536, https://doi.org/10.1002/ppp.2110, 2021.
Michaelides, R. J., Schaefer, K., Zebker, H. A., Parsekian, A., Liu, L., Chen, J., Natali, S., Ludwig, S., and Schaefer, S. R.: Inference of the impact of wildfire on permafrost and active layer thickness in a discontinuous permafrost region using the remotely sensed active layer thickness (ReSALT) algorithm, Environ. Res. Lett., 14, 35007, https://doi.org/10.1088/1748-9326/aaf932, 2019.
Miner, K. R., Turetsky, M. R., Malina, E., Bartsch, A., Tamminen, J., McGuire, A. D., Fix, A., Sweeney, C., Elder, C. D., and Miller, C. E.: Permafrost carbon emissions in a changing Arctic, Nat. Rev. Earth Environ., 3, 55–67, https://doi.org/10.1038/s43017-021-00230-3, 2022.
Mishra, U., Drewniak, B., Jastrow, J. D., Matamala, R. M., and Vitharana, U.: Spatial representation of organic carbon and active-layer thickness of high latitude soils in CMIP5 earth system models, Geoderma, 300, 55–63, https://doi.org/10.1016/j.geoderma.2016.04.017, 2017.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Offer, M., Weber, S., Krautblatter, M., Hartmeyer, I., and Keuschnig, M.: Pressurised water flow in fractured permafrost rocks revealed by borehole temperature, electrical resistivity tomography, and piezometric pressure, The Cryosphere, 19, 485–506, https://doi.org/10.5194/tc-19-485-2025, 2025.
Oke, T. R.: Boundary layer climates, 2nd edn., Routledge, London, New York, 435 pp., ISBN: 9780203407219, https://doi.org/10.4324/9780203407219, 1987.
Otto, J., Keuschnig, M., Götz, J., Marbach, M., and Schrott, L.: Detection of mountain permafrost by combining high resolution surface and subsurface information – an example from the Glatzbach catchment, Austrian Alps, Geogr. Ann. A, 94, 43–57, https://doi.org/10.1111/j.1468-0459.2012.00455.x, 2012.
Outcalt, S. I., Nelson, F. E., and Hinkel, K. M.: The zero-curtain effect: Heat and mass transfer across an isothermal region in freezing soil, Water Resour. Res., 26, 1509–1516, https://doi.org/10.1029/WR026i007p01509, 1990.
PERMOS: Swiss Permafrost Bulletin 2022, Swiss Permafrost Monitoring Network, edited by: Noetzli, J. and Pellet, C., no. 4, 22 pp., https://doi.org/10.13093/PERMOS-BULL-2023, 2023.
Rajeev, P. and Kodikara, J.: Estimating apparent thermal diffusivity of soil using field temperature time series, Geomech. Geoeng., 11, 28–46, https://doi.org/10.1080/17486025.2015.1006266, 2016.
Ravanel, L., Magnin, F., and Deline, P.: Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif, Sci. Total Environ., 609, 132–143, https://doi.org/10.1016/j.scitotenv.2017.07.055, 2017.
Romanovsky, V. E. and Osterkamp, T. E.: Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska, Permafrost Periglac., 6, 313–335, https://doi.org/10.1002/ppp.3430060404, 1995.
Sass, O.: Rock moisture measurements: techniques, results, and implications for weathering, Earth Surf. Proc. Land., 30, 359–374, https://doi.org/10.1002/esp.1214, 2005.
Schrott, L., Otto, J.-C., and Keller, F.: Modelling alpine permafrost distribution in the Hohe Tauern region, Austria, Austrian J. Earth Sc., 105, 169–183, 2012.
Smith, M. W. and Riseborough, D. W.: Climate and the limits of permafrost: a zonal analysis, Permafrost Periglac., 13, 1–15, https://doi.org/10.1002/ppp.410, 2002.
Stoffel, M., Mendlik, T., Schneuwly-Bollschweiler, M., and Gobiet, A.: Possible impacts of climate change on debris-flow activity in the Swiss Alps, Climatic Change, 122, 141–155, https://doi.org/10.1007/s10584-013-0993-z, 2014.
Streletskiy, D. A., Shiklomanov, N. I., Nelson, F. E., Klene, A. E., Nyland, K. E., and Moore, N. J.: Global Observation Data Show Variable but Increasing Active-Layer Thickness, American Geophysical Union, Fall Meeting, 1–17 December 2020, San Francisco, Bibcode: 2020AGUFMC016...07S, abstract #C016-07, 2020.
Talebi, H. R., Kayan, B. A., Asadi, I., and Hassan, Z. F. B. A.: Investigation of Thermal Properties of Normal Weight Concrete for Different Strength Classes, J. Environ. Treat. Tech., 8, 908–914, ISSN: 2309-1185, 2020.
Walter, F., Amann, F., Kos, A., Kenner, R., Phillips, M., de Preux, A., Huss, M., Tognacca, C., Clinton, J., Diehl, T., and Bonanomi, Y.: Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows, Geomorphology, 351, 106933, https://doi.org/10.1016/j.geomorph.2019.106933, 2020.
Williams, P. J. and Smith, M. W.: The frozen earth. Fundamentals of geocryology, Permafrost Periglac., 4, 178–181, https://doi.org/10.1002/ppp.3430040221, 1993.
Short summary
The summertime thaw depth of permanently frozen ground (active layer thickness, ALT) is of critical importance for natural hazard management (e.g., rock avalanches) and construction (foundation stability) in mountain permafrost regions. We report the first analytical heat transport model for simulating ALT based on near-surface temperature in permafrost rock walls. Our results show that the ALT will likely increase by more than 50 % by 2050 at 3000 m a.s.l. in the European Alps.
The summertime thaw depth of permanently frozen ground (active layer thickness, ALT) is of...