Articles | Volume 13, issue 4
https://doi.org/10.5194/esurf-13-629-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-629-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Pleistocene–Holocene denudation, uplift, and morphology evolution of the Armorican Massif (western Europe)
Oswald Malcles
CORRESPONDING AUTHOR
Institut des Sciences de la Terre, Université Savoie-Mont-Blanc, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut de Rercherche pour le Développement, Université Gustave Eiffel 24–28 Avenue du Lac d'Annecy, 73370 Le Bourget-du-Lac, France
Stéphane Mazzotti
Laboratoire de Planétologie et Géosciences, Nantes Université, Centre National de la Recherche Scientifique, Le Mans Université, Université d'Angers, 2 Chemin de la Houssinière, 44300 Nantes, France
Philippe Vernant
Géosciences Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Place Eugène Bataillon, 34090 Montpellier, France
Vincent Godard
Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement, Aix Marseille Université, Centre National de la Recherche Scientifique, Institut de Rercherche pour le Développement, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France
Related authors
Oswald Malcles, Philippe Vernant, David Fink, Gaël Cazes, Jean-François Ritz, Toshiyuki Fujioka, and Jean Chéry
Earth Surf. Dynam., 12, 679–690, https://doi.org/10.5194/esurf-12-679-2024, https://doi.org/10.5194/esurf-12-679-2024, 2024
Short summary
Short summary
In the Grands Causses area (Southern France), we study the relationship between the evolution of the river, its incision through time, and the location of the nearby caves. It is commonly accepted that horizontal caves are formed during a period of river stability (no incision) at the elevation of the river. Our original results show that it is wrong in our case study. Therefore, another model of cave formation is proposed that does not rely on direct river control over cave locations.
Océane Foix, Stéphane Mazzotti, Hervé Jomard, Didier Bertil, and the Lesser Antilles Working Group
Nat. Hazards Earth Syst. Sci., 25, 1881–1900, https://doi.org/10.5194/nhess-25-1881-2025, https://doi.org/10.5194/nhess-25-1881-2025, 2025
Short summary
Short summary
By analyzing historical and instrumental seismic data, fault knowledge, and geodetic measurements, we provide a new understanding of seismic hazard in the Lesser Antilles via seismotectonic zoning. We propose new models that can have a significant impact on seismic hazard assessment, such as the inclusion of mantle wedge seismicity, the inclusion of volcanic seismicity, and a complete revision of the subduction interface zoning.
Melody Philippon, Jean Roger, Jean-Frédéric Lebrun, Isabelle Thinon, Océane Foix, Stéphane Mazzotti, Marc-André Gutscher, Leny Montheil, and Jean-Jacques Cornée
Nat. Hazards Earth Syst. Sci., 24, 3129–3154, https://doi.org/10.5194/nhess-24-3129-2024, https://doi.org/10.5194/nhess-24-3129-2024, 2024
Short summary
Short summary
Using novel geophysical datasets, we reassess the slip rate of the Morne Piton fault (Lesser Antilles) at 0.2 mm yr−1 by dividing by four previous estimations and thus increasing the earthquake time recurrence and lowering the associated hazard. We evaluate a plausible magnitude for a potential seismic event of Mw 6.5 ± 0.5. Our multi-segment tsunami model representative of the worst-case scenario gives an overview of tsunami generation if all the fault segments ruptured together.
Amélie Viger, Stéphane Dominguez, Stéphane Mazzotti, Michel Peyret, Maxime Henriquet, Giovanni Barreca, Carmelo Monaco, and Adrien Damon
Solid Earth, 15, 965–988, https://doi.org/10.5194/se-15-965-2024, https://doi.org/10.5194/se-15-965-2024, 2024
Short summary
Short summary
New satellite geodetic data (PS-InSAR) evidence a generalized subsidence and an eastward tilting of southeastern Sicily combined with a local relative uplift along its eastern coast. We perform flexural and elastic modeling and show that the slab pull force induced by the Ionian slab roll-back and extrado deformation reproduce the measured surface deformation. Finally, we propose an original seismic cycle model that is mainly driven by the southward migration of the Ionian slab roll-back.
Oswald Malcles, Philippe Vernant, David Fink, Gaël Cazes, Jean-François Ritz, Toshiyuki Fujioka, and Jean Chéry
Earth Surf. Dynam., 12, 679–690, https://doi.org/10.5194/esurf-12-679-2024, https://doi.org/10.5194/esurf-12-679-2024, 2024
Short summary
Short summary
In the Grands Causses area (Southern France), we study the relationship between the evolution of the river, its incision through time, and the location of the nearby caves. It is commonly accepted that horizontal caves are formed during a period of river stability (no incision) at the elevation of the river. Our original results show that it is wrong in our case study. Therefore, another model of cave formation is proposed that does not rely on direct river control over cave locations.
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth, 14, 1067–1081, https://doi.org/10.5194/se-14-1067-2023, https://doi.org/10.5194/se-14-1067-2023, 2023
Short summary
Short summary
In glaciated regions, induced lithosphere deformation is proposed as a key process contributing to fault activity and seismicity. We study the impact of this effect on fault activity in the Western Alps. We show that the response to the last glaciation explains a major part of the geodetic strain rates but does not drive or promote the observed seismicity. Thus, seismic hazard studies in the Western Alps require detailed modeling of the glacial isostatic adjustment (GIA) transient impact.
Carole Petit, Tristan Salles, Vincent Godard, Yann Rolland, and Laurence Audin
Earth Surf. Dynam., 11, 183–201, https://doi.org/10.5194/esurf-11-183-2023, https://doi.org/10.5194/esurf-11-183-2023, 2023
Short summary
Short summary
We present new tools in the landscape evolution model Badlands to simulate 10Be production, erosion and transport. These tools are applied to a source-to-sink system in the SW French Alps, where the model is calibrated. We propose a model that fits river incision rates and 10Be concentrations in sediments, and we show that 10Be in deep marine sediments is a signal with multiple contributions that cannot be easily interpreted in terms of climate forcing.
Clément Desormeaux, Vincent Godard, Dimitri Lague, Guillaume Duclaux, Jules Fleury, Lucilla Benedetti, Olivier Bellier, and the ASTER Team
Earth Surf. Dynam., 10, 473–492, https://doi.org/10.5194/esurf-10-473-2022, https://doi.org/10.5194/esurf-10-473-2022, 2022
Short summary
Short summary
Landscape evolution is highly dependent on climatic parameters, and the occurrence of intense precipitation events is considered to be an important driver of river incision. We compare the rate of erosion with the variability of river discharge in a mountainous landscape of SE France where high-magnitude floods regularly occur. Our study highlights the importance of the hypotheses made regarding the threshold that river discharge needs to exceed in order to effectively cut down into the bedrock.
Irene Schimmelpfennig, Joerg M. Schaefer, Jennifer Lamp, Vincent Godard, Roseanne Schwartz, Edouard Bard, Thibaut Tuna, Naki Akçar, Christian Schlüchter, Susan Zimmerman, and ASTER Team
Clim. Past, 18, 23–44, https://doi.org/10.5194/cp-18-23-2022, https://doi.org/10.5194/cp-18-23-2022, 2022
Short summary
Short summary
Small mountain glaciers advance and recede as a response to summer temperature changes. Dating of glacial landforms with cosmogenic nuclides allowed us to reconstruct the advance and retreat history of an Alpine glacier throughout the past ~ 11 000 years, the Holocene. The results contribute knowledge to the debate of Holocene climate evolution, indicating that during most of this warm period, summer temperatures were similar to or warmer than in modern times.
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth Discuss., https://doi.org/10.5194/se-2021-141, https://doi.org/10.5194/se-2021-141, 2021
Publication in SE not foreseen
Short summary
Short summary
Glacial Isostatic Adjustment is considered as a major process of seismicity in intraplate regions such as Scandinavia and eastern North America. We show that GIA associated with the alpine icecap induces a present-day response in vertical motion and horizontal deformation seen in GNSS strain rate field. We show that GIA induced stress is opposite to strain rate, with the paradoxical consequence that postglacial rebound in the Western Alps can explain the strain rate field but not the seismicity.
Séverine Liora Furst, Samuel Doucet, Philippe Vernant, Cédric Champollion, and Jean-Louis Carme
Solid Earth, 12, 15–34, https://doi.org/10.5194/se-12-15-2021, https://doi.org/10.5194/se-12-15-2021, 2021
Short summary
Short summary
We develop a two-step methodology combining multiple surface deformation measurements above a salt extraction site (Vauvert, France) in order to overcome the difference in resolution and accuracy. Using this 3-D velocity field, we develop a model to determine the kinematics of the salt layer. The model shows a collapse of the salt layer beneath the exploitation. It also identifies a salt flow from the deepest and most external part of the salt layer towards the center of the exploitation.
Cited articles
Arnold, M., Merchel, S., Bourlès, D. L., Braucher, R., Benedetti, L., Finkel, R. C., Aumaître, G., Gottdang, A., and Klein, M.: The French accelerator mass spectrometry facility ASTER: Improved performance and developments, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 268, 1954–1959, https://doi.org/10.1016/j.nimb.2010.02.107, 2010.
Augris, C., Simplet, L., and Gautier, E.: Isopaques de bancs sableux en Mer du Nord, Manche et Atlantique, IFREMER [data set], https://doi.org/10.12770/75AD486F-9D03-4FEB-B742-BE6C6F791345, 2013a.
Augris, C., Simplet, L., and Gautier, E.: Isopaques de couverture indifférenciée en Mer du Nord, Manche et Atlantique, IFREMER [data set], https://doi.org/10.12770/C841CA37-B414-4C51-AD6A-16BC34E8CF6F, 2013b.
Augris, C., Simplet, L., and Gautier, E.: Isopaques de nappes alluviales en Mer du Nord, Manche et Atlantique, IFREMER [data set], https://doi.org/10.12770/6C4CCD44-71B1-411D-91D1-ECCD1B2A46F1, 2013c.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Ballèvre, M., Bosse, V., Ducassou, C., and Pitra, P.: Palaeozoic history of the Armorican Massif: Models for the tectonic evolution of the suture zones, Comptes Rendus Geosci., 341, 174–201, https://doi.org/10.1016/j.crte.2008.11.009, 2009.
Bessin, P., Guillocheau, F., Robin, C., Schroëtter, J.-M., and Bauer, H.: Planation surfaces of the Armorican Massif (western France): Denudation chronology of a Mesozoic land surface twice exhumed in response to relative crustal movements between Iberia and Eurasia, Geomorphology, 233, 75–91, https://doi.org/10.1016/j.geomorph.2014.09.026, 2014.
Bessin, P., Guillocheau, F., Robin, C., Braun, J., Bauer, H., and Schroëtter, J.-M.: Quantification of vertical movement of low elevation topography combining a new compilation of global sea-level curves and scattered marine deposits (Armorican Massif, western France), Earth Planet. Sci. Lett., 470, 25–36, https://doi.org/10.1016/j.epsl.2017.04.018, 2017.
Beucler, É., Bonnin, M., Hourcade, C., Van Vliet-Lanoë, B., Perrin, C., Provost, L., Mocquet, A., Battaglia, J., Geoffroy, L., Steer, P., Le Gall, B., Douchain, J.-M., Fligiel, D., Gernigon, P., Delouis, B., Perrot, J., Mazzotti, S., Mazet-Roux, G., Lambotte, S., Grunberg, M., Vergne, J., Clément, C., Calais, É., Deverchère, J., Longuevergne, L., Duperret, A., Roques, C., Kaci, T., and Authemayou, C.: Characteristics and possible origins of the seismicity in northwestern France, Comptes Rendus Géoscience, 353, 53–77, https://doi.org/10.5802/crgeos.86, 2021.
Binnie, S. A., Phillips, W. M., Summerfield, M. A., and Fifield, L. K.: Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range, Geology, 35, 743, https://doi.org/10.1130/G23641A.1, 2007.
Bonnet, S., Guillocheau, F., and Brun, J.-P.: Relative uplift measurement using river incisions: the case of the Armorican basement (France), Comptes Rendus Académie Sci.-Earth Planet. Sci., 327, 245–251, 1998.
Bonnet, S., Guillocheau, F., Brun, J.-P., and Van Den Driessche, J.: Large-scale relief development related to Quaternary tectonic uplift of a Proterozoic-Paleozoic basement: The Armorican Massif, NW France, J. Geophys. Res.-Solid Earth, 105, 19273–19288, https://doi.org/10.1029/2000JB900142, 2000.
Braucher, R., Guillou, V., Bourlès, D. L., Arnold, M., Aumaître, G., Keddadouche, K., and Nottoli, E.: Preparation of ASTER in-house 10Be/9Be standard solutions, Nucl. Instrum. Methods Phys. Res. Sect. B, 361, 335–340, https://doi.org/10.1016/j.nimb.2015.06.012, 2015.
Brault, N., Bourquin, S., Guillocheau, F., Dabard, M.-P., Bonnet, S., Courville, P., Estéoule-Choux, J., and Stepanoff, F.: Mio–Pliocene to Pleistocene paleotopographic evolution of Brittany (France) from a sequence stratigraphic analysis: relative influence of tectonics and climate, Sediment. Geol., 163, 175–210, https://doi.org/10.1016/S0037-0738(03)00193-3, 2004.
Carretier, S., Regard, V., and Soual, C.: Theoretical cosmogenic nuclide concentration in river bed load clasts: Does it depend on clast size?, Quaternary Geochronol., 4, 108–123, 2009.
Champagnac, J.-D., Molnar, P., Anderson, R. S., Sue, C., and Delacou, B.: Quaternary erosion-induced isostatic rebound in the western Alps, Geology, 35, 195–198, https://doi.org/10.1130/G23053A.1, 2007.
Codilean, A. T., Munack, H., Cohen, T. J., Saktura, W. M., Gray, A., and Mudd, S. M.: OCTOPUS: an open cosmogenic isotope and luminescence database, Earth Syst. Sci. Data, 10, 2123–2139, https://doi.org/10.5194/essd-10-2123-2018, 2018.
Delmas, M., Cerdan, O., Cheviron, B., Mouchel, J.-M., and Eyrolle, F.: Sediment export from French rivers to the sea, Earth Surf. Process. Landf., 37, 754–762, https://doi.org/10.1002/esp.3219, 2012.
Dirks, P. H. G. M., Placzek, C. J., Fink, D., Dosseto, A., and Roberts, E.: Using 10Be cosmogenic isotopes to estimate erosion rates and landscape changes during the Plio-Pleistocene in the Cradle of Humankind, South Africa, J. Hum. Evol., 96, 19–34, https://doi.org/10.1016/j.jhevol.2016.03.002, 2016.
Dunai, T. J.: Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences, Cambridge University Press, https://doi.org/10.1017/CBO9780511804519, 2010.
Dutton, A. and Lambeck, K.: Ice Volume and Sea Level During the Last Interglacial, Science, 337, 216–219, https://doi.org/10.1126/science.1205749, 2012.
Erlanger, E. D., Granger, D. E., and Gibbon, R. J.: Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces, Geology, 40, 1019–1022, https://doi.org/10.1130/G33172.1, 2012.
Gallen, S. F. and Thigpen, J. R.: Lithologic Controls on Focused Erosion and Intraplate Earthquakes in the Eastern Tennessee Seismic Zone, Geophys. Res. Lett., 45, 9569–9578, https://doi.org/10.1029/2018GL079157, 2018.
Granger, D. E., Kirchner, J. W., and Finkel, R. C.: Spatially Averaged Long-Term Erosion Rates Measured from In Situ-Produced Cosmogenic Nuclides in Alluvial Sediment, The J. Geol., 104, 249–257, 1996.
Guillocheau, F., Brault, N., Thomas, E., Barbarand, J., Bonnet, S., Bourquin, S., Estéoule-choux, J., Guennoc, P., Menier, D., Néraudeau, D., Proust, J.-N., and Wyns, R.: Histoire géologique du Massif Armoricain depuis 140 Ma (Crétacé-Actuel), Assoc. Géologues Bassin Paris, 40, 13–28, 2003.
Gurnis, M., Mitrovica, J. X., Ritsema, J., and van Heijst, H.-J.: Constraining mantle density structure using geological evidence of surface uplift rates: The case of the African Superplume, Geochem. Geophys. Geosystems, 1, 1, https://doi.org/10.1029/1999GC000035, 2000.
Harel, M.-A., Mudd, S. M., and Attal, M.: Global analysis of the stream power law parameters based on worldwide 10Be denudation rates, Geomorphology, 268, 184–196, https://doi.org/10.1016/j.geomorph.2016.05.035, 2016.
Harrison, C. G. A.: What factors control mechanical erosion rates?, Int. J. Earth Sci., 88, 752–763, https://doi.org/10.1007/s005310050303, 2000.
Haxby, W. F. and Turcotte, D. L.: Stresses induced by the addition or removal of overburden and associated thermal effects, Geology, 4, 181, https://doi.org/10.1130/0091-7613, 1976.
Hay, C., Mitrovica, J. X., Gomez, N., Creveling, J. R., Austermann, J., and E. Kopp, R.: The sea-level fingerprints of ice-sheet collapse during interglacial periods, Quat. Sci. Rev., 87, 60–69, https://doi.org/10.1016/j.quascirev.2013.12.022, 2014.
Hurst, M. D., Mudd, S. M., Walcott, R., Attal, M., and Yoo, K.: Using hilltop curvature to derive the spatial distribution of erosion rates, J. Geophys. Res., 117, F02017, https://doi.org/10/f3tx7m, 2012.
Kaban, M. K., Chen, B., Tesauro, M., Petrunin, A. G., El Khrepy, S., and Al-Arifi, N.: Reconsidering Effective Elastic Thickness Estimates by Incorporating the Effect of Sediments: A Case Study for Europe, Geophys. Res. Lett., 45, 9523–9532, https://doi.org/10.1029/2018GL079732, 2018.
Kirchner, J. W., Finkel, R. C., Riebe, C. S., Granger, D. E., Clayton, J. L., King, J. G., and Megahan, W. F.: Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales, Geology, 29, 591, https://doi.org/10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2, 2001.
Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and Oppenheimer, M.: A probabilistic assessment of sea level variations within the last interglacial stage, Geophys. J. Int., 193, 711–716, https://doi.org/10.1093/gji/ggt029, 2013.
Lague, D., Davy, P., and Crave, A.: Estimating uplift rate and erodibility from the area-slope relationship: Examples from Brittany (France) and numerical modelling, Phys. Chem. Earth Part Solid Earth Geod., 25, 543–548, https://doi.org/10.1016/S1464-1895(00)00083-1, 2000.
Lenôtre, N., Thierry, P., Blanchin, R., and Brochard, G.: Current vertical movement demonstrated by comparative levelling in Brittany (northwestern France), Tectonophysics, 301, 333–344, 1999.
Masson, C., Mazzotti, S., Vernant, P., and Doerflinger, E.: Extracting small deformation beyond individual station precision from dense GNSS networks in France and Western Europe, Solid Earth, 10, 1905–1920, https://doi.org/10.5194/se-10-1905-2019, 2019.
Mazzotti, S.: Project EroSeis – Public, OSF, https://osf.io/yq3bt/ (last access: 4 August 2025), 2025.
Mazzotti, S., Vergeron, X., Malcles, O., Grosset, J., and Vernant, P.: Impact of long-term erosion on crustal stresses and seismicity in stable continental regions, Geology, 51, 733–737, https://doi.org/10.1130/G51327.1, 2023.
Monnier, J. L., Jumel, G., and Jumel, A.: Le Paléolithique inférieur de la côte 42 à Saint-Malo-de-Phily (Ille-et-Vilaine). Stratigraphie et industrie, in: Bulletin de la Société préhistorique française, tome 78, no 10–12, Études et Travaux, 317–328 pp., https://doi.org/10.3406/bspf.1981.5285, 1981.
Montgomery, D. R. and Brandon, M. T.: Topographic controls on erosion rates in tectonically active mountain ranges, Earth Planet. Sci. Lett., 201, 481–489, https://doi.org/10.1016/S0012-821X(02)00725-2, 2002.
Muhs, D. R., Pandolfi, J. M., Simmons, K. R., and Schumann, R. R.: Sea-level history of past interglacial periods from uranium-series dating of corals, Curaçao, Leeward Antilles islands, Quaternary Res., 78, 157–169, https://doi.org/10.1016/j.yqres.2012.05.008, 2012.
Murray-Wallace, C. M., Belperio, A. P., Cann, J. H., Huntley, D. J., and Prescott, J. R.: Late Quaternary uplift history, Mount Gambier Region, South Australia, Z. Geomorphol., Suppl.-Bd. 106, 41–56, 1996.
Néraudeau, D., Barbe, S., Mercier, D., and Roman, J.: Signatures paléoclimatiques des échinides du Néogène final atlantique à faciès redonien, Ann. Paléontol., 89, 153–170, https://doi.org/10.1016/S0753-3969(03)00023-5, 2003.
Pedersen, V. K., Huismans, R. S., and Moucha, R.: Isostatic and dynamic support of high topography on a North Atlantic passive margin, Earth Planet. Sci. Lett., 446, 1–9, https://doi.org/10.1016/j.epsl.2016.04.019, 2016.
Pedoja, K., Husson, L., Regard, V., Cobbold, P. R., Ostanciaux, E., Johnson, M. E., Kershaw, S., Saillard, M., Martinod, J., Furgerot, L., Weill, P., and Delcaillau, B.: Relative sea-level fall since the last interglacial stage: Are coasts uplifting worldwide?, Earth-Sci. Rev., 108, 1–15, https://doi.org/10.1016/j.earscirev.2011.05.002, 2011.
Pedoja, K., Jara-Muñoz, J., De Gelder, G., Robertson, J., Meschis, M., Fernandez-Blanco, D., Nexer, M., Poprawski, Y., Dugué, O., Delcaillau, B., Bessin, P., Benabdelouahed, M., Authemayou, C., Husson, L., Regard, V., Menier, D., and Pinel, B.: Neogene-Quaternary slow coastal uplift of Western Europe through the perspective of sequences of strandlines from the Cotentin Peninsula (Normandy, France), Geomorphology, 303, 338–356, https://doi.org/10.1016/j.geomorph.2017.11.021, 2018.
Peltier, W. R.: Glacial isostatic adjustment: physical models and observational constraints, Rep. Prog. Phys., 85, 096801, https://doi.org/10.1088/1361-6633/ac805b, 2022.
Polyak, V. J., Onac, B. P., Fornós, J. J., Hay, C., Asmerom, Y., Dorale, J. A., Ginés, J., Tuccimei, P., and Ginés, A.: A highly resolved record of relative sea level in the western Mediterranean Sea during the last interglacial period, Nat. Geosci., 11, 860–864, https://doi.org/10.1038/s41561-018-0222-5, 2018.
Portenga, E. W. and Bierman, P. R.: Understanding Earth's eroding surface with 10Be, GSA Today, 21, 4–10, https://doi.org/10.1130/G111A.1, 2011.
Raymo, M. E. and Mitrovica, J. X.: Collapse of polar ice sheets during the stage 11 interglacial, Nature, 483, 453–456, https://doi.org/10.1038/nature10891, 2012.
Ruszkiczay-Rüdiger, Z., Neuhuber, S., Braucher, R., Lachner, J., Steier, P., Wieser, A., Braun, M., ASTER Team, Bourlès, D., Aumaître, G., and Keddadouche, K.: Comparison and performance of two cosmogenic nuclide sample preparation procedures of in situ produced 10Be and 26Al, J. Radioanal. Nucl. Chem., 329, 1523–1536, https://doi.org/10.1007/s10967-021-07916-4, 2021.
Schaller, M., Von Blanckenburg, F., Veldkamp, A., Tebbens, L. A., Hovius, N., and Kubik, P. W.: A 30 000 yr record of erosion rates from cosmogenic 10Be in Middle European river terraces, Earth Planet. Sci. Lett., 204, 307–320, https://doi.org/10.1016/S0012-821X(02)00951-2, 2002.
Siddall, M., Chappell, J., and Potter, E.-K.: Eustatic sea level during past interglacials, in: Developments in Quaternary Sciences, Vol. 7, Elsevier, 75–92, https://doi.org/10.1016/S1571-0866(07)80032-7, 2007.
Steer, P., Simoes, M., Cattin, R., and Shyu, J. B. H.: Erosion influences the seismicity of active thrust faults, Nat. Commun., 5, 5564, https://doi.org/10.1038/ncomms6564, 2014.
Stephenson, R. and Lambeck, K.: Erosion-isostatic rebound models for uplift: an application to south-eastern Australia, Geophys. J. Int., 82, 31–55, https://doi.org/10.1111/j.1365-246X.1985.tb05127.x, 1985.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys. Res.-Solid Earth, 105, 23753–23759, https://doi.org/10.1029/2000JB900181, 2000.
Summerfield, M. A. and Hulton, N. J.: Natural controls of fluvial denudation rates in major world drainage basins, J. Geophys. Res.-Solid Earth, 99, 13871–13883, https://doi.org/10.1029/94JB00715, 1994.
Tesauro, M., Kaban, M. K., and Cloetingh, S. A. P. L.: How rigid is Europe's lithosphere?, Geophys. Res. Lett., 36, 6, https://doi.org/10.1029/2009GL039229, 2009.
Toucanne, S., Zaragosi, S., Bourillet, J. F., Cremer, M., Eynaud, F., Van Vliet-Lanoë, B., Penaud, A., Fontanier, C., Turon, J. L., and Cortijo, E.: Timing of massive `Fleuve Manche' discharges over the last 350 kyr: insights into the European ice-sheet oscillations and the European drainage network from MIS 10 to 2, Quaternary Sci. Rev., 28, 1238–1256, https://doi.org/10.1016/j.quascirev.2009.01.006, 2009.
Toucanne, S., Zaragosi, S., Bourillet, J.-F., Marieu, V., Cremer, M., Kageyama, M., Van Vliet-Lanoë, B., Eynaud, F., Turon, J.-L., and Gibbard, P. L.: The first estimation of Fleuve Manche palaeoriver discharge during the last deglaciation: Evidence for Fennoscandian ice sheet meltwater flow in the English Channel ca 20–18 ka ago, Earth Planet. Sci. Lett., 290, 459–473, https://doi.org/10.1016/j.epsl.2009.12.050, 2010.
van Dongen, R., Scherler, D., Wittmann, H., and von Blanckenburg, F.: Cosmogenic 10Be in river sediment: where grain size matters and why, Earth Surf. Dynam., 7, 393–410, 2019.
Vernant, P., Hivert, F., Chéry, J., Steer, P., Cattin, R., and Rigo, A.: Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges, Geology, 41, 467–470, https://doi.org/10.1130/G33942.1, 2013.
Von Blanckenburg, F.: The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment, Earth Planet. Sci. Lett., 237, 462–479, https://doi.org/10.1016/j.epsl.2005.06.030, 2005.
Westaway, R., Maddy, D., and Bridgland, D.: Flow in the lower continental crust as a mechanism for the Quaternary uplift of south-east England: constraints from the Thames terrace record, Quaternary Sci. Rev., 21, 559–603, https://doi.org/10.1016/S0277-3791(01)00040-3, 2002.
Wickert, A. D.: Open-source modular solutions for flexural isostasy: gFlex v1.0, Geosci. Model Dev., 9, 997–1017, https://doi.org/10.5194/gmd-9-997-2016, 2016 (code available at: https://github.com/awickert/gFlex, last access: 8 January 2024).
Short summary
The Armorican region (NW France) is marked by several old coastal and marine markers that are today located several tens of meters above sea level. This fact is commonly explained by sea-level variations and complex tectonic processes (e.g., mantle dynamics). In this study, we test the role of the erosion and the associated flexural (lithospheric bending) response. We show that this simple model of flexural adjustment is to be taken into account to explain the regional evolution.
The Armorican region (NW France) is marked by several old coastal and marine markers that are...