Articles | Volume 13, issue 5
https://doi.org/10.5194/esurf-13-791-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-791-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biomechanical parameters of marram grass (Calamagrostis arenaria) for advanced modeling of dune vegetation
Viktoria Kosmalla
CORRESPONDING AUTHOR
Division of Hydromechanics, Coastal and Ocean Engineering, Leichtweiss-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig, Germany
Oliver Lojek
Division of Hydromechanics, Coastal and Ocean Engineering, Leichtweiss-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig, Germany
Jana Carus
Department of Plant Ecology, Institute of Ecology, Technische Universität Berlin, Berlin, Germany
Kara Keimer
Division of Hydromechanics, Coastal and Ocean Engineering, Leichtweiss-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig, Germany
Lukas Ahrenbeck
Division of Hydromechanics, Coastal and Ocean Engineering, Leichtweiss-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig, Germany
Björn Mehrtens
Division of Hydromechanics, Coastal and Ocean Engineering, Leichtweiss-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig, Germany
David Schürenkamp
Division of Hydromechanics, Coastal and Ocean Engineering, Leichtweiss-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig, Germany
Boris Schröder
Department of Plant Ecology, Institute of Ecology, Technische Universität Berlin, Berlin, Germany
Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
Nils Goseberg
Division of Hydromechanics, Coastal and Ocean Engineering, Leichtweiss-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig, Germany
Coastal Research Center, Joint Central Institution of Leibniz Universität Hannover and Technische Universität Braunschweig, Hannover, Germany
Related authors
Malte Kumlehn, Oliver Lojek, Viktoria Kosmalla, Björn Mehrtens, Lukas Ahrenbeck, David Schürenkamp, and Nils Goseberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-4120, https://doi.org/10.5194/egusphere-2024-4120, 2025
Preprint archived
Short summary
Short summary
This publication presents a field study measuring sediment transport and wind velocities across a single dune, and provides an approximation of the annual volume of transported sediment for the entire dune systems on the East Frisian island of Spiekeroog. Data from the field study shows that sediment transport on a dune occurs deep into the vegetation. The approximation surpasses the actual volume changes of the dune systems as expected, with variations depending on the compared beach section.
Malte Kumlehn, Oliver Lojek, Viktoria Kosmalla, Björn Mehrtens, Lukas Ahrenbeck, David Schürenkamp, and Nils Goseberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-4120, https://doi.org/10.5194/egusphere-2024-4120, 2025
Preprint archived
Short summary
Short summary
This publication presents a field study measuring sediment transport and wind velocities across a single dune, and provides an approximation of the annual volume of transported sediment for the entire dune systems on the East Frisian island of Spiekeroog. Data from the field study shows that sediment transport on a dune occurs deep into the vegetation. The approximation surpasses the actual volume changes of the dune systems as expected, with variations depending on the compared beach section.
Alexander Böhme, Birgit Gerkensmeier, Benedikt Bratz, Clemens Krautwald, Olaf Müller, Nils Goseberg, and Gabriele Gönnert
Nat. Hazards Earth Syst. Sci., 23, 1947–1966, https://doi.org/10.5194/nhess-23-1947-2023, https://doi.org/10.5194/nhess-23-1947-2023, 2023
Short summary
Short summary
External surges in the North Sea are caused by low-pressure cells travelling over the northeast Atlantic. They influence extreme water levels on the German coast and have to be considered in the design process of coastal defence structures. This study collects data about external surges from 1995–2020 and analyses their causes, behaviours and potential trends. External surges often occur less than 72 h apart, enabling a single storm surge to be influenced by more than one external surge.
Cited articles
Andrade, T., Beirão, J., Arruda, A., and Cruz, C.: The adaptive power of Ammophila arenaria: biomimetic study, systematic observation, parametric design and experimental tests with bimetal, Polymers, 13, 2554, https://doi.org/10.3390/polym13152554, 2021. a, b
Baas, A. and Nield, J. M.: Ecogeomorphic state variables and phasespace construction for quantifying the evolution of vegetated aeolian landscapes, Earth Surf. Proc. Land., 35, 717–731, https://doi.org/10.1002/esp.1990, 2010. a
Bakker, J.: Ecology of salt marshes: 40 years of research in the Wadden Sea, Wadden Academy, Leeuwarden, ISBN 9789490289324, 2014. a
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R.: The value of estuarine and coastal ecosystem services, Ecol. Monogr., 81, 169–193, 2011. a
Bauer, D. F.: Constructing confidence sets using rank statistics, J. Am. Stat. Assoc., 67, 687–690, https://doi.org/10.1080/01621459.1972.10481279, 1972. a
Biel, R. G. and Hacker, S. D.: Climate Change Alters The Interaction of Two Invasive Beachgrasses With Implications For Range Shifts And Coastal Dune Functions, Research Square [preprint], https://doi.org/10.21203/rs.3.rs-529207/v1, 2021. a, b, c
Biel, R. G., Hacker, S. D., and Ruggiero, P.: Elucidating Coastal Foredune Ecomorphodynamics in the U.S. Pacific Northwest via Bayesian Networks, J. Geophys. Res.-Earth, 124, 1919–1938, https://doi.org/10.1029/2018JF004758, 2019. a
Bonte, D., Batsleer, F., Provoost, S., Reijers, V., Vandegehuchte, M. L., van de Walle, R., Dan, S., Matheve, H., Rauwoens, P., Strypsteen, G., Suzuki, T., Verwaest, T., and Hillaert, J.: Biomorphogenic feedbacks and the spatial organisation of a dominant grass steer dune development, Front. Ecol. Evol., 11, https://doi.org/10.3389/fevo.2021.761336, 2021. a, b, c, d
Bouma, T. J., de Vries, M. B., Low, E., Peralta, G., Tánczos, I. C., van de Koppel, J., and Herman, P. M. J.: Trade-Offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes, Ecology, 86, 2187–2199, https://doi.org/10.1890/04-1588, 2005. a
Bouma, T. J., Temmerman, S., van Duren, L. A., Martini, E., Vandenbruwaene, W., Callaghan, D. P., Balke, T., Biermans, G., Klaassen, P. C., van Steeg, P., Dekker, F., van de Koppel, J., de Vries, M. B., and Herman, P.: Organism traits determine the strength of scale-dependent bio-geomorphic feedbacks: A flume study on three intertidal plant species, Geomorphology, 180–181, 57–65, https://doi.org/10.1016/j.geomorph.2012.09.005, 2013. a
Bouma, T. J., van Belzen, J., Balke, T., Zhu, Z., Airoldi, L. Blight, A. J., Davies, A. J., Galvan, C., Hawkins, S. J., Hoggart, S. P. G., Lara, J. L., Losada, I. J., Maza, M., Ondiviela, B., Skov, M. W., Strain. E. M., Thompson, R. C., Yang, S., Zanuttigh, B., Zhang, L., and Herman, P. M. J.: Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: Opportunities & steps to take, Coast. Eng., 87, 147–157, https://doi.org/10.1016/j.coastaleng.2013.11.014, 2014. a
Bryant, D. B., Anderson Bryant, M., Sharp, J. A., Bell, G. L., and Moore, C.: The response of vegetated dunes to wave attack, Coast. Eng., 152, 103506, https://doi.org/10.1016/j.coastaleng.2019.103506, 2019. a, b, c, d
BSH: Sturmfluten: Berichte zu Sturmfluten und extremen Wasserständen, https://www.bsh.de/DE/THEMEN/Wasserstand_und_Gezeiten/Sturmfluten/sturmfluten_node.htm (last access: 4 March 2025), 2024. a
Carter, R. W. G.: Near-future sea level impacts on coastal dune landscapes, Landscape Ecol., 6, 29–39, https://doi.org/10.1007/BF00157742, 1991. a, b
Davidson, S. G., Hesp, P. A., and Da Silva, G. M.: Controls on dune scarping, Prog. Phys. Geogr., 44, 923–947, https://doi.org/10.1177/0309133320932880, 2020. a, b
Davis, J. H.: Dune formation and stabilization by vegetation and plantings, Coast. Eng. Proceedings, 1, 29, https://doi.org/10.9753/icce.v6.29, 2011. a
de Battisti, D.: The resilience of coastal ecosystems: A functional trait–based perspective, J. Ecol., 109, 3133–3146, https://doi.org/10.1111/1365-2745.13641, 2021. a, b
de Jong, B., Keijsers, J. G. S., Riksen, M. J. P. M., Krol, J., and Slim, P. A.: Soft engineering vs a dynamic approach in coastal dune management: A case study on the North Sea Barrier Island of Ameland, the Netherlands, J. Coast. Res., 30, 670–684, https://doi.org/10.2112/JCOASTRES-D-13-00125.1, 2014. a, b
de Vries, S., Southgate, H. N., Kanning, W., and Ranasinghe, R.: Dune behavior and aeolian transport on decadal timescales, Coast. Eng., 67, 41–53, https://doi.org/10.1016/j.coastaleng.2012.04.002, 2012. a, b
Döring, M., Walsh, C., and Egberts, L.: “Beyond nature and culture: relational perspectives on the Wadden Sea landscape”, Maritime Studies, 20, 225–234, https://doi.org/10.1007/s40152-021-00246-x, 2021. a
Du, F. and Jiao, Y.: Mechanical control of plant morphogenesis: concepts and progress, Curr. Opin. Plant Biol., 57, 16–23, https://doi.org/10.1016/j.pbi.2020.05.008, 2020. a
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., and Marbà, N.: The role of coastal plant communities for climate change mitigation and adaptation, Nat. Clim. Change, 3, 961–968, https://doi.org/10.1038/nclimate1970, 2013. a
Everard, M., Jones, L., and Watts, B.: Have we neglected the societal importance of sand dunes? An ecosystem services perspective, Aquat. Conserv., 20, 476–487, https://doi.org/10.1002/aqc.1114, 2010. a
Farrell, E. J., Delgado Fernandez, I., Smyth, T., Li, B., and Swann, C.: Contemporary research in coastal dunes and aeolian processes, Earth Surf. Proc. Land., 49, 108–116, https://doi.org/10.1002/esp.5597, 2023. a
Feagin, R. A., Figlus, J., Zinnert, J. C., Sigren, J., Martínez, M. L., Silva, R., Smith, W. K., Cox, D., Young, D. R., and Carter, G.: Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion, Front. Ecol. Environ., 13, 203–210, https://doi.org/10.1890/140218, 2015. a, b, c, d, e, f
Feagin, R. A., Furman, M., Salgado, K., Martinez, M. L., Innocenti, R. A., Eubanks, K., Figlus, J., Huff, T. P., Sigren, J., and Silva, R.: The role of beach and sand dune vegetation in mediating wave run up erosion, Estuarine, Coastal and Shelf Science, 219, 97–106, https://doi.org/10.1016/j.ecss.2019.01.018, 2019. a, b, c, d, e, f, g, h, i, j, k, l
Figlus, J.: Designing and implementing coastal dunes for flood risk reduction, in: Coastal Flood Risk Reduction, pp. 287–301, Elsevier, ISBN 9780323852517, https://doi.org/10.1016/B978-0-323-85251-7.00021-4, 2022. a
Figlus, J., Kobayashi, N., Gralher, C., and Iranzo, V.: Wave Overtopping and Overwash of Dunes, Journal of Waterway, Port, Coastal, and Ocean Engineering, 137, 26–33, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000060, 2011. a
Figlus, J., Sigren, J. M., Armitage, A. R., and Tyler, R. C.: Erosion of vegetated coastal dunes, Coast. Eng. Proceedings, 1, 20, https://doi.org/10.9753/icce.v34.sediment.20, 2014. a, b
Figlus, J., Sigren, J. M., Feagin, R. A., and Armitage, A. R.: The unique ability of fine roots to reduce vegetated coastal dune erosion during wave collision, Frontiers in Built Environment, 8, https://doi.org/10.3389/fbuil.2022.904837, 2022. a
Foster-Martinez, M. R., Lacy, J. R., Ferner, M. C., and Variano, E. A.: Wave attenuation across a tidal marsh in San Francisco Bay, Coast. Eng., 136, 26–40, https://doi.org/10.1016/j.coastaleng.2018.02.001, 2018. a, b, c
Freschet, G. T. and Roumet, C.: Sampling roots to capture plant and soil functions, Functional Ecology, 31, 1506–1518, https://doi.org/10.1111/1365-2435.12883, 2017. a
Gao, J., Kennedy, D. M., and Konlechner, T. M.: Coastal dune mobility over the past century: A global review, Progress in Physical Geography: Earth and Environment, 44, 814–836, https://doi.org/10.1177/0309133320919612, 2020. a, b, c, d
Gardiner, B., Berry, P., and Moulia, B.: Review: Wind impacts on plant growth, mechanics and damage, Plant science : an international journal of experimental plant biology, 245, 94–118, https://doi.org/10.1016/j.plantsci.2016.01.006, 2016. a, b
Garzon, J. L., Costas, S., and Ferreira, O.: Biotic and abiotic factors governing dune response to storm events, Earth Surf. Proc. Land., https://doi.org/10.1002/esp.5300, 2021. a
GDWS: Pegel online: Spiekeroog: 9410010, 1, https://www.pegelonline.wsv.de/gast/stammdaten?pegelnr=9410010 (last access: 12 August 2024), 2024. a
González-Villanueva, R., Pastoriza, M., Hernández, A., Carballeira, R., Sáez, A., and Bao, R.: Primary drivers of dune cover and shoreline dynamics: A conceptual model based on the Iberian Atlantic coast, Geomorphology, 423, 108 556, https://doi.org/10.1016/j.geomorph.2022.108556, 2023. a, b
Gracia, A., Rangel-Buitrago, N., Oakley, J. A., and Williams, A. T.: Use of ecosystems in coastal erosion management, Ocean & Coastal Management, 156, 277–289, https://doi.org/10.1016/j.ocecoaman.2017.07.009, 2018. a
Hacker, S. D., Zarnetske, P., Seabloom, E., Ruggiero, P., Mull, J., Gerrity, S., and Jones, C.: Subtle differences in two non-native congeneric beach grasses significantly affect their colonization, spread, and impact, Oikos, 121, 138–148, https://doi.org/10.1111/j.1600-0706.2011.18887.x, 2012. a, b, c, d, e
Hesp, P.: Foredunes and blowouts: initiation, geomorphology and dynamics, Geomorphology, 48, 245–268, https://doi.org/10.1016/S0169-555X(02)00184-8, 2002. a
Hild, A., Niesel, V., and Günther, C.-P.: Study Area: The Backbarrier Tidal Flats of Spiekeroog, in: The Wadden Sea Ecosystem, edited by: Dittmann, S., Springer Berlin Heidelberg, Berlin, Heidelberg, 15–49, ISBN 978-3-642-64256-2, https://doi.org/10.1007/978-3-642-60097-5_3, 1999. a
Hovenga, P. A., Ruggiero, P., Goldstein, E. B., Hacker, S. D., and Moore, L. J.: The relative role of constructive and destructive processes in dune evolution on Cape Lookout National Seashore, North Carolina, USA, Earth Surf. Proc. Land., 46, 2824–2840, https://doi.org/10.1002/esp.5210, 2021. a
Huiskes, A. H. L.: Biological Flora of the British isles: Ammophila Arenaria (L.) Link (Psamma Arenaria (L.) Roem. et Schult.; Calamgrostis Arenaria (L.) Roth), Journal of Ecology, 67, 363, https://doi.org/10.2307/2259356, 1979. a, b, c
Isermann, M.: Patterns in Species Diversity during Succession of Coastal Dunes, J. Coast. Res., 27, 661–671, 2011. a
Isermann, M. and Cordes, H.: Changes in dune vegetation on Spiekeroog (East Friesian islands) over a 30 year period, in: Coastal Dunes: Geomorphology, Ecology and Management for Conservation., edited by Carter, R., Curtis, T., and Sheehy-Skeffington, M. J., pp. 201–209, Balkema, Rotterdam, 1997. a, b, c, d, e
Keijsers, J., de Groot, A. V., and Riksen, M.: Modeling the biogeomorphic evolution of coastal dunes in response to climate change, J. Geophys. Res.-Earth, 121, 1161–1181, https://doi.org/10.1002/2015JF003815, 2016. a, b, c
Keimer, K., Kosmalla, V., Prüter, I., Lojek, O., Prinz, M., Schürenkamp, D., Freund, H., and Goseberg, N.: Proposing a novel classification of growth periods based on biomechanical properties and seasonal changes of Spartina anglica, Front. Mar. Sci., 10, https://doi.org/10.3389/fmars.2023.1095200, 2023. a
Keimer, K., Kind, F., Prüter, I., Kosmalla, V., Lojek, O., Schürenkamp, D., Prinz, M., Niewerth, S., Aberle, J., and Goseberg, N.: From seasonal field study to surrogate modeling: Investigating the biomechanical dynamics of Elymus sp. in salt marshes, Limnology and Oceanography: Methods, https://doi.org/10.1002/lom3.10616, 2024. a, b, c, d
Kobayashi, N., Gralher, C., and Do, K.: Effects of Woody Plants on Dune Erosion and Overwash, Journal of Waterway, Port, Coastal, and Ocean Engineering, 139, 466–472, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000200, 2013. a, b
Koch, E. W., Barbier, E. B., Silliman, B. R., Reed, D. J., Perillo, G. M. E., Hacker, S. D., Granek, E. F., Primavera, J. H., Muthiga, N., Polasky, S., Halpern, B. S., Kennedy, C. J., Kappel, C. V., and Wolanski, E.: Non–linearity in ecosystem services: temporal and spatial variability in coastal protection, Front. Ecol. Environ., 7, 29–37, https://doi.org/10.1890/080126, 2009. a
Kosmalla, V., Keimer, K., Ahrenbeck, L., Mehrtens, B., Lojek, O., Schürenkamp, D., and Goseberg, N.: Geometric and mechanical properties dataset of marram grass (Calamagrostis arenaria, formerly Ammophila arenaria) across dune habitats on Spiekeroog Island (December 2021–December 2022), Technische Universität Braunschweig [data set], https://doi.org/10.24355/dbbs.084-202404230724-0, 2024. a, b
Kouhen, M., Dimitrova, A., Scippa, G. S., and Trupiano, D.: The Course of Mechanical Stress: Types, Perception, and Plant Response, Biology, 12, 217, https://doi.org/10.3390/biology12020217, 2023. a, b
LGLN: Digitales Orthophoto (DOP20) [Digital orthophotos]: Landesamt für Geoinformationen und Landesvermessung Niedersachsen [State agency for geoinformation and state survey of Lower Saxony]: Data licence Germany – attribution – Version 2.0, ATKIS, 1, https://ni-lgln-opengeodata.hub.arcgis.com/apps/lgln-opengeodata::digitales-orthophoto-dop20/about (last access: 12 August 2024), 2024. a
Li, C., Peng, Z., Zhao, Y., Fang, D., Chen, X., Xu, F., and Wang, X.: Seasonal variations in drag coefficient of salt marsh vegetation, Coast. Eng., 193, 104575, https://doi.org/10.1016/j.coastaleng.2024.104575, 2024. a, b, c, d
Maun, M. A.: Adaptations of plants to burial in coastal sand dunes, Can. J. Bot., 76, 713–738, https://doi.org/10.1139/b98-058, 1998. a, b
Maximiliano-Cordova, C., Salgado, K., Martínez, M. L., Mendoza, E., Silva, R., Guevara, R., and Feagin, R. A.: Does the Functional Richness of Plants Reduce Wave Erosion on Embryo Coastal Dunes?, Estuar. Coast., 42, 1730–1741, https://doi.org/10.1007/s12237-019-00537-x, 2019. a
McGuirk, M. T., Kennedy, D. M., and Konlechner, T.: The Role of Vegetation in Incipient Dune and Foredune Development and Morphology: A Review, J. Coast. Res., 38, 414–428, https://doi.org/10.2112/JCOASTRES-D-21-00021.1, 2022. a
Mehrtens, B., Kosmalla, V., Bölker, T., Lojek, O., and Goseberg, N.: Spatial and temporal growth of coastal dune – field observation of the German Wadden Sea Coast, in: Book of abstracts: Building Coastal Resilience 2022, edited by: Strypsteen, G., Roest, B., and Rauwoens, P., VLIZ Special Publication, https://doi.org/10.48470/28, 2022. a
Mehrtens, B., Lojek, O., Kosmalla, V., Bölker, T., and Goseberg, N.: Foredune growth and storm surge protection potential at the Eiderstedt Peninsula, Germany, Front. Mar. Sci., 9, https://doi.org/10.3389/fmars.2022.1020351, 2023. a
Mehrtens, B., Lojek, O., Bölker, T., Ahrenbeck, L., Kosmalla, V., Schweiger, C., Schürenkamp, D., and Goseberg, N.: Experimental Investigation Of Coastal Foredune Erosion, CoastLab 2024: Physical Modelling in Coastal Engineering and Science, https://doi.org/10.59490/coastlab.2024.794, 2024. a
Montreuil, A.-L., Bullard, J. E., Chandler, J. H., and Millett, J.: Decadal and seasonal development of embryo dunes on an accreting macrotidal beach: North Lincolnshire, UK, Earth Surf. Proc. Land., 38, 1851–1868, https://doi.org/10.1002/esp.3432, 2013. a
NLWKN: 80.000 Kubikmeter Sand sollen Spiekeroog schützen, https://www.nlwkn.niedersachsen.de/startseite/aktuelles/presse_und_offentlichkeitsarbeit/pressemitteilungen/80-000-kubikmeter-sand-sollen-spiekeroog-schutzen-223919.html, last access: 14 July 2023. a
Paul, M., Rupprecht, F., Möller, I., Bouma, T. J., Spencer, T., Kudella, M., Wolters, G., van Wesenbeeck, B. K., Jensen, K., Miranda-Lange, M., and Schimmels, S.: Plant stiffness and biomass as drivers for drag forces under extreme wave loading: A flume study on mimics, Coast. Eng., 117, 70–78, https://doi.org/10.1016/j.coastaleng.2016.07.004, 2016. a
Paul, M., Bischoff, C., and Koop-Jakobsen, K.: Biomechanical traits of salt marsh vegetation are insensitive to future climate scenarios, Sci. Rep., 12, 21272, https://doi.org/10.1038/s41598-022-25525-3, 2022. a
Pickart, A. J.: Ammophila invasion ecology and dune restoration on the west coast of North America, Diversity, 13, 629, https://doi.org/10.3390/d13120629, 2021. a
Puijalon, S., Bornette, G., and Sagnes, P.: Adaptations to increasing hydraulic stress: morphology, hydrodynamics and fitness of two higher aquatic plant species, J. Exp. Bot., 56, 777–786, https://doi.org/10.1093/jxb/eri063, 2005. a
Puijalon, S., Bouma, T. J., Douady, C. J., van Groenendael, J., Anten, N., Martel, E., and Bornette, G.: Plant resistance to mechanical stress: evidence of an avoidance-tolerance trade-off, New Phytol., 191, 1141–1149, https://doi.org/10.1111/j.1469-8137.2011.03763.x, 2011. a, b
Pye, K. and Blott, S. J.: Assessment of beach and dune erosion and accretion using LiDAR: Impact of the stormy 2013–14 winter and longer term trends on the Sefton Coast, UK, Geomorphology, 266, 146–167, https://doi.org/10.1016/j.geomorph.2016.05.011, 2016. a, b
Rader, A. M., Pickart, A. J., Walker, I. J., Hesp, P. A., and Bauer, B. O.: Foredune morphodynamics and sediment budgets at seasonal to decadal scales: Humboldt Bay National Wildlife Refuge, California, USA, Geomorphology, 318, 69–87, https://doi.org/10.1016/j.geomorph.2018.06.003, 2018. a
Ruggiero, P., Hacker, S., Seabloom, E., and Zarnetske, P.: The Role of Vegetation in Determining Dune Morphology, Exposure to Sea-Level Rise, and Storm-Induced Coastal Hazards: A U.S. Pacific Northwest Perspective, in: Barrier Dynamics and Response to Changing Climate, edited by: Moore, L. J. and Murray, A. B., Springer International Publishing, Cham, 337–361, ISBN 978-3-319-68084-2, https://doi.org/10.1007/978-3-319-68086-6_11, 2018. a, b, c
Rupprecht, F., Möller, I., Evans, B., Spencer, T., and Jensen, K.: Biophysical properties of salt marsh canopies – Quantifying plant stem flexibility and above ground biomass, Coast. Eng., 100, 48–57, https://doi.org/10.1016/j.coastaleng.2015.03.009, 2015. a
Rupprecht, F., Möller, I., Paul, M., Kudella, M., Spencer, T., van Wesenbeeck, B. K., Wolters, G., Jensen, K., Bouma, T. J., Miranda-Lange, M., and Schimmels, S.: Vegetation-wave interactions in salt marshes under storm surge conditions, Ecol. Eng., 100, 301–315, https://doi.org/10.1016/j.ecoleng.2016.12.030, 2017. a
Scanntronik Mugrauer GmbH: Data sheet for: Soil Analysis Sensor (Digital) + Analog Soil Sensor, Revision 2.0, https://www.scanntronik.de/English/Soil Sensor - Datasheet.pdf (last access: 28 July 2024), 2024b. a
Schulze, D., Rupprecht, F., Nolte, S., and Jensen, K.: Seasonal and spatial within-marsh differences of biophysical plant properties: implications for wave attenuation capacity of salt marshes, Aquat. Sci., 81, 65, https://doi.org/10.1007/s00027-019-0660-1, 2019. a, b
Schweiger, C. and Schuettrumpf, H.: Considering the Effect of Land-Based Biomass on Dune Erosion Volumes in Large-Scale Numerical Modeling, J. Mar. Sci. Eng., 9, 843, https://doi.org/10.3390/jmse9080843, 2021. a, b
Shepard, C. C., Crain, C. M., and Beck, M. W.: The protective role of coastal marshes: a systematic review and meta-analysis, PloS one, 6, e27374, https://doi.org/10.1371/journal.pone.0027374, 2011. a
Silva, R., Martínez, M. L., Odériz, I., Mendoza, E., and Feagin, R. A.: Response of vegetated dune–beach systems to storm conditions, Coast. Eng., 109, 53–62, https://doi.org/10.1016/j.coastaleng.2015.12.007, 2016. a, b, c
Stalter, R. and Lonard, R. I.: Biological flora of sand dunes on the Northwest Pacific coastline of North America: Ammophila arenaria (L.) Link and Ammophila breviligulata Fernald, J. Coast. Res., 40, 994–1000, https://doi.org/10.2112/JCOASTRES-D-24A-00003.1, 2024. a
Strypsteen, G., Houthuys, R., and Rauwoens, P.: Dune Volume Changes at Decadal Timescales and Its Relation with Potential Aeolian Transport, J. Mar. Sci. Eng., 7, 357, https://doi.org/10.3390/jmse7100357, 2019. a
Strypsteen, G., Delgado-Fernandez, I., Derijckere, J., and Rauwoens, P.: Fetch–driven aeolian sediment transport on a sandy beach: A new study, Earth Surf. Proc. Land., 49, 1530–1543, https://doi.org/10.1002/esp.5784, 2024. a
Telewski, F. W.: Thigmomorphogenesis: the response of plants to mechanical perturbation, Italus Hortus, 23, 1–16, 2016. a
Tomasicchio, G. R., Sánchez-Arcilla, A., D'Alessandro, F., Ilic, S., James, M. R., Sancho, F., Fortes, C. J., and Schüttrumpf, H.: Large-scale experiments on dune erosion processes, J. Hydraul. Res., 49, 20–30, https://doi.org/10.1080/00221686.2011.604574, 2011. a
Türker, U., Yagci, O., and Kabdasli, M. S.: Impact of nearshore vegetation on coastal dune erosion: assessment through laboratory experiments, Environ. Earth Sci., 78, 584, https://doi.org/10.1007/s12665-019-8602-8, 2019. a
van Gent, M. R. A., Coeveld, E. M., de Vroeg, H., and van de Graaff, J.: Dune erosion prediction methods incorporating effects of wave periods, Coastal Sediments 2007 Conference Paper, New Orleans, Louisiana, U.S., 13–17 May 2007, 612–625, https://doi.org/10.1061/40926(239)46, 2007. a
van Gent, M. R. A., van Thiel de Vries, J., Coeveld, E. M., de Vroeg, J. H., and van de Graaff, J.: Large-scale dune erosion tests to study the influence of wave periods, Coast. Eng., 55, 1041–1051, https://doi.org/10.1016/j.coastaleng.2008.04.003, 2008. a
van IJzendoorn, C. O., de Vries, S., Hallin, C., and Hesp, P. A.: Sea level rise outpaced by vertical dune toe translation on prograding coasts, Sci. Rep., 11, 12792, https://doi.org/10.1038/s41598-021-92150-x, 2021. a
van Rijn, L. C. and Strypsteen, G.: A fully predictive model for aeolian sand transport, Coast. Eng., 156, 103600, https://doi.org/10.1016/j.coastaleng.2019.103600, 2020. a
van Westen, B., de Vries, S., Cohn, N., van IJzendoorn, C., Strypsteen, G., and Hallin, C.: AeoLiS: Numerical modelling of coastal dunes and aeolian landform development for real-world applications, Environ. Model. Softw., 179, 106093, https://doi.org/10.1016/j.envsoft.2024.106093, 2024. a
Walker, S. L. and Zinnert, J.: Whole plant traits of coastal dune vegetation and implications for interactions with dune dynamics, Ecosphere, 13, e4065, https://doi.org/10.1002/ecs2.4065, 2022. a
Zarnetske, P. L., Hacker, S. D., Seabloom, E. W., Ruggiero, P., Killian, J. R., Maddux, T. B., and Cox, D.: Biophysical feedback mediates effects of invasive grasses on coastal dune shape, Ecology, 93, 1439–1450, https://doi.org/10.1890/11-1112.1, 2012. a, b, c
Zarnetske, P. L., Ruggiero, P., Seabloom, E. W., and Hacker, S. D.: Coastal foredune evolution: the relative influence of vegetation and sand supply in the US Pacific Northwest, J. R. Soc. Interface, 12, https://doi.org/10.1098/rsif.2015.0017, 2015. a
Zhu, Z., Yang, Z., and Bouma, T. J.: Biomechanical properties of marsh vegetation in space and time: effects of salinity, inundation and seasonality, Ann. Bot., 125, 277–290, https://doi.org/10.1093/aob/mcz063, 2020. a, b
ZwickRoell GmbH & Co. KG: Product Information: Materials Testing Machines zwickiLine Z0.5 to Z5.0, https://www.zwickroell.com/fileadmin/content/Files/SharePoint/user_upload/PI_EN/02_396_zwickiLine_Z0_5_up_to_Z5_0_Materials_Testing_Machine_PI_EN.pdf (last access: 28 July 2024), 2024. a
Editor
This study provides sorely needed insights into the spatial and temporal variability in marram grass traits in relation to aeolian sand transport. This information will be highly relevant to developing and refining coastal dune formation models.
This study provides sorely needed insights into the spatial and temporal variability in marram...
Short summary
This study analyzes seasonal biomechanical traits of marram grass at two coastal dune sites using monthly field and lab data from 2022. Observed differences in density, leaf length, and flower stems were found to be wind-independent and transferable across sites. The results support surrogate model development for numerical and physical experiments alike, where using live vegetation is impractical. Results address the knowledge gap on how vegetation influences dune stability and erosion resistance.
This study analyzes seasonal biomechanical traits of marram grass at two coastal dune sites...