Articles | Volume 13, issue 5
https://doi.org/10.5194/esurf-13-845-2025
https://doi.org/10.5194/esurf-13-845-2025
Research article
 | 
11 Sep 2025
Research article |  | 11 Sep 2025

Translating deposition ages into erosion rates: inverse landscape evolution modelling and uncertainty analysis

W. Marijn van der Meij

Related authors

Geomorphological activity and stability of surfaces and soils formed in hyperarid alluvial deposits (Atacama Desert, Chile)
Linda Andrea Elisabeth Maßon, Simon Matthias May, Svenja Riedesel, Willem Marijn van der Meij, Stephan Opitz, Andreas Peffeköver, and Tony Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2025-5895,https://doi.org/10.5194/egusphere-2025-5895, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Modelling long-term soil organic carbon sequestration under varying environmental drivers and internal protection mechanisms – towards a digital twin
W. Marijn van der Meij and Peter A. Finke
EGUsphere, https://doi.org/10.5194/egusphere-2025-5077,https://doi.org/10.5194/egusphere-2025-5077, 2025
Short summary
A database-driven research data framework for integrating and processing high-dimensional geoscientific data
Dennis Handy, W. Marijn Van der Meij, Mirijam Zickel, and Tony Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2025-4832,https://doi.org/10.5194/egusphere-2025-4832, 2025
Short summary
Mixed Signals: interpreting mixing patterns of different soil bioturbation processes through luminescence and numerical modelling
W. Marijn van der Meij, Svenja Riedesel, and Tony Reimann
SOIL, 11, 51–66, https://doi.org/10.5194/soil-11-51-2025,https://doi.org/10.5194/soil-11-51-2025, 2025
Short summary
ChronoLorica: introduction of a soil–landscape evolution model combined with geochronometers
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023,https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary

Cited articles

Aldana Jague, E., Sommer, M., Saby, N. P. A., Cornelis, J.-T., Van Wesemael, B., and Van Oost, K.: High resolution characterization of the soil organic carbon depth profile in a soil landscape affected by erosion, Soil and Tillage Research, 156, 185–193, https://doi.org/10.1016/j.still.2015.05.014, 2016. 
Alewell, C., Egli, M., and Meusburger, K.: An attempt to estimate tolerable soil erosion rates by matching soil formation with denudation in Alpine grasslands, Journal of Soils and Sediments, 15, 1383–1399, https://doi.org/10.1007/s11368-014-0920-6, 2015. 
Bateman, M. D., Frederick, C. D., Jaiswal, M. K., and Singhvi, A. K.: Investigations into the potential effects of pedoturbation on luminescence dating, Quaternary Science Reviews, 22, 1169–1176, https://doi.org/10.1016/S0277-3791(03)00019-2, 2003. 
Bergonse, R. and Reis, E.: Reconstructing pre-erosion topography using spatial interpolation techniques: A validation-based approach, Journal of Geographical Sciences, 25, 196–210, https://doi.org/10.1007/s11442-015-1162-2, 2015. 
Calitri, F., Sommer, M., Norton, K., Temme, A., Brandová, D., Portes, R., Christl, M., Ketterer, M. E., and Egli, M.: Tracing the temporal evolution of soil redistribution rates in an agricultural landscape using 239+240Pu and 10Be, Earth Surface Processes and Landforms, 44, 1783–1798, https://doi.org/10.1002/esp.4612, 2019. 
Download
Short summary
A soil-landscape evolution model was used to calculate hillslope erosion rates from OSL-based (Optically Stimulated Luminescence) deposition ages through inverse modelling, with consideration of uncertainties in model input. The results show that erosion rates differ systematically from the deposition rates, highlighting important shortcomings of assessing land degradation through measurable deposition rates.
Share