Articles | Volume 14, issue 1
https://doi.org/10.5194/esurf-14-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esurf-14-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cirque-like alcoves in the northern mid-latitudes of Mars as evidence of glacial erosion
Department of Earth and Space Sciences and Astrobiology Program, University of Washington, Seattle, 98195, USA
Michelle R. Koutnik
Department of Earth and Space Sciences and Astrobiology Program, University of Washington, Seattle, 98195, USA
Stephen Brough
Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, UK
Matteo Spagnolo
Department of Earth Sciences, University of Torino, Torino, Italy
Iestyn Barr
Department of Natural Sciences, Manchester Metropolitan University, Manchester, M15 6BH, UK
Related authors
No articles found.
Robert S. Fausto, Penelope How, Baptiste Vandecrux, Mads C. Lund, Jason E. Box, Kenneth D. Mankoff, Signe B. Andersen, Dirk van As, Rasmus Bahbah, Michele Citterio, William Colgan, Henrik T. Jakobsgaard, Nanna B. Karlsson, Kristian K. Kjeldsen, Signe H. Larsen, Charlotte Olsen, Falk Oraschewski, Anja Rutishauser, Christopher L. Shields, Anne M. Solgaard, Ian T. Stevens, Synne H. Svendsen, Kirsty Langley, Alexandra Messerli, Anders A. Bjørk, Jonas K. Andersen, Jakob Abermann, Jakob Steiner, Rainer Prinz, Berhard Hynek, James M. Lea, Stephen Brough, and Andreas P. Ahlstrøm
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-687, https://doi.org/10.5194/essd-2025-687, 2025
Preprint under review for ESSD
Short summary
Short summary
In summary, the PROMICE | GC-NET AWS data product update represents a significant advancement in Arctic climate monitoring. Through enhanced station designs, state-of-the-art instrumentation, and a transparent, automated data processing workflow, the dataset offers an essential resource for studying the Greenland Ice Sheet and its periphery, validating climate models, and supporting global assessments of cryospheric change.
Shuai Yan, Duncan A. Young, Donald D. Blankenship, Tyler J. Fudge, Duyi Li, Laura Lindzey, Hunter Reeves, Alejandra Vega-Gonzalez, Shivangini Singh, Megan Kerr, Emily Wilbur, and Michelle Koutnik
EGUsphere, https://doi.org/10.5194/egusphere-2025-3944, https://doi.org/10.5194/egusphere-2025-3944, 2025
Short summary
Short summary
This study examines the radar characteristics of the basal unit along Dome A’s southern flank. Through manual mapping and delay-Doppler analysis, we identifies two basal unit types and maps the spatial variation of incoherent scattering. The results suggest that basal unit radar appearance is influenced by englacial temperature variability and potentially by subglacial geological controls.
Jakob Steiner, William Armstrong, Will Kochtitzky, Robert McNabb, Rodrigo Aguayo, Tobias Bolch, Fabien Maussion, Vibhor Agarwal, Iestyn Barr, Nathaniel R. Baurley, Mike Cloutier, Katelyn DeWater, Frank Donachie, Yoann Drocourt, Siddhi Garg, Gunjan Joshi, Byron Guzman, Stanislav Kutuzov, Thomas Loriaux, Caleb Mathias, Biran Menounos, Evan Miles, Aleksandra Osika, Kaleigh Potter, Adina Racoviteanu, Brianna Rick, Miles Sterner, Guy D. Tallentire, Levan Tielidze, Rebecca White, Kunpeng Wu, and Whyjay Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-315, https://doi.org/10.5194/essd-2025-315, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Many mountain glaciers around the world flow into lakes – exactly how many however, has never been mapped. Across a large team of experts we have now identified all glaciers that end in lakes. Only about 1% do so, but they are generally larger than those which end on land. This is important to understand, as lakes can influence the behaviour of glacier ice, including how fast it disappears. This new dataset allows us to better model glaciers at a global scale, accounting for the effect of lakes.
Timo Schmid, Valentina Radić, Andrew Tedstone, James M. Lea, Stephen Brough, and Mauro Hermann
The Cryosphere, 17, 3933–3954, https://doi.org/10.5194/tc-17-3933-2023, https://doi.org/10.5194/tc-17-3933-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet contributes strongly to sea level rise in the warming climate. One process that can affect the ice sheet's mass balance is short-term ice speed-up events. These can be caused by high melting or rainfall as the water flows underneath the glacier and allows for faster sliding. In this study we found three main weather patterns that cause such ice speed-up events on the Russell Glacier in southwest Greenland and analyzed how they induce local melting and ice accelerations.
Connor J. Shiggins, James M. Lea, and Stephen Brough
The Cryosphere, 17, 15–32, https://doi.org/10.5194/tc-17-15-2023, https://doi.org/10.5194/tc-17-15-2023, 2023
Short summary
Short summary
Iceberg detection is spatially and temporally limited around the Greenland Ice Sheet. This study presents a new, accessible workflow to automatically detect icebergs from timestamped ArcticDEM strip data. The workflow successfully produces comparable output to manual digitisation, with results revealing new iceberg area-to-volume conversion equations that can be widely applied to datasets where only iceberg outlines can be extracted (e.g. optical and SAR imagery).
Mohd Soheb, Alagappan Ramanathan, Anshuman Bhardwaj, Millie Coleman, Brice R. Rea, Matteo Spagnolo, Shaktiman Singh, and Lydia Sam
Earth Syst. Sci. Data, 14, 4171–4185, https://doi.org/10.5194/essd-14-4171-2022, https://doi.org/10.5194/essd-14-4171-2022, 2022
Short summary
Short summary
This study provides a multi-temporal inventory of glaciers in the Ladakh region. The study records data on 2257 glaciers (>0.5 km2) covering an area of ~7923 ± 106 km2 which is equivalent to ~89 % of the total glacierised area of the Ladakh region. It will benefit both the scientific community and the administration of the Union Territory of Ladakh, in developing efficient mitigation and adaptation strategies by improving the projections of change on timescales relevant to policymakers.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
David W. Ashmore, Douglas W. F. Mair, Jonathan E. Higham, Stephen Brough, James M. Lea, and Isabel J. Nias
The Cryosphere, 16, 219–236, https://doi.org/10.5194/tc-16-219-2022, https://doi.org/10.5194/tc-16-219-2022, 2022
Short summary
Short summary
In this paper we explore the use of a transferrable and flexible statistical technique to try and untangle the multiple influences on marine-terminating glacier dynamics, as measured from space. We decompose a satellite-derived ice velocity record into ranked sets of static maps and temporal coefficients. We present evidence that the approach can identify velocity variability mainly driven by changes in terminus position and velocity variation mainly driven by subglacial hydrological processes.
Rachel K. Smedley, David Small, Richard S. Jones, Stephen Brough, Jennifer Bradley, and Geraint T. H. Jenkins
Geochronology, 3, 525–543, https://doi.org/10.5194/gchron-3-525-2021, https://doi.org/10.5194/gchron-3-525-2021, 2021
Short summary
Short summary
We apply new rock luminescence techniques to a well-constrained scenario of the Beinn Alligin rock avalanche, NW Scotland. We measure accurate erosion rates consistent with independently derived rates and reveal a transient state of erosion over the last ~4000 years in the wet, temperate climate of NW Scotland. This study shows that the new luminescence erosion-meter has huge potential for inferring erosion rates on sub-millennial scales, which is currently impossible with existing techniques.
Trevor R. Hillebrand, John O. Stone, Michelle Koutnik, Courtney King, Howard Conway, Brenda Hall, Keir Nichols, Brent Goehring, and Mette K. Gillespie
The Cryosphere, 15, 3329–3354, https://doi.org/10.5194/tc-15-3329-2021, https://doi.org/10.5194/tc-15-3329-2021, 2021
Short summary
Short summary
We present chronologies from Darwin and Hatherton glaciers to better constrain ice sheet retreat during the last deglaciation in the Ross Sector of Antarctica. We use a glacier flowband model and an ensemble of 3D ice sheet model simulations to show that (i) the whole glacier system likely thinned steadily from about 9–3 ka, and (ii) the grounding line likely reached the Darwin–Hatherton Glacier System at about 3 ka, which is ≥3.8 kyr later than was suggested by previous reconstructions.
Cited articles
Anderson, L. W.: Cirque glacier erosion rates and characteristics of Neoglacial tills, Pangnirtung Fiord area, Baffin Island, NWT, Canada, Arct. Alp. Res., 10, 749–760, 1978.
Andrews, J. T. and Dugdale, R. E.: Late Quaternary glacial and climatic history of northern Cumberland Peninsula, Baffin Island, NWT, Canada. Part V: factors affecting corrie glacierization in Okoa Bay. Quat. Res., 1, 532–551, 1971.
Aniya, M. and Welch, R.: Morphometric analyses of Antarctic cirques from photogrammetric measurements, Geogr. Ann. Ser. A Phys. Geogr., 63, 41–53, 1981.
Arfstrom, J. and Hartmann, W. K.: Martian flow features, moraine-like ridges, and gullies: Terrestrial analogs and interrelationships, Icarus, 174, 321–335, https://doi.org/10.1016/j.icarus.2004.05.026, 2005.
Baker, D. M. and Carter, L. M.: Probing supraglacial debris on Mars 1: Sources, thickness, and stratigraphy, Icarus, 319, 745–769, https://doi.org/10.1016/j.icarus.2018.09.001, 2019.
Baker, D. M. and Head, J. W.: Extensive Middle Amazonian mantling of debris aprons and plains in Deuteronilus Mensae, Mars: Implications for the record of mid-latitude glaciation, Icarus, 260, 269–288, https://doi.org/10.1016/j.icarus.2015.06.036, 2015.
Baker, D. M. H. and Carter, L. M.: Radar reflectors associated with an ice-rich mantle unit in Deuteronilus Mensae, Mars. 48th Annual Lunar and Planetary Science Conference, The Woodlands, Texas, March 2017, No. 1964, p. 1575, https://www.hou.usra.edu/meetings/lpsc2017/pdf/1575.pdf (last access: 20 August 2025), 2017.
Balco, G. and Shuster, D. L.: Production rate of cosmogenic 21Ne in quartz estimated from 10Be, 26Al, and 21Ne concentrations in slowly eroding Antarctic bedrock surfaces, Earth Planet. Sci. Lett., 281, 48–58, https://doi.org/10.1016/j.epsl.2009.02.006, 2009.
Barlow, J., Franklin, S., and Martin, Y.: High spatial resolution satellite imagery, DEM derivatives, and image segmentation for the detection of mass wasting processes, Photogrammetric Engineering, 72, 687–692, https://doi.org/10.14358/PERS.72.6.687, 2006.
Barr, I. D. and Spagnolo, M.: Glacial cirques as palaeoenvironmental indicators: Their potential and limitations, Earth-Science Reviews, 151, 48–78, https://doi.org/10.1016/j.earscirev.2015.10.004, 2015.
Barr, I. D., Ely, J. C., Spagnolo, M., Evans, I. S., and Tomkins, M. D.: The dynamics of mountain erosion: cirque growth slows as landscapes age, Earth Surf. Process. Landf., 44, 2628–2637, https://doi.org/10.1002/esp.4688, 2019.
Benn, D. I. and Evans, D. J. A.: Glaciers and Glaciation, Hodder Education, London, 2010.
Berman, D. C., Crown, D. A., and Joseph, E. C.: Formation and mantling ages of lobate debris aprons on Mars: Insights from categorized crater counts, Planetary and Space Science, 111, 83–99, https://doi.org/10.1016/j.pss.2015.03.013, 2015.
Bouquety, A., Sejourné, A., Costard, F., Mercier, D., and Bouley, S.: Morphometric evidence of 3.6 Ga glacial valleys and glacial cirques in martian highlands: South of Terra Sabaea, Geomorphology, 334, 91–111, https://doi.org/10.1016/j.geomorph.2019.02.022, 2019.
Brough, S., Hubbard, B., and Hubbard, A.: Area and volume of mid-latitude glacier-like forms on Mars, Earth Planet. Sci. Lett., 507, 10–20, https://doi.org/10.1016/j.epsl.2018.11.031, 2019.
Butcher, F. E., Balme, M. R., Gallagher, C., Arnold, N. S., Conway, S. J., Hagermann, A., and Lewis, S. R.: Recent basal melting of a mid-latitude glacier on Mars. J. Geophys. Res.-Planets, 122, 2445–2468, https://doi.org/10.1002/2017JE005434, 2017.
Butcher, F. E. G., Balme, M. R., Conway, S. J., Gallagher, C., Arnold, N. S., Storrar, R. D., Lewis, S. R., Hagermann, A., and Davis, J. M.: Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity, Icarus, 357, 114131, https://doi.org/10.1016/j.icarus.2020.114131, 2021.
Butcher, F. E. G., Arnold, N. S., Conway, S. J., Berman, D. C., Davis, J. M., and Balme, M. R.: The internal structure of a debris-covered glacier on Mars revealed by gully incision, Icarus, 419, 115717, https://doi.org/10.1016/j.icarus.2023.115717, 2024.
Carr, M. H.: Mars Global Surveyor observations of Martian fretted terrain, J. Geophys. Res.-Planets, 106, 23571–23593, 2001.
Christensen, P.: Formation of recent martian gullies through melting of extensive water-rich snow deposits, Nature, 422, 45–48, https://doi.org/10.1029/2000JE001316, 2003.
Clinger, A. E., Fox, M., Balco, G., Cuffey, K., and Shuster, D. L.: Detrital thermochronometry reveals that the topography along the Antarctic Peninsula is not a Pleistocene landscape, J. Geophys. Res. Earth Surf., 125, e2019JF005447, https://doi.org/10.1029/2019JF005447, 2020.
Conway, S. J. and Balme, M. R.: Decameter thick remnant glacial ice deposits on Mars, Geophys. Res. Lett., 41, 5402–5409, https://doi.org/10.1002/2014GL060314, 2014.
Conway, S. J., Butcher, F. E., de Haas, T., Deijns, A. A., Grindrod, P. M., and Davis, J. M.: Glacial and gully erosion on Mars: A terrestrial perspective, Geomorphology, 318, 26–57, https://doi.org/10.1016/j.geomorph.2018.05.019, 2018.
Cook, S. J., Swift, D. A., Kirkbride, M. P., Knight, P. G., and Waller, R. I.: The empirical basis for modelling glacial erosion rates, Nature Communications, 11, 759, https://doi.org/10.1038/s41467-020-14583-8, 2020.
Costard, F., Forget, F., Mangold, N., and Peulvast, J. P.: Formation of recent Martian debris flows by melting of near-surface ground ice at high obliquity, Science, 295, 110–113, https://doi.org/10.1126/science.1066698, 2002.
Coquin, J., Mercier, D., Bourgeois, O., and Decaulne, A.: A paraglacial rock-slope failure origin for cirques: a case study from Northern Iceland, Géomorphologie: Relief, Processus, Environnement, 25, 117–136, https://doi.org/10.4000/geomorphologie.13057, 2019.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Fourth edition, Amsterdam, Academic Press, 704 pp., ISBN 9780123694614, 2010.
Cuffey, K. M., Conway, H., Gades, A. M., Hallet, B., Lorrain, R., Severinghaus, J. P., Steig, E. J., Vaughn, B., and White, J. W.: Entrainment at cold glacier beds, Geology, 28, 351–354, https://doi.org/10.1130/0091-7613(2000)28<351:EACGB>2.0.CO;2, 2000.
Davila, A. F., Fairén, A. G., Stokes, C. R., Platz, T., Rodriguez, A. P., Lacelle, D., Dohm, J., and Pollard, W.: Evidence for Hesperian glaciation along the Martian dichotomy boundary, Geology, 41, 755–758, https://doi.org/10.1130/G34201.1, 2013.
Day, M., Kim, E., Sullivan, M., Goudge, T., and Paige, D.: High Resolution DEMs for Mars: A repository of paired HiRISE and CTX DEMs, 6th Planetary Data Workshop, 2023, Flagstaff, Arizona, https://doi.org/10.17189/ervc-mr85, 2023.
Derbyshire, E. and Evans, I. S.: The climatic factor in cirque variation, Geomorphology and Climate, 447, 494, 1976.
Dickson, J. L., Kerber, L. A., Fassett, C. I., and Ehlmann, B. L.: A global, blended CTX mosaic of Mars with vectorized seam mapping: A new mosaicking pipeline using principles of non-destructive image editing, 49th Annual Lunar and Planetary Science Conference, The Woodlands, Texas, March 2018, No. 2083, https://murray-lab.caltech.edu/CTX/LPSC2018_CTX-Mosaic-Poster.pdf (last access: 20 August 2025), 2018 (data available at: https://murray-lab.caltech.edu/CTX/beta01.html, last access: 20 August 2025).
Dickson, J. L., Palumbo, A. M., Head, J. W., Kerber, L., Fassett, C. I., and Kreslavsky, M. A.: Gullies on Mars could have formed by melting of water ice during periods of high obliquity, Science, 380, 1363–1367, https://doi.org/10.1126/science.abk2464, 2023.
Dundas, C. M., Conway, S. J., and Cushing, G. E.: Martian gully activity and the gully sediment transport system, Icarus, 386, 115133, https://doi.org/10.1016/j.icarus.2022.115133, 2022.
Evans, I. S.: Local aspect asymmetry of mountain glaciation: a global survey of consistency of favoured directions for glacier numbers and altitudes, Geomorphology, 73, 166–184, https://doi.org/10.1016/j.geomorph.2005.07.009, 2006.
Evans, I. S.: Glaciers, rock avalanches and the `buzzsaw' in cirque development: Why mountain cirques are of mainly glacial origin, Earth Surf. Process. Landf., 46, 24–46, https://doi.org/10.1002/esp.4810, 2020.
Evans, I. S. and Cox, N.: Geomorphometry and the operational definition of cirques, Area, 6, 150–153, 1974.
Evans, I. S. and Cox, N. J.: The form of glacial cirques in the English Lake District, Cumbria, Z. Geomorphol., 39, 175–202, 1995.
Fassett, C. I., Levy, J. S., Dickson, J. L., and Head, J. W.: An extended period of episodic northern mid-latitude glaciation on Mars during the Middle to Late Amazonian: Implications for long-term obliquity history, Geology, 42, 763–766, https://doi.org/10.1130/G35798.1, 2014.
Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S. R., Read, P. L., and Huot, J. P.: Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res.-Planets, 104, 24155–24175, https://doi.org/10.1029/1999JE001025, 1999.
French, H. M.: The periglacial environment, Fourth edition, Hoboken, NJ, John Wiley and Sons, ISBN 9781119132790, 2018.
Gallagher, C. and Balme, M.: Eskers in a complete, wet-based glacial system in the Phlegra Montes region, Mars, Earth Planet. Sci. Lett., 431, 96–109, https://doi.org/10.1016/j.epsl.2015.09.023, 2015.
Gallagher, C., Butcher, F. E., Balme, M., Smith, I., and Arnold, N.: Landforms indicative of regional warm-based glaciation, Phlegra Montes, Mars, Icarus, 355, 114173, https://doi.org/10.1016/j.icarus.2020.114173, 2021.
Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., and Tyler, D.: The National Elevation Dataset, Photogramm. Eng. Rem. S., 68, 5–11, 2002.
Glasser, N. F. and Bennett, M. R.: Glacial erosional landforms: origins and significance for palaeoglaciology, Prog. Phys. Geogr., 28, 43–75, https://doi.org/10.1191/0309133304pp401ra, 2004.
Graf, W. L.: Cirques as glacier locations, Arct. Alp. Res., 8, 79–90, 1976.
Hallet, B., Hunter, L., and Bogen, J.: Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications, Glob. Planet. Change, 12, 213–235, 1996.
Hambrey, M. J., Huddart, D., Bennett, M. R., and Glasser, N. F.: Genesis of `hummocky moraines' by thrusting in glacier ice: Evidence from Svalbard and Britain, J. Geol. Soc. Lond., 154, 623–632, https://doi.org/10.1144/gsjgs.154.4.0623, 1997.
Harrison, T. N., Osinski, G. R., Tornabene, L. L., and Jones, E.: Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation, Icarus, 252, 236–254, https://doi.org/10.1016/j.icarus.2015.01.022, 2015.
Hartmann, W. K.: Martian cratering 8: Isochron refinement and the chronology of Mars, Icarus, 174, 294–320, https://doi.org/10.1016/j.icarus.2004.11.023, 2005.
Head, J. W. and Marchant, D. R.: Cold-based mountain glaciers on Mars: western Arsia Mons, Geology, 31, 641–644, https://doi.org/10.1130/0091-7613(2003)031<0641:CMGOMW>2.0.CO;2, 2003.
Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E., and Marchant, D. R.: Recent ice ages on Mars, Nature, 426, 797–802, https://doi.org/10.1038/nature02114, 2003.
Head, J. W., Marchant, D. R., Agnew, M. C., Fassett, C. I., and Kreslavsky, M. A.: Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change, Earth Planet. Sci. Lett., 241, 663–671, https://doi.org/10.1016/j.epsl.2005.11.016, 2006.
Head, J. W., Marchant, D. R., Dickson, J. L., Kress, A. M., and Baker, D. M.: Northern mid-latitude glaciation in the Late Amazonian period of Mars: Criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits, Earth Planet. Sci. Lett., 294, 306–320, https://doi.org/10.1016/j.epsl.2009.06.041, 2010.
Hepburn, A. J., Ng, F. S. L., Livingstone, S. J., Holt, T. O., and Hubbard, B.: Polyphase mid-latitude glaciation on Mars: Chronology of the formation of superposed glacier-like forms from crater-count dating, J. Geophys. Res.-Planets, 125, https://doi.org/10.1029/2019JE006102, 2020.
Holt, J. W., Safaeinili, A., Plaut, J. J., Head, J. W., Phillips, R. J., Seu, R., Kempf, S. D., Choudhary, P., Young, D. A., Putzig, N. E., and Biccari, D.: Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars, Science, 322, 1235–1238, https://doi.org/10.1126/science.1164246, 2008.
Howat, I., Porter, C., Noh, M. J., Husby, E., Khuvis, S., Danish, E., Tomko, K., Gardiner, J., Negrete, A., Yadav, B., and Klassen, J.: The Reference Elevation Model of Antarctica – Strips, Version 4.1, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/X7NDNY (last access: 20 August 2025), 2022.
Hubbard, B., Milliken, R. E., Kargel, J. S., Limaye, A., and Souness, C.: Geomorphological characterisation and interpretation of a mid-latitude glacier-like form: Hellas Planitia, Mars, Icarus, 211, 330–346, https://doi.org/10.1016/j.icarus.2010.10.021, 2011.
Hubbard, B., Souness, C., and Brough, S.: Glacier-like forms on Mars, The Cryosphere, 8, 2047–2061, https://doi.org/10.5194/tc-8-2047-2014, 2014.
Janke, J. R., Regmi, N. R., Giardino, J. R., and Vitek, J. D.: Rock Glaciers, Treatise on Geomorphology, 8, 238–273, https://doi.org/10.1016/B978-0-12-374739-6.00211-6, 2013.
Jawin, E. R. and Head, J. W.: Patterns of late Amazonian deglaciation from the distribution of martian paraglacial features, Icarus, 355, 114117, https://doi.org/10.1016/j.icarus.2020.114117, 2021.
Jawin, E. R., Head, J. W., and Marchant, D. R.: Transient post-glacial processes on Mars: geomorphologic evidence for a paraglacial period, Icarus, 309, 187–206, https://doi.org/10.1016/j.icarus.2018.01.026, 2018.
Khuller, A. R., Christensen, P. R., Harrison, T. N., and Diniega, S.: The distribution of frosts on Mars: Links to present-day gully activity, J. Geophys. Res.-Planets, 126, https://doi.org/10.1029/2020JE006577, 2021.
Kite, E. S.: Geologic constraints on early Mars climate, Space Sci. Rev., 215, 1–47, https://doi.org/10.1007/s11214-018-0575-5, 2019.
Kreslavsky, M. A. and Head III, J. W.: Mars: Nature and evolution of young latitude-dependent water-ice-rich mantle, Geophys. Res. Lett., 29, 14–1, https://doi.org/10.1029/2002GL015392, 2002.
Kreslavsky, M. A., Head, J. W., and Marchant, D. R.: Periods of active permafrost layer formation during the geological history of Mars: Implications for circum-polar and mid-latitude surface processes, Planetary and Space Science, 56, 289–302, https://doi.org/10.1016/j.pss.2006.02.010, 2008.
LaHusen, S. R., Duvall, A. R., Booth, A. M., and Montgomery, D. R.: Surface roughness dating of long-runout landslides near Oso, Washington (USA), reveals persistent postglacial hillslope instability, Geology, 44, 111–114, https://doi.org/10.1130/G37267.1, 2016.
Laity, J.: The Role of Groundwater Sapping in Valley Evolution, Sapping Features of the Colorado Plateau: A Comparative Planetary Geology Field Guide, 491, 63, https://books.google.com/books?hl=en&lr=&id=V84YEoCf-TwC&oi=fnd&pg=PA63&dq=Laity,+J.:+The+Role+of+Groundwater+Sapping+in+Valley+Evolution,+100+Sapping+Features+of+the+Colorado+Plateau:+A+Comparative+Planetary+Geology+Field+Guide,+491,+63,&ots=RBHgij6avY&sig=aT8LiYPUqDC1KxuDFDybelAICEI#v=onepage&q&f=false (last access: 14 October 2023), 1988.
Lapôtre, M. G. and Lamb, M. P.: Substrate controls on valley formation by groundwater on Earth and Mars, Geology, 46, 531–534, https://doi.org/10.1130/G40007.1, 2018.
Lapôtre, M. G., Lamb, M. P., and Williams, R. M.: Canyon formation constraints on the discharge of catastrophic outburst floods of Earth and Mars, J. Geophys. Res.-Planets, 121, 1232–1263, https://doi.org/10.1002/2016JE005061, 2016.
Larsen, E. and Mangerud, J.: Erosion rate of a Younger Dryas cirque glacier at Krakenes, western Norway, Ann. Glaciol., 2, 153–158, 1981.
Laskar, J., Levrard, B., and Mustard, J. F.: Orbital forcing of the Martian polar layered deposits, Nature, 419, 375–377, https://doi.org/10.1038/nature01066, 2002.
Levy, J. S., Head, J. W., and Marchant, D. R.: Concentric crater fill in Utopia Planitia: History and interaction between glacial “brain terrain” and periglacial mantle processes, Icarus, 202, 462–476, https://doi.org/10.1016/j.icarus.2009.02.018, 2009a.
Levy, J. S., Head, J., and Marchant, D.: Thermal contraction crack polygons on Mars: Classification, distribution, and climate implications from HiRISE observations, J. Geophys. Res.-Planets, 114, https://doi.org/10.1029/2008JE003273, 2009b.
Levy, J. S., Fassett, C. I., Head, J. W., Schwartz, C., and Watters, J. L.: Sequestered glacial ice contribution to the global Martian water budget: Geometric constraints on the volume of remnant, midlatitude debris-covered glaciers, J. Geophys. Res.-Planets, 119, 2188–2196, https://doi.org/10.1002/2014JE004685, 2014.
Levy, J. S., Fassett, C. I., and Head, J. W.: Enhanced erosion rates on Mars during Amazonian glaciation, Icarus, 264, 213–219, https://doi.org/10.1016/j.icarus.2015.09.037, 2016.
Levy, J. S., Fassett, C. I., Holt, J. W., Parsons, R., Cipolli, W., Goudge, T. A., Tebolt, M., Kuentz, L., Johnson, J., Ishraque, F., and Cvijanovich, B.: Surface boulder banding indicates Martian debris-covered glaciers formed over multiple glaciations, PNAS, 118, https://doi.org/10.1073/pnas.2015971118, 2021.
Li, A., Koutnik, M., Brough, S., Spagnolo, M., and Barr, I.: Cirque-like alcoves in the northern mid-latitudes of Mars as evidence of glacial erosion, Zenodo [data set], https://doi.org/10.5281/zenodo.17527279, 2025.
Li, Y., Evans, I. S., Spagnolo, M., Pellitero, R., Barr, I. D., and Ely, J. C.: ACME2: An extended toolbox for automated cirque metrics extraction, Geomorphology, 445, 108982, https://doi.org/10.1016/j.geomorph.2023.108982, 2024.
Lukas, S.: A test of the englacial thrusting hypothesis of `hummocky' moraine formation: Case studies from the northwest Highlands, Scotland, Boreas, 34, 287–307, https://doi.org/10.1111/j.1502-3885.2005.tb01102.x, 2005.
Mackay, S. L., Marchant, D. R., Lamp, J. L., and Head, J. W.: Cold-based debris-covered glaciers: Evaluating their potential as climate archives through studies of ground-penetrating radar and surface morphology, J. Geophys. Res. Earth Surf. 119, 2505–2540, https://doi.org/10.1002/2014JF003178, 2014.
Madeleine, J. B., Forget, F., Head, J. W., Levrard, B., Montmessin, F., and Millour, E.: Amazonian northern mid-latitude glaciation on Mars: A proposed climate scenario, Icarus, 203, 390–405, https://doi.org/10.1016/j.icarus.2009.04.037, 2009.
Malin, M. C., Bell, J. F., Cantor, B. A., Caplinger, M. A., Calvin, W. M., Clancy, R. T., Edgett, K. S., Edwards, L., Haberle, R. M., James, P. B., Lee, S. W., Ravine, M. A., Thomas, P. C., and Wolff, M. J.: Context camera investigation on board the Mars Reconnaissance Orbiter, J. Geophys. Res. 112, E05S04, https://doi.org/10.1029/2006JE002808, 2007.
Mangold, N. and Allemand, P.: Topographic analysis of features related to ice on Mars, Geophys. Res. Lett., 28, 407–410, https://doi.org/10.1029/2000GL008491, 2001.
Marchant, D. R. and Head III, J. W.: Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars, Icarus, 192, 187–222, https://doi.org/10.1016/j.icarus.2007.06.018, 2007.
McEwen, A. S., Eliason, E. M., Bergstrom, J. W., Bridges, N. T., Hansen, C. J., Delamere, W. A., Grant, J. A., Gulick, V. C., Herkenhoff, K. E., Keszthelyi, L., Kirk, R. L., Mellon, M. T., Squyres, S. W., Thomas, N., and Weitz, C. M.: Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE), J. Geophys. Res., 112, E05S02, https://doi.org/10.1029/2005JE002605, 2007.
Michael, G. G.: Planetary surface dating from crater size-frequency distribution measurements: Multiple resurfacing episodes and differential isochron fitting, Icarus, 226, 885–890, https://doi.org/10.1016/j.icarus.2013.07.004, 2013.
Milliken, R. E., Mustard, J. F., and Goldsby, D. L.: Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images, J. Geophys. Res.-Planets, 108, https://doi.org/10.1029/2002JE002005, 2003.
Mîndrescu, M., Evans, I. S., and Cox, N. J.: Climatic implications of cirque distribution in the Romanian Carpathians: palaeowind directions during glacial periods, J. Quat. Sci., 25, 875–888, https://doi.org/10.1002/jqs.1363, 2010.
Morgan, G. A., Head III, J. W., and Marchant, D. R.: Lineated valley fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae northern dichotomy boundary region, Mars: Constraints on the extent, age and episodicity of Amazonian glacial events, Icarus, 202, 22–38, https://doi.org/10.1016/j.icarus.2009.02.017, 2009.
Morgan, G. A., Putzig, N. E., Perry, M. R., Sizemore, H. G., Bramson, A. M., Petersen, E. I., Bain, Z. M., Baker, D. M., Mastrogiuseppe, M., Hoover, R. H., Smith, I. B., Pathare, A., Dundas, C. M., and Campbell, B. A.: Availability of subsurface water-ice resources in the northern mid-latitudes of Mars, Nat. Astron., 5, 230–236, https://doi.org/10.1038/s41550-020-01290-z, 2021.
Mustard, J. F., Christopher, D. C., and Moses, K. R.: Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice, Nature, 412, 411, https://doi.org/10.1038/35086515, 2001.
NASA Shuttle Radar Topography Mission (SRTM): Shuttle Radar Topography Mission (SRTM) Global, OpenTopography [data set], https://doi.org/10.5069/G9445JDF, 2013.
Neukum, G. and Jaumann, R.: The HRSC Co-Investigator and Experiment Team, HRSC: the high resolution stereo camera of Mars Express, edited by: Wilson, A., Mars Express: The Scientific Payload, 1240, European Space Agency Special Publication, 17–35, https://sci.esa.int/documents/33745/35957/1567253672047-NeukemWeb.pdf (last access: 20 August 2025), 2004.
Noblet, A., Conway, S. J., and Osinski, G. R.: A global map of gullied hillslopes on Mars, Icarus, 418, 116147, https://doi.org/10.1016/j.icarus.2024.116147, 2024.
Palucis, M. C., Jasper, J., Garczynski, B., and Dietrich, W. E.: Quantitative assessment of uncertainties in modeled crater retention ages on Mars, Icarus, 341, 113623, https://doi.org/10.1016/j.icarus.2020.113623, 2020.
Parsons, R. and Holt, J.: Constraints on the formation and properties of a Martian lobate debris apron: Insights from high-resolution topography, SHARAD radar data, and a numerical ice flow model, J. Geophys. Res.-Planets, 121, 432–453, https://doi.org/10.1002/2015JE004927, 2016.
Plaut, J. J., Safaeinili, A., Holt, J. W., Phillips, R. J., Head III, J. W., and Seu, R.: Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars, Geophys. Res. Lett., 36, https://doi.org/10.1029/2008GL036379, 2009.
Robbins, S. J. and Hynek, B. M.: A new global database of Mars impact craters ≥ 1 km: 2. Global crater properties and regional variations of the simple-to-complex transition diameter, J. Geophys. Res.-Planets, 117, https://doi.org/10.1029/2011JE003967, 2012.
Sanders, J. W., Cuffey, K. M., Moore, J. R., MacGregor, K. R., and Kavanaugh, J. L.: Periglacial weathering and headwall erosion in cirque glacier bergschrunds, Geology, 40, 779–782, https://doi.org/10.1130/G33330.1, 2012.
Sanders, J. W., Cuffey, K. M., MacGregor, K. R., and Collins, B. D.: The sediment budget of an alpine cirque, GSA Bulletin, 125, 229–248, https://doi.org/10.1130/B30688.1, 2013.
Schon, S. C., Head, J. W., and Fassett, C. I.: Unique chronostratigraphic marker in depositional fan stratigraphy on Mars: Evidence for ca. 1.25 Ma gully activity and surficial meltwater origin, Geology, 37, 207–210, https://doi.org/10.1130/G25398A.1, 2009.
Schon, S. C., Head, J. W., and Fassett, C. I.: Recent high-latitude resurfacing by a climate-related latitude-dependent mantle: Constraining age of emplacement from counts of small craters, Planet. Space Sci., 69, 49–61, https://doi.org/10.1016/j.pss.2012.03.015, 2012.
Selby, M. J. and Wilson, A. T.: Possible Tertiary age for some Antarctic cirques, Nature, 229, 623–624, 1971.
Sharp, M.: “Crevasse-fill” ridges – a landform type characteristic of surging glaciers?, Geogr. Ann., 67A, 213–220, 1985.
Sharp, R. P.: Mars: Fretted and chaotic terrains, J. Geophys. Res., 78, 4073–4083, 1973.
Shean, D. E., Head, J. W., and Marchant, D. R.: Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit, J. Geophys. Res.-Planets, 110, https://doi.org/10.1029/2004JE002360, 2005.
Soare, R. J., Williams, J. P., Hepburn, A. J., and Butcher, F. E.: A billion or more years of possible periglacial/glacial cycling in Protonilus Mensae, Mars, Icarus, 385, 115115, https://doi.org/10.1016/j.icarus.2022.115115, 2022.
Souness, C., Hubbard, B., Milliken, R. E., and Quincey, D.: An inventory and population-scale analysis of martian glacier-like forms, Icarus, 217, 243–255, https://doi.org/10.1016/j.icarus.2011.10.020, 2012.
Souness, C. J. and Hubbard, B.: An alternative interpretation of late Amazonian ice flow: Protonilus Mensae, Mars, Icarus, 225, 495–505, https://doi.org/10.1016/j.icarus.2013.03.030, 2013.
Spagnolo, M., Pellitero, R., Barr, I. D., Ely, J. C., Pellicer, X. M., and Rea, B. R.: ACME, a GIS tool for automated cirque metric extraction, Geomorphology, 278, 280–286, https://doi.org/10.1016/j.geomorph.2016.11.018, 2017.
Squyres, S. W.: Martian fretted terrain: Flow of erosional debris, Icarus, 34, 600–613, 1978.
Squyres, S. W.: The distribution of lobate debris aprons and similar flows on Mars, J. Geophys. Res. Solid Earth, 84, 8087–8096, 1979.
Sugden, D. and Denton, G.: Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: Onshore to offshore synthesis, GSA Bulletin, 116, 840–857, https://doi.org/10.1130/B25356.1, 2004.
Turnbull, J. M. and Davies T. R. H.: A mass movement origin for cirques, Earth Surf. Process. Landf., 31, 1129–1148, https://doi.org/10.1002/esp.1324, 2006.
White, W. A.: Erosion of cirques, The Journal of Geology, 78, 123–126, 1970.
Williams, J. M., Scuderi, L. A., McClanahan, T. P., Banks, M. E., and Baker, D. M.: Comparative planetology–Comparing cirques on Mars and Earth using a CNN, Geomorphology, 440, 108881, https://doi.org/10.1016/j.geomorph.2023.108881, 2023.
Willmes, M., Reiss, D., Hiesinger, H., and Zanetti, M.: Surface age of the ice–dust mantle deposit in Malea Planum, Mars. Planet. Space Sci., 60, 199–206, https://doi.org/10.1016/j.pss.2011.08.006, 2012.
Woodley, S. Z., Butcher, F. E., Fawdon, P., Clark, C. D., Ng, F. S., Davis, J. M., and Gallagher, C.: Multiple sites of recent wet-based glaciation identified from eskers in western Tempe Terra, Mars, Icarus, 386, 115147, https://doi.org/10.1016/j.icarus.2022.115147, 2022.
Short summary
Many alcoves on Mars resemble glacial cirques on Earth. While some contain glacier-like forms, many do not, and they have never been studied at a large scale. We mapped ~2,000 alcoves in Deuteronilus Mensae and identified 435 as "cirque-like." These show geomorphic signs of past glaciation and mainly face south–southeast, implying ice accumulation during high obliquity. Further research is needed to confirm the style of glaciation as either warm-based or cold-based.
Many alcoves on Mars resemble glacial cirques on Earth. While some contain glacier-like forms,...
Special issue