Articles | Volume 5, issue 1
https://doi.org/10.5194/esurf-5-113-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esurf-5-113-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modelling a century of soil redistribution processes and carbon delivery from small watersheds using a multi-class sediment transport model
Florian Wilken
Institute for Geography, Universität Augsburg, 86159 Augsburg,
Germany
Chair of Soil Protection and Recultivation, Brandenburg University of
Technology Cottbus-Senftenberg, 03046 Cottbus, Germany
Institute of Soil Landscape Research, Leibniz Centre for Agricultural
Landscape Research (ZALF) e.V., 15374 Müncheberg, Germany
Peter Fiener
Institute for Geography, Universität Augsburg, 86159 Augsburg,
Germany
Kristof Van Oost
CORRESPONDING AUTHOR
Earth & Life Institute/TECLIM, Université catholique de
1348 Louvain, Belgium
Related authors
Lena Katharina Öttl, Florian Wilken, Anna Juřicová, Pedro V. G. Batista, and Peter Fiener
SOIL, 10, 281–305, https://doi.org/10.5194/soil-10-281-2024, https://doi.org/10.5194/soil-10-281-2024, 2024
Short summary
Short summary
Our long-term modelling study examines the effects of multiple soil redistribution processes on carbon dynamics in a 200 km² catchment converted from natural forest to agriculture about 1000 years ago. The modelling results stress the importance of including tillage erosion processes and long-term land use and land management changes to understand current soil-redistribution-induced carbon fluxes at the landscape scale.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Florian Wilken, Peter Fiener, Michael Ketterer, Katrin Meusburger, Daniel Iragi Muhindo, Kristof van Oost, and Sebastian Doetterl
SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021, https://doi.org/10.5194/soil-7-399-2021, 2021
Short summary
Short summary
This study demonstrates the usability of fallout radionuclides 239Pu and 240Pu as a tool to assess soil degradation processes in tropical Africa, which is particularly valuable in regions with limited infrastructure and challenging monitoring conditions for landscape-scale soil degradation monitoring. The study shows no indication of soil redistribution in forest sites but substantial soil redistribution in cropland (sedimentation >40 cm in 55 years) with high variability.
Florian Wilken, Michael Ketterer, Sylvia Koszinski, Michael Sommer, and Peter Fiener
SOIL, 6, 549–564, https://doi.org/10.5194/soil-6-549-2020, https://doi.org/10.5194/soil-6-549-2020, 2020
Short summary
Short summary
Soil redistribution by water and tillage erosion processes on arable land is a major threat to sustainable use of soil resources. We unravel the role of tillage and water erosion from fallout radionuclide (239+240Pu) activities in a ground moraine landscape. Our results show that tillage erosion dominates soil redistribution processes and has a major impact on the hydrological and sedimentological connectivity, which started before the onset of highly mechanised farming since the 1960s.
He Zhang, Emilien Aldana-Jague, François Clapuyt, Florian Wilken, Veerle Vanacker, and Kristof Van Oost
Earth Surf. Dynam., 7, 807–827, https://doi.org/10.5194/esurf-7-807-2019, https://doi.org/10.5194/esurf-7-807-2019, 2019
Short summary
Short summary
We evaluated the performance of a drone system to reconstruct 3-D topography. We used a direct georeferencing method to make the pictures have precise coordinates, which also improves the survey efficiency. With both consumer-grade and professional-grade camera and drone setups, we obtained centimetric accuracy, which provides a flexible application in topography remote sensing using drones.
Peter Fiener, Florian Wilken, and Karl Auerswald
Adv. Geosci., 48, 31–48, https://doi.org/10.5194/adgeo-48-31-2019, https://doi.org/10.5194/adgeo-48-31-2019, 2019
Short summary
Short summary
An 8-year dataset of erosion monitoring (e.g. agricultural management, rainfall, runoff, sediment delivery) is made available. It covers 14 adjoining and partly nested watersheds (sizes 1–14 ha) that were cultivated following integrated (4 crops) and organic farming (7 crops and grassland) practices. Drivers of erosion and runoff were determined and with high spatial and temporal detail. The data set closes the gap between plot research and watershed research.
Florian Wilken, Michael Sommer, Kristof Van Oost, Oliver Bens, and Peter Fiener
SOIL, 3, 83–94, https://doi.org/10.5194/soil-3-83-2017, https://doi.org/10.5194/soil-3-83-2017, 2017
Short summary
Short summary
Model-based analyses of the effect of soil erosion on carbon (C) dynamics are associated with large uncertainties partly resulting from oversimplifications of erosion processes. This study evaluates the need for process-oriented modelling to analyse erosion-induced C fluxes in different catchments. The results underline the importance of a detailed representation of tillage and water erosion processes. For water erosion, grain-size-specific transport is essential to simulate lateral C fluxes.
Karl Auerswald, Juergen Geist, John N. Quinton, and Peter Fiener
EGUsphere, https://doi.org/10.5194/egusphere-2024-1702, https://doi.org/10.5194/egusphere-2024-1702, 2024
Short summary
Short summary
Floods, droughts, and heatwaves are increasing globally. This is often attributed to CO2-driven climate change. However, at the global scale, CO2-driven climate change neither reduces precipitation nor adequately explains droughts. Land-use change, particularly soil sealing, compaction, and drainage, are likely more significant for water losses by runoff leading to flooding and water scarcity and are therefore an important part the solution to mitigate floods, droughts, and heatwaves.
Lena Katharina Öttl, Florian Wilken, Anna Juřicová, Pedro V. G. Batista, and Peter Fiener
SOIL, 10, 281–305, https://doi.org/10.5194/soil-10-281-2024, https://doi.org/10.5194/soil-10-281-2024, 2024
Short summary
Short summary
Our long-term modelling study examines the effects of multiple soil redistribution processes on carbon dynamics in a 200 km² catchment converted from natural forest to agriculture about 1000 years ago. The modelling results stress the importance of including tillage erosion processes and long-term land use and land management changes to understand current soil-redistribution-induced carbon fluxes at the landscape scale.
Raphael Rehm and Peter Fiener
SOIL, 10, 211–230, https://doi.org/10.5194/soil-10-211-2024, https://doi.org/10.5194/soil-10-211-2024, 2024
Short summary
Short summary
A carbon transport model was adjusted to study the importance of water and tillage erosion processes for particular microplastic (MP) transport across a mesoscale landscape. The MP mass delivered into the stream network represented a serious amount of MP input in the same range as potential MP inputs from wastewater treatment plants. In addition, most of the MP applied to arable soils remains in the topsoil (0–20 cm) for decades. The MP sink function of soil results in a long-term MP source.
Thomas O. Hoffmann, Yannik Baulig, Stefan Vollmer, Jan H. Blöthe, Karl Auerswald, and Peter Fiener
Earth Surf. Dynam., 11, 287–303, https://doi.org/10.5194/esurf-11-287-2023, https://doi.org/10.5194/esurf-11-287-2023, 2023
Short summary
Short summary
We analyzed more than 440 000 measurements from suspended sediment monitoring to show that suspended sediment concentration (SSC) in large rivers in Germany strongly declined by 50 % between 1990 and 2010. We argue that SSC is approaching the natural base level that was reached during the mid-Holocene. There is no simple explanation for this decline, but increased sediment retention in upstream headwaters is presumably the major reason for declining SSC in the large river channels studied.
Kristof Van Oost and Johan Six
Biogeosciences, 20, 635–646, https://doi.org/10.5194/bg-20-635-2023, https://doi.org/10.5194/bg-20-635-2023, 2023
Short summary
Short summary
The direction and magnitude of the net erosion-induced land–atmosphere C exchange have been the topic of a big scientific debate for more than a decade now. Many have assumed that erosion leads to a loss of soil carbon to the atmosphere, whereas others have shown that erosion ultimately leads to a carbon sink. Here, we show that the soil carbon erosion source–sink paradox is reconciled when the broad range of temporal and spatial scales at which the underlying processes operate are considered.
Pedro V. G. Batista, Daniel L. Evans, Bernardo M. Cândido, and Peter Fiener
SOIL, 9, 71–88, https://doi.org/10.5194/soil-9-71-2023, https://doi.org/10.5194/soil-9-71-2023, 2023
Short summary
Short summary
Most agricultural soils erode faster than new soil is formed, which leads to soil thinning. Here, we used a model simulation to investigate how soil erosion and soil thinning can alter topsoil properties and change its susceptibility to erosion. We found that soil profiles are sensitive to erosion-induced changes in the soil system, which mostly slow down soil thinning. These findings are likely to impact how we estimate soil lifespans and simulate long-term erosion dynamics.
Haicheng Zhang, Ronny Lauerwald, Pierre Regnier, Philippe Ciais, Kristof Van Oost, Victoria Naipal, Bertrand Guenet, and Wenping Yuan
Earth Syst. Dynam., 13, 1119–1144, https://doi.org/10.5194/esd-13-1119-2022, https://doi.org/10.5194/esd-13-1119-2022, 2022
Short summary
Short summary
We present a land surface model which can simulate the complete lateral transfer of sediment and carbon from land to ocean through rivers. Our model captures the water, sediment, and organic carbon discharges in European rivers well. Application of our model in Europe indicates that lateral carbon transfer can strongly change regional land carbon budgets by affecting organic carbon distribution and soil moisture.
Pedro V. G. Batista, Peter Fiener, Simon Scheper, and Christine Alewell
Hydrol. Earth Syst. Sci., 26, 3753–3770, https://doi.org/10.5194/hess-26-3753-2022, https://doi.org/10.5194/hess-26-3753-2022, 2022
Short summary
Short summary
Patchy agricultural landscapes have a large number of small fields, which are separated by linear features such as roads and field borders. When eroded sediments are transported out of the agricultural fields by surface runoff, these features can influence sediment connectivity. By use of measured data and a simulation model, we demonstrate how a dense road network (and its drainage system) facilitates sediment transport from fields to water courses in a patchy Swiss agricultural catchment.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Laura Summerauer, Philipp Baumann, Leonardo Ramirez-Lopez, Matti Barthel, Marijn Bauters, Benjamin Bukombe, Mario Reichenbach, Pascal Boeckx, Elizabeth Kearsley, Kristof Van Oost, Bernard Vanlauwe, Dieudonné Chiragaga, Aimé Bisimwa Heri-Kazi, Pieter Moonen, Andrew Sila, Keith Shepherd, Basile Bazirake Mujinya, Eric Van Ranst, Geert Baert, Sebastian Doetterl, and Johan Six
SOIL, 7, 693–715, https://doi.org/10.5194/soil-7-693-2021, https://doi.org/10.5194/soil-7-693-2021, 2021
Short summary
Short summary
We present a soil mid-infrared library with over 1800 samples from central Africa in order to facilitate soil analyses of this highly understudied yet critical area. Together with an existing continental library, we demonstrate a regional analysis and geographical extrapolation to predict total carbon and nitrogen. Our results show accurate predictions and highlight the value that the data contribute to existing libraries. Our library is openly available for public use and for expansion.
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021, https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Short summary
Through a laboratory incubation experiment, we investigated the spatial patterns of specific maximum heterotrophic respiration in tropical African mountain forest soils developed from contrasting parent material along slope gradients. We found distinct differences in soil respiration between soil depths and geochemical regions related to soil fertility and the chemistry of the soil solution. The topographic origin of our samples was not a major determinant of the observed rates of respiration.
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021, https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary
Short summary
We conducted innovative research on the use of drones to determine the surface mass balance (SMB) of two glaciers. Considering appropriate spatial scales, we succeeded in determining the SMB in the ablation area with large accuracy. Consequently, we are convinced that our method and the use of drones to monitor the mass balance of a glacier’s ablation area can be an add-on to stake measurements in order to obtain a broader picture of the heterogeneity of the SMB of glaciers.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Joseph Tamale, Roman Hüppi, Marco Griepentrog, Laban Frank Turyagyenda, Matti Barthel, Sebastian Doetterl, Peter Fiener, and Oliver van Straaten
SOIL, 7, 433–451, https://doi.org/10.5194/soil-7-433-2021, https://doi.org/10.5194/soil-7-433-2021, 2021
Short summary
Short summary
Soil greenhouse gas (GHG) fluxes were measured monthly from nitrogen (N), phosphorous (P), N and P, and control plots of the first nutrient manipulation experiment located in an African pristine tropical forest using static chambers. The results suggest (1) contrasting soil GHG responses to nutrient addition, hence highlighting the complexity of the tropical forests, and (2) that the feedback of tropical forests to the global soil GHG budget could be altered by changes in N and P availability.
Florian Wilken, Peter Fiener, Michael Ketterer, Katrin Meusburger, Daniel Iragi Muhindo, Kristof van Oost, and Sebastian Doetterl
SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021, https://doi.org/10.5194/soil-7-399-2021, 2021
Short summary
Short summary
This study demonstrates the usability of fallout radionuclides 239Pu and 240Pu as a tool to assess soil degradation processes in tropical Africa, which is particularly valuable in regions with limited infrastructure and challenging monitoring conditions for landscape-scale soil degradation monitoring. The study shows no indication of soil redistribution in forest sites but substantial soil redistribution in cropland (sedimentation >40 cm in 55 years) with high variability.
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Simon Baumgartner, Matti Barthel, Travis William Drake, Marijn Bauters, Isaac Ahanamungu Makelele, John Kalume Mugula, Laura Summerauer, Nora Gallarotti, Landry Cizungu Ntaboba, Kristof Van Oost, Pascal Boeckx, Sebastian Doetterl, Roland Anton Werner, and Johan Six
Biogeosciences, 17, 6207–6218, https://doi.org/10.5194/bg-17-6207-2020, https://doi.org/10.5194/bg-17-6207-2020, 2020
Short summary
Short summary
Soil respiration is an important carbon flux and key process determining the net ecosystem production of terrestrial ecosystems. The Congo Basin lacks studies quantifying carbon fluxes. We measured soil CO2 fluxes from different forest types in the Congo Basin and were able to show that, even though soil CO2 fluxes are similarly high in lowland and montane forests, the drivers were different: soil moisture in montane forests and C availability in the lowland forests.
Florian Wilken, Michael Ketterer, Sylvia Koszinski, Michael Sommer, and Peter Fiener
SOIL, 6, 549–564, https://doi.org/10.5194/soil-6-549-2020, https://doi.org/10.5194/soil-6-549-2020, 2020
Short summary
Short summary
Soil redistribution by water and tillage erosion processes on arable land is a major threat to sustainable use of soil resources. We unravel the role of tillage and water erosion from fallout radionuclide (239+240Pu) activities in a ground moraine landscape. Our results show that tillage erosion dominates soil redistribution processes and has a major impact on the hydrological and sedimentological connectivity, which started before the onset of highly mechanised farming since the 1960s.
Zhengang Wang, Jianxiu Qiu, and Kristof Van Oost
Geosci. Model Dev., 13, 4977–4992, https://doi.org/10.5194/gmd-13-4977-2020, https://doi.org/10.5194/gmd-13-4977-2020, 2020
Short summary
Short summary
This study developed a spatially distributed carbon cycling model applicable in an eroding landscape. It includes all three carbon isotopes so that it is able to represent the carbon isotopic compositions. The model is able to represent the observations that eroding area is enriched in 13C and depleted of 14C compared to depositional area. Our simulations show that the spatial variability of carbon isotopic properties in an eroding landscape is mainly caused by the soil redistribution.
Samuel Bouchoms, Zhengang Wang, Veerle Vanacker, and Kristof Van Oost
SOIL, 5, 367–382, https://doi.org/10.5194/soil-5-367-2019, https://doi.org/10.5194/soil-5-367-2019, 2019
Short summary
Short summary
Soil erosion has detrimental effects on soil fertility which can reduce carbon inputs coming from crops to soils. Our study integrated this effect into a model linking soil organic carbon (SOC) dynamics to erosion and crop productivity. When compared to observations, the inclusion of productivity improved SOC loss predictions. Over centuries, ignoring crop productivity evolution in models could result in underestimating SOC loss and overestimating C exchanged with the atmosphere.
François Clapuyt, Veerle Vanacker, Marcus Christl, Kristof Van Oost, and Fritz Schlunegger
Solid Earth, 10, 1489–1503, https://doi.org/10.5194/se-10-1489-2019, https://doi.org/10.5194/se-10-1489-2019, 2019
Short summary
Short summary
Using state-of-the-art geomorphic techniques, we quantified a 2-order of magnitude discrepancy between annual, decadal, and millennial sediment fluxes of a landslide-affected mountainous river catchment in the Swiss Alps. Our results illustrate that the impact of a single sediment pulse is strongly attenuated at larger spatial and temporal scales by sediment transport. The accumulation of multiple sediment pulses has rather a measurable impact on the regional pattern of sediment fluxes.
He Zhang, Emilien Aldana-Jague, François Clapuyt, Florian Wilken, Veerle Vanacker, and Kristof Van Oost
Earth Surf. Dynam., 7, 807–827, https://doi.org/10.5194/esurf-7-807-2019, https://doi.org/10.5194/esurf-7-807-2019, 2019
Short summary
Short summary
We evaluated the performance of a drone system to reconstruct 3-D topography. We used a direct georeferencing method to make the pictures have precise coordinates, which also improves the survey efficiency. With both consumer-grade and professional-grade camera and drone setups, we obtained centimetric accuracy, which provides a flexible application in topography remote sensing using drones.
Peter Fiener, Florian Wilken, and Karl Auerswald
Adv. Geosci., 48, 31–48, https://doi.org/10.5194/adgeo-48-31-2019, https://doi.org/10.5194/adgeo-48-31-2019, 2019
Short summary
Short summary
An 8-year dataset of erosion monitoring (e.g. agricultural management, rainfall, runoff, sediment delivery) is made available. It covers 14 adjoining and partly nested watersheds (sizes 1–14 ha) that were cultivated following integrated (4 crops) and organic farming (7 crops and grassland) practices. Drivers of erosion and runoff were determined and with high spatial and temporal detail. The data set closes the gap between plot research and watershed research.
Victoria Naipal, Philippe Ciais, Yilong Wang, Ronny Lauerwald, Bertrand Guenet, and Kristof Van Oost
Biogeosciences, 15, 4459–4480, https://doi.org/10.5194/bg-15-4459-2018, https://doi.org/10.5194/bg-15-4459-2018, 2018
Short summary
Short summary
We seek to better understand the links between soil erosion by rainfall and the global carbon (C) cycle by coupling a soil erosion model to the C cycle of a land surface model. With this modeling approach we evaluate the effects of soil removal on soil C stocks in the presence of climate change and land use change. We find that accelerated soil erosion leads to a potential SOC removal flux of 74 ±18 Pg of C globally over the period AD 1850–2005, with significant impacts on the land C balance.
François Clapuyt, Veerle Vanacker, Fritz Schlunegger, and Kristof Van Oost
Earth Surf. Dynam., 5, 791–806, https://doi.org/10.5194/esurf-5-791-2017, https://doi.org/10.5194/esurf-5-791-2017, 2017
Short summary
Short summary
This work aims at understanding the behaviour of an earth flow located in the Swiss Alps by reconstructing very accurately its topography over a 2-year period. Aerial photos taken from a drone, which are then processed using a computer vision algorithm, were used to derive the topographic datasets. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure, which is evolving over time.
Florian Wilken, Michael Sommer, Kristof Van Oost, Oliver Bens, and Peter Fiener
SOIL, 3, 83–94, https://doi.org/10.5194/soil-3-83-2017, https://doi.org/10.5194/soil-3-83-2017, 2017
Short summary
Short summary
Model-based analyses of the effect of soil erosion on carbon (C) dynamics are associated with large uncertainties partly resulting from oversimplifications of erosion processes. This study evaluates the need for process-oriented modelling to analyse erosion-induced C fluxes in different catchments. The results underline the importance of a detailed representation of tillage and water erosion processes. For water erosion, grain-size-specific transport is essential to simulate lateral C fluxes.
Gerard Govers, Roel Merckx, Bas van Wesemael, and Kristof Van Oost
SOIL, 3, 45–59, https://doi.org/10.5194/soil-3-45-2017, https://doi.org/10.5194/soil-3-45-2017, 2017
Short summary
Short summary
We discuss pathways towards better soil protection in the 21st century. The efficacy of soil conservation technology is not a fundamental barrier for a more sustainable soil management. However, soil conservation is generally not directly beneficial to the farmer. We believe that the solution of this conundrum is a rapid, smart intensification of agriculture in the Global South. This will reduce the financial burden and will, at the same time, allow more effective conservation.
Jianlin Zhao, Kristof Van Oost, Longqian Chen, and Gerard Govers
Biogeosciences, 13, 4735–4750, https://doi.org/10.5194/bg-13-4735-2016, https://doi.org/10.5194/bg-13-4735-2016, 2016
Short summary
Short summary
We used a novel approach to reassess erosion rates on the CLP. We found that both current average topsoil erosion rates and the maximum magnitude of the erosion-induced carbon sink are overestimated on the CLP. Although average topsoil losses on the CLP are still high, a major increase in agricultural productivity occurred since 1980. Hence, erosion is currently not a direct threat to agricultural productivity on the CLP but the long-term effects of erosion on soil quality remain important.
Victoria Naipal, Christian Reick, Kristof Van Oost, Thomas Hoffmann, and Julia Pongratz
Earth Surf. Dynam., 4, 407–423, https://doi.org/10.5194/esurf-4-407-2016, https://doi.org/10.5194/esurf-4-407-2016, 2016
Short summary
Short summary
We present a new large-scale coarse-resolution sediment budget model that is compatible with Earth system models and simulates sediment dynamics in floodplains and on hillslopes. We applied this model on the Rhine catchment for the last millennium, and found that the model reproduces the spatial distribution of sediment storage and the scaling relationships as found in observations. We also identified that land use change explains most of the temporal variability in sediment storage.
V. Naipal, C. Reick, J. Pongratz, and K. Van Oost
Geosci. Model Dev., 8, 2893–2913, https://doi.org/10.5194/gmd-8-2893-2015, https://doi.org/10.5194/gmd-8-2893-2015, 2015
Short summary
Short summary
We adjusted the topographical and rainfall erosivity factors that are the triggers of erosion in the Revised Universal Soil Loss Equation (RUSLE) model to make the model better applicable at coarse resolution on a global scale. The adjusted RUSLE model compares much better to current high resolution estimates of soil erosion in the USA and Europe. It therefore provides a basis for estimating past and future global impacts of soil erosion on climate with the use of Earth system models.
F. Wiaux, M. Vanclooster, and K. Van Oost
Biogeosciences, 12, 4637–4649, https://doi.org/10.5194/bg-12-4637-2015, https://doi.org/10.5194/bg-12-4637-2015, 2015
Short summary
Short summary
In this study, we highlight the role of soil physical conditions and gas transfer mechanisms and dynamics in the decomposition and storage of soil organic carbon in subsoil layers. To illustrate it, we measured the time series of soil temperature, moisture and CO2 concentration and calculated CO2 fluxes along 1 m depth soil profiles during 6 months throughout two contrasted soil profiles along a hillslope in the central loess belt of Belgium.
S. Doetterl, J.-T. Cornelis, J. Six, S. Bodé, S. Opfergelt, P. Boeckx, and K. Van Oost
Biogeosciences, 12, 1357–1371, https://doi.org/10.5194/bg-12-1357-2015, https://doi.org/10.5194/bg-12-1357-2015, 2015
Short summary
Short summary
We link the mineralogy of soils affected by erosion and deposition to the distribution of soil carbon fractions, their turnover and microbial activity. We show that the weathering status of soils and their history are controlling the stabilization of carbon with minerals. After burial, aggregated C is preserved more efficiently while non-aggregated C can be released and younger C re-sequestered more easily. Weathering changes the effectiveness of stabilization mechanism limiting this C sink.
E. C. Brevik, A. Cerdà, J. Mataix-Solera, L. Pereg, J. N. Quinton, J. Six, and K. Van Oost
SOIL, 1, 117–129, https://doi.org/10.5194/soil-1-117-2015, https://doi.org/10.5194/soil-1-117-2015, 2015
Short summary
Short summary
This paper provides a brief accounting of some of the many ways that the study of soils can be interdisciplinary, therefore giving examples of the types of papers we hope to see submitted to SOIL.
Z. Wang, K. Van Oost, A. Lang, T. Quine, W. Clymans, R. Merckx, B. Notebaert, and G. Govers
Biogeosciences, 11, 873–883, https://doi.org/10.5194/bg-11-873-2014, https://doi.org/10.5194/bg-11-873-2014, 2014
T. Hoffmann, S. M. Mudd, K. van Oost, G. Verstraeten, G. Erkens, A. Lang, H. Middelkoop, J. Boyle, J. O. Kaplan, J. Willenbring, and R. Aalto
Earth Surf. Dynam., 1, 45–52, https://doi.org/10.5194/esurf-1-45-2013, https://doi.org/10.5194/esurf-1-45-2013, 2013
P. Fiener, K. Auerswald, F. Winter, and M. Disse
Hydrol. Earth Syst. Sci., 17, 4121–4132, https://doi.org/10.5194/hess-17-4121-2013, https://doi.org/10.5194/hess-17-4121-2013, 2013
Related subject area
Chemical: Carbon cycling
Sourcing and long-range transport of particulate organic matter in river bedload: Río Bermejo, Argentina
Channel cross-section heterogeneity of particulate organic carbon transport in the Huanghe
Geomorphic regulation of floodplain soil organic carbon concentration in watersheds of the Rocky and Cascade Mountains, USA
Model predictions of long-lived storage of organic carbon in river deposits
Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration
Sophia Dosch, Niels Hovius, Marisa Repasch, Joel Scheingross, Jens M. Turowski, Stefanie Tofelde, Oliver Rach, and Dirk Sachse
Earth Surf. Dynam., 12, 907–927, https://doi.org/10.5194/esurf-12-907-2024, https://doi.org/10.5194/esurf-12-907-2024, 2024
Short summary
Short summary
The transport of plant debris in rivers is an important part of the global carbon cycle and influences atmospheric carbon levels through time. We sampled plant debris at the bed of a lowland river and determined the sources as it is transported hundreds of kilometers. Plant debris can persist at the riverbed, but mechanical breakdown reduces its amount, and it is only a small fraction compared to the suspended load. This plant debris and transport patterns need further investigation globally.
Yutian Ke, Damien Calmels, Julien Bouchez, Marc Massault, Benjamin Chetelat, Aurélie Noret, Hongming Cai, Jiubin Chen, Jérôme Gaillardet, and Cécile Quantin
Earth Surf. Dynam., 12, 347–365, https://doi.org/10.5194/esurf-12-347-2024, https://doi.org/10.5194/esurf-12-347-2024, 2024
Short summary
Short summary
Through a river cross-section, we show that fluvial organic carbon in the lower Huanghe has clear vertical and lateral heterogeneity in elemental and isotopic signals. Bank erosion supplies terrestrial organic carbon to the fluvial transport. Physical erosion of aged and refractory organic carbon, including radiocarbon-dead organic carbon source from the biosphere, from relatively deep soil horizons of the Chinese Loess Plateau contributes to fluvial particulate organic carbon in the Huanghe.
Daniel N. Scott and Ellen E. Wohl
Earth Surf. Dynam., 6, 1101–1114, https://doi.org/10.5194/esurf-6-1101-2018, https://doi.org/10.5194/esurf-6-1101-2018, 2018
Short summary
Short summary
Mountain rivers play an important role in storing organic carbon (OC) on the landscape. We use field sampling to quantify OC concentrations in floodplain soils of two disparate mountain river basins. We find that local valley geometry and hydrology are dominant controls on OC concentration. This implies that OC concentration cannot be predicted using consistent downstream trends. Instead, geomorphology must be accounted for to understand the spatial distribution of OC in river basins.
Mark A. Torres, Ajay B. Limaye, Vamsi Ganti, Michael P. Lamb, A. Joshua West, and Woodward W. Fischer
Earth Surf. Dynam., 5, 711–730, https://doi.org/10.5194/esurf-5-711-2017, https://doi.org/10.5194/esurf-5-711-2017, 2017
Short summary
Short summary
In this paper, we describe a new model for the storage times of sediments and organic carbon (OC) in river deposits. Comparisons between our model predictions and field data show good agreement, which suggests that our model accurately captures the relevant time and space scales. An implication of our model is that OC is stored in river deposits over geologic timescales and, as a result, we propose that fluvial storage plays a larger role in the carbon cycle than previously recognized.
S.-J. Kao, R. G. Hilton, K. Selvaraj, M. Dai, F. Zehetner, J.-C. Huang, S.-C. Hsu, R. Sparkes, J. T. Liu, T.-Y. Lee, J.-Y. T. Yang, A. Galy, X. Xu, and N. Hovius
Earth Surf. Dynam., 2, 127–139, https://doi.org/10.5194/esurf-2-127-2014, https://doi.org/10.5194/esurf-2-127-2014, 2014
Cited articles
Baeyens, L.: Verklarende tekst bij het kaartblad Tervuren 102E. Bodemkaart van Belgie, Geologisch-Instituut, Gent, Belgium, 1959.
Beuselinck, L., Govers, G., Steegen, A., and Quine, T. A.: Sediment transport by overland flow over an area of net deposition, Hydrol. Process., 13, 2769–2782, https://doi.org/10.1002/(SICI)1099-1085(19991215)13:17< 2769::AID-HYP898> 3.0.CO;2-X, 1999.
Beuselinck, L., Hairsine, P. B., Sander, G. C., and Govers, G.: Evaluating a multiclass net deposition equation in overland flow conditions, Water Resour. Res., 38, 14.1–14.11, https://doi.org/10.1029/2001WR000250, 2002a.
Beuselinck, L., Govers, G., Hairsine, P. B., Sander, G. C., and Breynaert, M.: The influence of rainfall on sediment transport by overland flow over areas of net deposition, J. Hydrol., 257, 145–163, https://doi.org/10.1016/S0022-1694(01)00548-0, 2002b.
Beuselinck, L., Steegen, A., Govers, G., Nachtergaele, J., Takken, I., and Poesen, J.: Characteristics of sediment deposits formed by intense rainfall events in small catchments in the Belgian Loam Belt, Geomorphology, 32, 69–82, https://doi.org/10.1016/S0169-555X(99)00068-9, 2000c.
Billings S. A., Buddemeier R. W., Richter D. deB., Van Oost K., and Bohling G.: A simple method for estimating the influence of eroding soil profiles on atmospheric CO2, Global Biogeochem. Cy., 24, 1–14, https://doi.org/10.1029/2009GB003560, 2010.
De Roo, A. P. J., Wesseling, C. G., and Ritsema, C. J.: LISEM: a single-event physically based hydrological and soil erosion model for drainage basins, I: theory, input and output, Hydrol. Process., 10, 1107–1117, https://doi.org/10.1002/(SICI)1099-1085(199608)10:8< 1107::AID-HYP415> 3.0.CO, 1996.
Desmet, P. J. J. and Govers, G.: Two-dimensional modelling of the within-field variation in rill and gully geometry and location related to topography, Catena, 29, 283–306, https://doi.org/10.1016/S0341-8162(96)00074-4, 1997.
Dietrich, W. E.: Settling velocity of natural particles, Water Resour. Res., 18, 1615–1626, https://doi.org/10.1029/WR018i006p01615, 1982.
Dlugoß, V., Fiener, P., Van Oost, K., and Schneider, K.: Model based analysis of lateral and vertical soil carbon fluxes induced by soil redistribution processes in a small agricultural catchment, Earth Surf. Proc. Land., 37, 193–208, https://doi.org/10.1002/esp.2246, 2012.
Doetterl, S., Six, J., Van Wesemael, B., and Van Oost, K.: Carbon cycling in eroding landscapes: Geomorphic controls on soil organic C pool composition and C stabilization, Glob. Change Biol., 18, 2218–2232, https://doi.org/10.1111/j.1365-2486.2012.02680.x, 2012.
Erol, A., Koskan, Ö., and Basaran, M. A.: Socioeconomic modifications of the universal soil loss equation, Solid Earth, 6, 1025–1035, https://doi.org/10.5194/se-6-1025-2015, 2015.
Fiener, P. and Auerswald, K.: Rotation effects of potato, maize, and winter wheat on soil erosion by water, Soil Sci. Soc. Am. J., 71, 1919–1925, https://doi.org/10.2136/sssaj2006.0355, 2007.
Fiener, P., Govers, G., and Van Oost, K.: Evaluation of a dynamic multi-class sediment transport model in a catchment under soil-conservation agriculture, Earth Surf. Proc. Land., 33, 1639–1660, https://doi.org/10.1002/esp.1634, 2008.
Fiener, P., Dlugoß, V., and Van Oost, K.: Erosion-induced carbon redistribution, burial and mineralisation – Is the episodic nature of erosion processes important?, Catena, 133, 282–292, https://doi.org/10.1016/j.catena.2015.05.027, 2015.
Galdino, S., Sano, E. E., Andrade, R. G., Grego, C. R., Nogueira, S. F., Bragantini, C., and Flosi, A. H. G.: Large-scale modeling of soil erosion with RUSLE for conservationist planning of degraded cultivated brazilian pastures, Land Degrad. Dev., 27, 773–784, https://doi.org/10.1002/ldr.2414, 2016.
Gillijns, K., Poesen, J., and Deckers, J.: On the characteristics and origin of closed depressions in loess-derived soils in Europe – A case study from central Belgium, Catena, 60, 43–58, https://doi.org/10.1016/j.catena.2004.10.001, 2005.
Govers, G.: Selectivity and transport capacity of thin flows in relation to rill erosion, Catena, 12, 35–49, https://doi.org/10.1016/S0341-8162(85)80003-5, 1985.
Govers, G.: Relationship between discharge, velocity and flow area for rills eroding loose, non-layered materials, Earth Surf. Proc. Land., 17, 515–528, https://doi.org/10.1002/esp.3290170510, 1992.
Hairsine, P. B. and Rose, C. W.: Modeling water erosion due to overland flow using physical principles 1. sheet flow, Water Resour. Res., 28, 237–243, https://doi.org/10.1029/91WR02380, 1992a.
Hairsine, P. B. and Rose, C. B.: Modeling water erosion due to overland flow using physical principles 2. rill flow, Water Resour. Res., 28, 245–250, https://doi.org/10.1029/91WR02381, 1992b.
Hairsine, P. B., Beuselinck, L., and Sander, G. C.: Sediment transport through an area of net deposition, Water Resour. Res., 38, 22.1–22.7, https://doi.org/10.1029/2001WR000265, 2002.
Harden, J. W., Sharpe, J. M., Parton, W. J., Ojima, D. S., Fries, T. L., Huntington, T. G., and Dabney, S. M.: Dynamic replacement and loss of soil carbon on eroding cropland, Global Biogeochem. Cy., 13, 885–901, https://doi.org/10.1029/1999GB900061, 1999.
Haynes, R. J.: Labile organic matter fractions as central components of the quality of agricultural soils: An overview, Adv. Agron., 85, 221–268, https://doi.org/10.1016/S0065-2113(04)85005-3, 2005.
John, B., Yamashita, T., Ludwig, B., and Flessa, H.: Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use, Geoderma, 128, 63–79, https://doi.org/10.1016/j.geoderma.2004.12.013, 2005.
Kuhn, N. J., Hoffmann, T., Schwanghart, W., and Dotterweich, M.: Agricultural soil erosion and global carbon cycle: controversy over?, Earth Surf. Proc. Land., 34, 1033–1038, https://doi.org/10.1002/esp.1796, 2009.
Kuhn, N. J., Armstrong, E. K., Ling, A. C., Connolly, K. L., and Heckrath, G.: Interrill erosion of carbon and phosphorus from conventionally and organically farmed Devon silt soils, Catena, 91, 94–103, https://doi.org/10.1016/j.catena.2010.10.002, 2010.
Lal, R.: Soil erosion and the global carbon budget, Environ. Int., 29, 437–450, https://doi.org/10.1016/S0160-4120(02)00192-7, 2003.
Ligonja, P. J. and Shrestha, R. P.: Soil erosion assessment in Kondoa eroded area in Tanzania using universal soil loss eguation, geographic information systems and socioeconomic approach, Land Degrad. Dev., 26, 367–379, https://doi.org/10.1002/ldr.2215, 2015.
Liu, S., Bliss, N., Sundquist, E., and Huntington, T. G.: Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition, Global Biogeochem. Cy., 17, 43.1–43.24, https://doi.org/10.1029/2002GB002010, 2003.
Lopez-Vicente, M., Poesen, J., Navas, A., and Gaspar, L.: Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees, Catena, 102, 62–73, https://doi.org/10.1016/j.catena.2011.01.001, 2013.
Lopez-Vicente, M., Quijano, L., Palazon, L., Gaspar, L., and Navas, A.: Assessment of soil redistribution at catchment scale by coupling a soil erosion model and a sediment connectivity index (Central Spanish Pre-Pyrenees), Cuadernos De Investigacion Geografica, 41, 127–147, https://doi.org/10.18172/cig.2649, 2015.
Manies, K. L., Harden, J. W., Kramer, L., and Parton, W. J.: Carbon dynamics within agricultural and native sites in the loess region of Western lowa, Glob. Change Biol., 7, 545–555, https://doi.org/10.1046/j.1354-1013.2001.00427.x, 2001.
Nearing, M. A., Foster, G. R., Lane, L. J., and Finkner, S. C.: A process-based soil erosion model for USDA-Water Erosion Prediction Project technology, T. ASAE, 32, 1587–1593, https://doi.org/10.13031/2013.31195, 1989.
Parsons, A. J., Abrahams, A. D., and Luk, S.-H.: Hydraulics of interrill overland flow on a semi-arid hillslope, southern Arizona, J. Hydrol., 117, 255–273, https://doi.org/10.1016/0022-1694(90)90096-G, 1991.
Parton, W. J., Stewart, J. W. B., and Cole, C. V.: Dynamics of C, N, P and S in grassland soils: a Model, Biogeochemistry, 5, 109–131, https://doi.org/10.1007/BF02180320, 1988.
Poesen, J.: An improved splash transport model, Z. Geomorphol., 29, 193–211, 1985.
Poesen, J. and Savat, J.: Particle-size separation during erosion by splash and runoff, in: Assessment of Erosion, edited by: De Boodt, M. and Gabriels, D., Wiley, 1980.
Polyakov, V. O. and Lal, R.: Soil erosion and carbon dynamics under simulated rainfall, Soil Sci., 169, 590–599, https://doi.org/10.1097/01.ss.0000138414.84427.40, 2004.
Quinton, J. N., Catt, J. A., and Hess, T. M.: The selective removal of phosphorus from soil: is event size important?, J. Environ. Qual., 30, 538–545, https://doi.org/10.2134/jeq2001.302538x, 2001.
Quinton, J. N., Govers, G., Van Oost, K., and Bardgett, R. D.: The impact of agricultural soil erosion on biogeochemical cycling, Nat. Geosci., 3, 311–314, https://doi.org/10.1038/ngeo838, 2010.
Renwick, W. H., Smith, S. V, Sleezer, R. O., and Buddemeier, R. W.: Comment on “Managing soil carbon” (II), Science, 305, 1567, https://doi.org/10.1126/science.1100447, 2004.
Römkens, M. J. M., Young, R. A., Poesen, J. W. A., McCool, D. K., El-Swaify, S. A., and Bradford, J. M.: Soil erodibility factor (K), in: Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), edited by: Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D. C., US Government Printing Office, Washington DC, USA, 65–99, 1997.
Rosenbloom, N. A., Doney, S. C., and Schimel, D. S.: Geomorphic evolution of soil texture and organic matter in eroding landscapes, Global Biogeochem. Cy., 15, 365–381, https://doi.org/10.1029/1999GB001251, 2001.
Schiettecatte, W., Gabriels, D., Cornelis, W. M., and Hofman, G.: Enrichment of organic carbon in sediment transport by interrill and rill erosion processes, Soil Sci. Soc. Am. J., 72, 50–55, https://doi.org/10.2136/sssaj2007.0201, 2008a.
Schiettecatte, W., Gabriels, D., Cornelis, W. M., and Hofman, G.: Impact of deposition on the enrichment of organic carbon in eroded sediment, Catena, 72, 340–347, https://doi.org/10.1016/j.catena.2007.07.001, 2008b.
Schmidt, J.: A mathematical model to simulate rainfall erosion. in: Catena Supplement 19: Erosion, transport and deposition processes – Theories and models, edited by: Bork, H.-R., De Ploey, J., and Schick, A. P., Catena, Cremlingen, Germany, 19, 101–109, 1991.
Stallard, R. F.: Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial, Global Biogeochem. Cy., 12, 231–257, https://doi.org/10.1029/98GB00741, 1998.
Steegen, A., Govers, G., Nachtergaele, J., Takken, I., Beuselinck, L., and Poesen, J.: Sediment export by water from an agricultural catchment in the Loam Belt of central Belgium, Geomorphology, 33, 25–36, https://doi.org/10.1016/S0169-555X(99)00108-7, 2000.
Steegen, A., Govers, G., Takken, I., Nachtergaele, J., Poesen, J., and Merckx, R.: Factors controlling sediment and phosphorus export from two Belgian agricultural catchments, J. Environ. Qual., 30, 1249–1258, https://doi.org/10.2134/jeq2001.3041249x, 2001.
Van Oost, K., Govers, G., and Desmet, P.: Evaluating the effects of changes in landscape structure on soil erosion by water and tillage, Landscape Ecol., 15, 579–591, https://doi.org/10.1023/A:1008198215674, 2000.
Van Oost, K., Beuselinck, L., Hairsine, P. B., and Govers, G.: Spatial evaluation of a multi-class sediment transport and deposition model, Earth Surf. Proc. Land., 29, 1027–1044, https://doi.org/10.1002/esp.1089, 2004.
Van Oost, K., Govers, G., Quine, T. A., Heckrath, G., Olesen, J. E., De Gryze, S., and Merckx, R.: Landscape-scale modeling of carbon cycling under the impact of soil redistribution: The role of tillage erosion, Global Biogeochem. Cy., 19, 1–13, https://doi.org/10.1029/2005GB002471, 2005a.
Van Oost, K., Govers, G., Cerdan, O., Thauré, D., Van Rompaey, A., Steegen, A., Nachtergaele, J., Takken, I., and Poesen, J.: Spatially distributed data for erosion model calibration and validation: The Ganspoel and Kinderveld datasets, Catena, 61, 105–121, https://doi.org/10.1016/j.catena.2005.03.001, 2005b.
Van Oost, K., Quine, T. A., Govers, G., De Gryze, S., Six, J., Harden, J. W., Ritchie, J. C., McCarty, G. W., Heckrath, G., Kosmas, C., Giraldez, J. V, Marques da Silva, J. R., and Merckx, R.: The impact of agricultural soil erosion on the global carbon cycle, Science, 318, 626–629, https://doi.org/10.1126/science.1145724, 2007.
Verstraeten, G., Poesen, J., Demarée, G., and Salles, C.: Long-term (105 years) variability in rain erosivity as derived from 10-min rainfall depth data for Ukkel (Brussels, Belgium): Implications for assessing soil erosion rates, J. Geophys. Res., 111, 1–11, https://doi.org/10.1029/2006JD007169, 2006.
Von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., and Marschner, B.: SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms, Soil Biol. Biochem., 39, 2183–2207, https://doi.org/10.1016/j.soilbio.2007.03.007, 2007.
Wang, Z., Govers, G., Steegen, A., Clymans, W., Van den Putte, A., Langhans, C., Merckx, R., and Van Oost, K.: Catchment-scale carbon redistribution and delivery by water erosion in an intensively cultivated area, Geomorphology, 124, 65–74, https://doi.org/10.1016/j.geomorph.2010.08.010, 2010.
Wang, Z., Govers, G., Van Oost, K., Clymans, W., Van den Putte, A., and Merckx, R.: Soil organic carbon mobilization by interrill erosion: Insights from size fractions, J. Geophys. Res.-Earth, 118, 348–360, https://doi.org/10.1029/2012JF002430, 2013.
Wilken, F., Sommer, M., Van Oost, K., Bens, O., and Fiener, P.: Process-oriented modelling to identify main drivers of erosion-induced carbon fluxes, SOIL Discuss., https://doi.org/10.5194/soil-2016-71, in review, 2016.
Williams, J. R.: The EPIC model, in: Computer models of watershed hydrology, edited by: Singh, V. P., Water Resources Publications, Colorado, USA, 909–1000, 1995.
Wischmeier, W. H. and Smith, D. D.: Predicting rainfall erosion losses – A guide to conservation planning, US Government Printing Office, Washington DC, USA, 1978.
Yoo, K., Amundson, R., Heimsath, A. M., and Dietrich, W. E.: Erosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model, Global Biogeochem. Cy., 19, 1–17, https://doi.org/10.1029/2004GB002271, 2005.
Yu, B., Rose, C. W. C., Ciesiolka, A. A., Coughlan, K. J., and Fentie, B.: Toward a framework for runoff and soil loss prediction using GUEST technology, Aust. J. Soil Res., 35, 1191–1212, https://doi.org/10.1071/S97002, 1997.
Short summary
This study presents a model that accounts for preferential erosion and transport of sediment and soil organic carbon in agricultural landscapes. We applied the model to a small catchment in Belgium for a period of 100 years. After a thorough model evaluation, these simulations shows that sediment and carbon export are highly episodic and that the temporal variability is largely influenced by selective erosion and deposition.
This study presents a model that accounts for preferential erosion and transport of sediment and...