Articles | Volume 5, issue 1
https://doi.org/10.5194/esurf-5-187-2017
https://doi.org/10.5194/esurf-5-187-2017
Research article
 | 
22 Mar 2017
Research article |  | 22 Mar 2017

Laboratory rivers: Lacey's law, threshold theory, and channel stability

François Métivier, Eric Lajeunesse, and Olivier Devauchelle

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Francois Metivier on behalf of the Authors (27 Feb 2017)  Author's response   Manuscript 
ED: Publish as is (01 Mar 2017) by Andreas Lang
ED: Publish as is (02 Mar 2017) by Tom Coulthard (Editor)
AR by Francois Metivier on behalf of the Authors (03 Mar 2017)
Download
Short summary
More than a century of experiments have demonstrated that many features of natural rivers can be reproduced in the laboratory. Here, we revisit some of these experiments to show that, regardless of the river's planform (single-thread or braiding), laboratory rivers behave like their natural counterparts. We further suggest that sediment transport could be responsible for the transition into a braided river, which could, in turn, explain the scarcity of laboratory single-thread channels.