Articles | Volume 7, issue 1
https://doi.org/10.5194/esurf-7-199-2019
https://doi.org/10.5194/esurf-7-199-2019
Research article
 | 
13 Feb 2019
Research article |  | 13 Feb 2019

Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes

Andrin Caviezel, Sophia E. Demmel, Adrian Ringenbach, Yves Bühler, Guang Lu, Marc Christen, Claire E. Dinneen, Lucie A. Eberhard, Daniel von Rickenbach, and Perry Bartelt

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Andrin Caviezel on behalf of the Authors (23 Nov 2018)  Manuscript 
ED: Publish subject to technical corrections (30 Jan 2019) by Michael Krautblatter
ED: Publish subject to technical corrections (31 Jan 2019) by Niels Hovius (Editor)
AR by Andrin Caviezel on behalf of the Authors (06 Feb 2019)  Author's response   Manuscript 
Download
Short summary
In rockfall hazard assessment, knowledge about the precise flight path of assumed boulders is vital for its accuracy. We present the full reconstruction of artificially induced rockfall events. The extracted information such as exact velocities, jump heights and lengths provide detailed insights into how rotating rocks interact with the ground. The information serves as future calibration of rockfall modelling tools with the goal of even more realistic modelling predictions.