Articles | Volume 7, issue 3
Research article
24 Jul 2019
Research article |  | 24 Jul 2019

Statistical modelling of co-seismic knickpoint formation and river response to fault slip

Philippe Steer, Thomas Croissant, Edwin Baynes, and Dimitri Lague


Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Philippe Steer on behalf of the Authors (10 Jun 2019)  Manuscript 
ED: Publish as is (12 Jun 2019) by Richard Gloaguen
ED: Publish as is (03 Jul 2019) by Andreas Lang (Editor)
AR by Philippe Steer on behalf of the Authors (03 Jul 2019)  Manuscript 
Short summary
We use a statistical earthquake generator to investigate the influence of fault activity on river profile development and on the formation of co-seismic knickpoints. We find that the magnitude distribution of knickpoints resulting from a purely seismic fault is homogeneous. Shallow aseismic slip favours knickpoints generated by large-magnitude earthquakes nucleating at depth. Accounting for fault burial by alluvial cover can modulate the topographic expression of earthquakes and fault activity.