Articles | Volume 8, issue 4
https://doi.org/10.5194/esurf-8-931-2020
https://doi.org/10.5194/esurf-8-931-2020
Research article
 | 
10 Nov 2020
Research article |  | 10 Nov 2020

Modelling the effects of ice transport and sediment sources on the form of detrital thermochronological age probability distributions from glacial settings

Maxime Bernard, Philippe Steer, Kerry Gallagher, and David Lundbek Egholm

Model code and software

iSOSIA version 3.4.7b David Lundbeck Egholm and Maxime Bernard https://doi.org/10.5281/zenodo.3875297

Download
Short summary
Detrital thermochronometric age distributions of frontal moraines have the potential to retrieve ice erosion patterns. However, modelling erosion and sediment transport by the Tiedemann Glacier ice shows that ice velocity, the source of sediment, and ice flow patterns affect age distribution shape by delaying sediment transfer. Local sampling of frontal moraine can represent only a limited part of the catchment area and thus lead to a biased estimation of the spatial distribution of erosion.