Articles | Volume 8, issue 4
https://doi.org/10.5194/esurf-8-931-2020
https://doi.org/10.5194/esurf-8-931-2020
Research article
 | 
10 Nov 2020
Research article |  | 10 Nov 2020

Modelling the effects of ice transport and sediment sources on the form of detrital thermochronological age probability distributions from glacial settings

Maxime Bernard, Philippe Steer, Kerry Gallagher, and David Lundbek Egholm

Related authors

Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022,https://doi.org/10.5194/esurf-10-1211-2022, 2022
Short summary
Origin of Great Unconformity Obscured by Thermochronometric Uncertainty
Matthew Fox, Adam G. G. Smith, Pieter Vermeesch, Kerry Gallagher, and Andrew Carter
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-23,https://doi.org/10.5194/gchron-2022-23, 2022
Publication in GChron not foreseen
Short summary
Finite-hillslope analysis of landslides triggered by excess pore water pressure: the roles of atmospheric pressure and rainfall infiltration during typhoons
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022,https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary
LAPS v1.0.0: Lagrangian Advection of Particles at Sea, a Matlab program to simulate the displacement of particles in the ocean
Maxime Mouyen, Romain Plateaux, Alexander Kunz, Philippe Steer, and Laurent Longuevergne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-233,https://doi.org/10.5194/gmd-2021-233, 2021
Preprint withdrawn
Short summary
Short communication: Analytical models for 2D landscape evolution
Philippe Steer
Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021,https://doi.org/10.5194/esurf-9-1239-2021, 2021
Short summary

Related subject area

Cross-cutting themes: Geochronology applied to establish timing and rates of Earth surface processes
Bias and error in modelling thermochronometric data: resolving a potential increase in Plio-Pleistocene erosion rate
Sean D. Willett, Frédéric Herman, Matthew Fox, Nadja Stalder, Todd A. Ehlers, Ruohong Jiao, and Rong Yang
Earth Surf. Dynam., 9, 1153–1221, https://doi.org/10.5194/esurf-9-1153-2021,https://doi.org/10.5194/esurf-9-1153-2021, 2021
Short summary
Evaluating optically stimulated luminescence rock surface exposure dating as a novel approach for reconstructing coastal boulder movement on decadal to centennial timescales
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021,https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Holocene sea-level change on the central coast of Bohai Bay, China
Fu Wang, Yongqiang Zong, Barbara Mauz, Jianfen Li, Jing Fang, Lizhu Tian, Yongsheng Chen, Zhiwen Shang, Xingyu Jiang, Giorgio Spada, and Daniele Melini
Earth Surf. Dynam., 8, 679–693, https://doi.org/10.5194/esurf-8-679-2020,https://doi.org/10.5194/esurf-8-679-2020, 2020
Short summary
The role of frost cracking in local denudation of steep Alpine rockwalls over millennia (Eiger, Switzerland)
David Mair, Alessandro Lechmann, Romain Delunel, Serdar Yeşilyurt, Dmitry Tikhomirov, Christof Vockenhuber, Marcus Christl, Naki Akçar, and Fritz Schlunegger
Earth Surf. Dynam., 8, 637–659, https://doi.org/10.5194/esurf-8-637-2020,https://doi.org/10.5194/esurf-8-637-2020, 2020
Early-to-mid Miocene erosion rates inferred from pre-Dead Sea rift Hazeva River fluvial chert pebbles using cosmogenic 21Ne
Michal Ben-Israel, Ari Matmon, Alan J. Hidy, Yoav Avni, and Greg Balco
Earth Surf. Dynam., 8, 289–301, https://doi.org/10.5194/esurf-8-289-2020,https://doi.org/10.5194/esurf-8-289-2020, 2020
Short summary

Cited articles

Alley, R. B., Cuffey, K. M., Evenson, E. B., Strasser, J. C., Lawson, D. E., and Larson, G. J.: How glaciers entrain and transport basal sediment: physical constraints, Quaternary Sci. Rev., 16, 1017–1038, https://doi.org/10.1016/S0277-3791(97)00034-6, 1997. 
Anderson, R. S.: Evolution of lumpy glacial landscapes, Geology, 42, 679–682, https://doi.org/10.1130/G35537.1, 2014. Anderson, R. S., Molnar, P., and Kessler, M. A.: Features of glacial valley profiles simply explained, J. Geophys. Res.-Earth, 111, 1–14, https://doi.org/10.1029/2005JF000344, 2006. 
Andrews, D. J. and Bucknam, R. C.: Fitting degradation of shoreline scarps by a nonlinear diffusion model, J. Geophys. Res.-Sol. Ea., 92, 12857–12867, 1987. 
Avdeev, B., Niemi, N. A., and Clark, M. K.: Doing more with less: Bayesian estimation of erosion models with detrital thermochronometric data, Earth Planet. Sc. Lett., 305, 385–395, https://doi.org/10.1016/j.epsl.2011.03.020, 2011. 
Beaumont C., Fullsack P., Hamilton J., McClay K. R. (Eds): Erosional control of active compressional orogens, Thrust Tectonics, Springer, Dordrecht, 1–18, https://doi.org/10.1007/978-94-011-3066-0_1, 1992. 
Download
Short summary
Detrital thermochronometric age distributions of frontal moraines have the potential to retrieve ice erosion patterns. However, modelling erosion and sediment transport by the Tiedemann Glacier ice shows that ice velocity, the source of sediment, and ice flow patterns affect age distribution shape by delaying sediment transfer. Local sampling of frontal moraine can represent only a limited part of the catchment area and thus lead to a biased estimation of the spatial distribution of erosion.