Articles | Volume 8, issue 4
https://doi.org/10.5194/esurf-8-931-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-8-931-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling the effects of ice transport and sediment sources on the form of detrital thermochronological age probability distributions from glacial settings
Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes,
France
Philippe Steer
Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes,
France
Kerry Gallagher
Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes,
France
David Lundbek Egholm
Department of Geoscience, Aarhus University, Aarhus, Denmark
Related authors
No articles found.
Coline Ariagno, Philippe Steer, Pierre Valla, and Benjamin Campforts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2088, https://doi.org/10.5194/egusphere-2025-2088, 2025
Short summary
Short summary
This study explored the impact of landslides on their topography using a landscape evolution model called ‘Hyland’, which enables long-term topographical analysis. Our finding reveal that landslides are concentrated at two specific elevations over time and predominantly affect the highest and steepest slopes, particularly along ridges and crests. This study is part of the large question about the origin of the erosion acceleration during the Quaternary.
Thomas Geffroy, Philippe Yamato, Philippe Steer, Benjamin Guillaume, and Thibault Duretz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1962, https://doi.org/10.5194/egusphere-2025-1962, 2025
Short summary
Short summary
While erosion's role in mountain building is well known, deformation from valley incision in inactive regions is less understood. Using our numerical models, we show that incision alone can cause significant crustal deformation and drive lower crust exhumation. This is favored in areas with thick crust, weak lower crust, and high plateaux. Our results show surface processes can reshape Earth's surface over time.
Marion Fournereau, Laure Guerit, Philippe Steer, Jean-Jacques Kermarrec, Paul Leroy, Christophe Lanos, Hélène Hivert, Claire Astrié, and Dimitri Lague
EGUsphere, https://doi.org/10.5194/egusphere-2025-1541, https://doi.org/10.5194/egusphere-2025-1541, 2025
Short summary
Short summary
River bedrock erosion can occur by polishing and by the removal of entire blocks. We observe that when there is no to little fractures most erosion occurs by polishing whereas with more fractures, blocks can be removed at once leading to different patterns of erosion and riverbed morphology. Fractures affect barely mean erosion rate but change the location and occurrence of block removal. Our results highlight how river bedrock properties influence erosion processes and thus landscape evolution.
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024, https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short summary
We use cutting-edge algorithms and conceptual simplifications to solve the equations that describe surface water flow. Using quantitative data on rainfall and elevation, GraphFlood calculates river width and depth and approximates erosive power, making it a suitable tool for large-scale hazard management and understanding the relationship between rivers and mountains.
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022, https://doi.org/10.5194/esurf-10-1211-2022, 2022
Short summary
Short summary
The morphology and size of sediments influence erosion efficiency, sediment transport and the quality of aquatic ecosystem. In turn, the spatial evolution of sediment size provides information on the past dynamics of erosion and sediment transport. We have developed a new software which semi-automatically identifies and measures sediments based on 3D point clouds. This software is fast and efficient, offering a new avenue to measure the geometrical properties of large numbers of sediment grains.
Matthew Fox, Adam G. G. Smith, Pieter Vermeesch, Kerry Gallagher, and Andrew Carter
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-23, https://doi.org/10.5194/gchron-2022-23, 2022
Publication in GChron not foreseen
Short summary
Short summary
The Great Unconformity represents an enormous amount of time lost from the sedimentary record. Its origin is debated, in part, due to different approaches used to interpret zircon (U–Th)/He ages. This thermochronometric system is ideal for this problem because the temperature sensitivity varies according to radiation damage. Here we explore the uncertainty associated with the radiation damage model and show how this limits our ability to resolve the origin of the Great Unconformity.
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022, https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Maxime Mouyen, Romain Plateaux, Alexander Kunz, Philippe Steer, and Laurent Longuevergne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-233, https://doi.org/10.5194/gmd-2021-233, 2021
Preprint withdrawn
Short summary
Short summary
LAPS is an easy to use Matlab code that allows simulating the transport of particles in the ocean without any programming requirement. The simulation is based on publicly available ocean current velocity fields and allows to output particles spatial distribution and trajectories at time intervals defined by the user. After explaining how LAPS is working, we show a few examples of applications for studying sediment transport or plastic littering. The code is available on Github.
Philippe Steer
Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021, https://doi.org/10.5194/esurf-9-1239-2021, 2021
Short summary
Short summary
How landscapes respond to tectonic and climatic changes is a major issue in Earth sciences. I have developed a new model that solves for landscape evolution in two dimensions using analytical solutions. Compared to numerical models, this new model is quicker and more accurate. It can compute in a single time step the topography at equilibrium of a landscape or be used to describe its evolution through time, e.g. during changes in tectonic or climatic conditions.
Thomas G. Bernard, Dimitri Lague, and Philippe Steer
Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, https://doi.org/10.5194/esurf-9-1013-2021, 2021
Short summary
Short summary
Both landslide mapping and volume estimation accuracies are crucial to quantify landscape evolution and manage such a natural hazard. We developed a method to robustly detect landslides and measure their volume from repeat 3D point cloud lidar data. This method detects more landslides than classical 2D inventories and resolves known issues of indirect volume measurement. Our results also suggest that the number of small landslides classically detected from 2D imagery is underestimated.
Thomas Croissant, Robert G. Hilton, Gen K. Li, Jamie Howarth, Jin Wang, Erin L. Harvey, Philippe Steer, and Alexander L. Densmore
Earth Surf. Dynam., 9, 823–844, https://doi.org/10.5194/esurf-9-823-2021, https://doi.org/10.5194/esurf-9-823-2021, 2021
Short summary
Short summary
In mountain ranges, earthquake-derived landslides mobilize large amounts of organic carbon (OC) by eroding soil from hillslopes. We propose a model to explore the role of different parameters in the post-seismic redistribution of soil OC controlled by fluvial export and heterotrophic respiration. Applied to the Southern Alps, our results suggest that efficient OC fluvial export during the first decade after an earthquake promotes carbon sequestration.
Anne Sofie Søndergaard, Nicolaj Krog Larsen, Olivia Steinemann, Jesper Olsen, Svend Funder, David Lundbek Egholm, and Kurt Henrik Kjær
Clim. Past, 16, 1999–2015, https://doi.org/10.5194/cp-16-1999-2020, https://doi.org/10.5194/cp-16-1999-2020, 2020
Short summary
Short summary
We present new results that show how the north Greenland Ice Sheet responded to climate changes over the last 11 700 years. We find that the ice sheet was very sensitive to past climate changes. Combining our findings with recently published studies reveals distinct differences in sensitivity to past climate changes between northwest and north Greenland. This highlights the sensitivity to past and possible future climate changes of two of the most vulnerable areas of the Greenland Ice Sheet.
Cited articles
Alley, R. B., Cuffey, K. M., Evenson, E. B., Strasser, J. C., Lawson, D. E.,
and Larson, G. J.: How glaciers entrain and transport basal sediment:
physical constraints, Quaternary Sci. Rev., 16, 1017–1038,
https://doi.org/10.1016/S0277-3791(97)00034-6, 1997.
Anderson, R. S.: Evolution of lumpy glacial landscapes, Geology, 42,
679–682, https://doi.org/10.1130/G35537.1, 2014.
Anderson, R. S., Molnar, P., and Kessler, M. A.: Features of glacial valley profiles simply explained, J. Geophys. Res.-Earth, 111, 1–14, https://doi.org/10.1029/2005JF000344, 2006.
Andrews, D. J. and Bucknam, R. C.: Fitting degradation of shoreline scarps by a nonlinear diffusion model, J. Geophys. Res.-Sol. Ea., 92, 12857–12867, 1987.
Avdeev, B., Niemi, N. A., and Clark, M. K.: Doing more with less: Bayesian
estimation of erosion models with detrital thermochronometric data, Earth Planet. Sc. Lett., 305, 385–395,
https://doi.org/10.1016/j.epsl.2011.03.020, 2011.
Beaumont C., Fullsack P., Hamilton J., McClay K. R. (Eds): Erosional control of active compressional orogens, Thrust Tectonics, Springer, Dordrecht, 1–18, https://doi.org/10.1007/978-94-011-3066-0_1, 1992.
Benn, D. and Evans, D. J.: Glaciers and glaciation, second edition, Hodder education, Routledge, London, England, pp. 816, https://doi.org/10.4324/9780203785010, 2014.
Bernard, T., Steer, P., Gallagher, K., Szulc, A., Whitham, A., and Johnson,
C.: Evidence for Eocene-Oligocene glaciation in the landscape of the East
Greenland margin, Geology, 44, 895–898,
https://doi.org/10.1130/G38248.1, 2016.
Boulton, G. S., Coates D. R. (Eds.): Glacial Geomorphology: Processes and Patterns of Glacial Erosion, Springer, Dordrecht, 41–87, https://doi.org/10.1007/978-94-011-6491-7_2, 1982.
Bowman, D., Eyles, C. H., Narro-Pérez, R., and Vargas, R.: Sedimentology
and Structure of the Lake Palcacocha Laterofrontal Moraine Complex in the
Cordillera Blanca, Peru, Revista de Glaciares y Ecosistemas de Montaña,
5, 16–16, https://doi.org/10.36580/rgem.i5.27-42, 2018.
Brædstrup, C. F., Damsgaard, A., and Egholm, D. L.: Ice-sheet modelling accelerated by graphics cards, Comput. Geosci., 72, 210–220, https://doi.org/10.1016/j.cageo.2014.07.019, 2014.
Brædstrup, C. F., Egholm, D. L., Ugelvig, S. V., and Pedersen, V. K.: Basal shear stress under alpine glaciers: insights from experiments using the iSOSIA and Elmer/Ice models, Earth Surf. Dynam., 4, 159–174, https://doi.org/10.5194/esurf-4-159-2016, 2016.
Brandon, M. T.: Probability density plot for fission-track grain-age
samples. Radiat. Meas., 26, 663–676,
https://doi.org/10.1016/S1350-4487(97)82880-6, 1996.
Brewer, I. D., Burbank, D. W., and Hodges, K. V.: Modelling detrital
cooling-age populations: insights from two Himalayan catchments, Basin
Res., 15, 305–320, https://doi.org/10.1046/j.1365-2117.2003.00211.x,
2003.
Brozović, N., Burbank, D. W., and Meigs, A. J.: Climatic limits on
landscape development in the northwestern Himalaya, Science, 276,
571–574, https://doi.org/10.1126/science.276.5312.571, 1997.
Champagnac, J. D., Valla, P. G., and Herman, F.: Late-Cenozoic relief
evolution under evolving climate: A review, Tectonophysics, 614, 44–65,
https://doi.org/10.1016/j.tecto.2013.11.037, 2014.
Clarke, G. K.: A short history of scientific investigations on
glaciers, J. Glaciol., 33, 4–24,
https://doi.org/10.3189/S0022143000215785, 1987.
Cogez, A., Herman, F., Pelt, É., Reuschlé, T., Morvan, G., Darvill, C. M., Norton, K. P., Christl, M., Märki, L., and Chabaux, F.: U–Th and 10Be constraints on sediment recycling in proglacial settings, Lago Buenos Aires, Patagonia, Earth Surf. Dynam., 6, 121–140, https://doi.org/10.5194/esurf-6-121-2018, 2018.
Cohen, D., Iverson, N. R., Hooyer, T. S., Fischer, U. H., Jackson, M., and
Moore, P. L.: Debris-bed friction of hard-bedded glaciers. J. Geophys.
Res-Earth, 110, F02007, https://doi.org/10.1029/2004JF000228, 2005.
Cohen, D., Hooyer, T. S., Iverson, N. R., Thomason, J. F., and Jackson, M.:
Role of transient water pressure in quarrying: A subglacial experiment using
acoustic emissions, J. Geophys. Res.-Earth, 111, F03006,
https://doi.org/10.1029/2005JF000439, 2006.
Collins, D. N.: Sediment transport from glacierized basins in the
In Erosion and Sediment Yield: Global and Regional Perspectives: Proceedings
of an International Symposium Held at Exeter, UK, from 15 to 19 July 1996, (No. 236, p. 85), IAHS, https://doi.org/10.3389/feart.2018.00175, 1996.
Delaney, I., Bauder, A., Werder, M. A., and Farinotti, D.: Regional and
annual variability in subglacial sediment transport by water for two
glaciers in the Swiss Alps, Front. Earth Sci., 6, 175,
https://doi.org/10.3389/feart.2018.00175, 2018.
Egholm, D. and Bernard, M.: iSOSIA_3.4.7b, Zenodo,
https://doi.org/10.5281/zenodo.3875297, 2020.
Egholm, D. L., Knudsen, M. F., Clark, C. D., and Lesemann, J. E.: Modeling
the flow of glaciers in steep terrains: The integrated second-order shallow
ice approximation (iSOSIA), J. Geophys. Res.-Earth, 116, F02012, https://doi.org/10.1029/2010JF001900, 2011.
Egholm, D. L., Nielsen, S., Pedersen, V. K., and Lesemann, J. E: Glacial
effects limiting mountain height, Nature, 460, 884–887,
https://doi.org/10.1038/nature08263, 2009.
Egholm, D. L., Pedersen, V. K., Knudsen, M. F., and Larsen, N. K.: Coupling
the flow of ice, water, and sediment in a glacial landscape evolution
model, Geomorphology, 141, 47–66,
https://doi.org/10.1016/j.geomorph.2011.12.019, 2012a.
Egholm, D. L., Pedersen, V. K., Knudsen, M. F., and Larsen, N. K.: On the
importance of higher order ice dynamics for glacial landscape
evolution, Geomorphology, 141, 67–80,
https://doi.org/10.1016/j.geomorph.2011.12.020, 2012b.
Ehlers, T. A.: Crustal thermal processes and the interpretation of
thermochronometer data, Rev. Mineral. Geochem., 58,
315–350, https://doi.org/10.2138/rmg.2005.58.12, 2005.
Ehlers, T. A., Szameitat, A., Enkelmann, E., Yanites, B. J., and Woodsworth,
G. J.: Identifying spatial variations in glacial catchment erosion with
detrital thermochronology, J. Geophys. Res.-Earth, 120, 1023–1039,
https://doi.org/10.1002/2014JF003432, 2015.
Enkelmann, E. and Ehlers, T. A.: Evaluation of detrital thermochronology
for quantification of glacial catchment denudation and sediment
mixing, Chem. Geol., 411, 299–309,
https://doi.org/10.1016/j.chemgeo.2015.07.018, 2015.
Enkelmann, E., Zeitler, P. K., Pavlis, T. L., Garver, J. I., and Ridgway, K.
D.: Intense localized rock uplift and erosion in the St. Elias orogen of
Alaska, Nat. Geosci., 2, 360–363, https://doi.org/10.1038/ngeo502,
2009.
Ewertowski, M. W. and Tomczyk, A. M.: Reactivation of temporarily
stabilized ice-cored moraines in front of polythermal glaciers:
Gravitational mass movements as the most important geomorphological agents
for the redistribution of sediments (a case study from Ebbabreen and
Ragnarbreen, Svalbard), Geomorphology, 350, 106952,
https://doi.org/10.1016/j.geomorph.2019.106952, 2020.
Falkowski, S., Enkelmann, E., Drost, K., Pfänder, J. A., Stübner,
K., and Ehlers, T. A.: Cooling history of the St. Elias syntaxis, southeast
Alaska, revealed by geochronology and thermochronology of cobble-sized
glacial detritus, Tectonics, 35, 447–468,
https://doi.org/10.1002/2015TC004086, 2016.
Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G. H., Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment, The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, 2017.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H.,
Maussion, F., and Pandit, A.: A consensus estimates for the ice thickness
distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173,
https://doi.org/10.1038/s41561-019-0300-3, 2019.
Farley, K. A. and Stockli, D. F: dating of phosphates: Apatite,
monazite, and xenotime, Rev. Mineral Geochem., 48,
559–577, https://doi.org/10.2138/rmg.2002.48.15, 2002.
Fitzgerald, P. G. and Stump, E.: Cretaceous and Cenozoic episodic
denudation of the Transantarctic Mountains, Antarctica: New constraints from
apatite fission track thermochronology in the Scott Glacier region, J. Geophys. Res.-Sol Ea., 102, 7747–7765,
https://doi.org/10.1029/96JB03898, 1997.
Galbraith, R. F.,: Statistics for fission track analysis, 1st Edition, Chapman and Hall/CRC, New York, pp. 240, https://doi.org/10.1201/9781420034929, 2005.
Gallagher, K.: Evolving temperature histories from apatite fission-track
data, Earth Planet. Sc. Lett., 136, 421–435,
https://doi.org/10.1016/0012-821X(95)00197-K, 1995.
Gallagher, K. and Parra, M.: A new approach to thermal history modelling
with detrital low temperature thermochronological data, Earth Planet.
Sc. Lett., 529, 115872, https://doi.org/10.1016/j.epsl.2019.115872,
2020.
Glen, J. W.: Experiments on the deformation of ice, J.
Glaciol., 2, 111–114, https://doi.org/10.3189/S0022143000034067,1952.
Glotzbach, C., Busschers, F. S., and Winsemann, J.: Detrital
thermochronology of Rhine, Elbe and Meuse river sediment (Central Europe):
implications for provenance, erosion and mineral fertility, Int.
J. of Earth Sci., 107, 459–479,
https://doi.org/10.1007/s00531-017-1502-9, 2018.
Godon, C., Mugnier, J. L., Fallourd, R., Paquette, J. L., Pohl, A., and
Buoncristiani, J. F.: The Bossons glacier protects Europe's summit from
erosion, Earth Planet. Sc. Lett., 375, 135–147,
https://doi.org/10.1016/j.epsl.2013.05.018, 2013.
Goodsell, B., Hambrey, M. J., and Glasser, N. F.: Debris transport in a
temperate valley glacier: Haut Glacier d'Arolla, Valais,
Switzerland. J. Glaciol., 51, 139–146,
https://doi.org/10.3189/172756505781829647, 2005.
Grabowski, D. M., Enkelmann, E., and Ehlers, T. A.: Spatial extent of rapid
denudation in the glaciated St. Elias syntaxis region, SE Alaska, J.
Geophys. Res.-Earth, 118, 1921–1938,
https://doi.org/10.1002/jgrf.20136, 2013.
Guillon, H., Mugnier, J. L., Buoncristiani, J. F., Carcaillet, J., Godon,
C., Prud'Homme, C., Van der Beek, P., and Vassallo, R.: Improved
discrimination of subglacial and periglacial erosion using 10Be
concentration measurements in subglacial and supraglacial sediment load of
the Bossons glacier (Mont Blanc massif, France), Earth Surf. Proc. Land, 40, 1202–1215, https://doi.org/10.1002/esp.3713, 2015.
Hallet, B.: Subglacial regelation water film, J. Glaciol., 23,
321–334, https://doi.org/10.3189/S0022143000029932, 1979.
Hallet, B.: Glacial abrasion and sliding: their dependence on the debris
concentration in basal ice, Ann. Glaciol., 2, 23–28,
https://doi.org/10.3189/172756481794352487, 1981.
Hallet, B., Hunter, L., and Bogen, J.: Rates of erosion and sediment
evacuation by glaciers: A review of field data and their
implications, Global Planet. Change, 12, 213–235, 1996.
Hambrey, M. J., Bennett, M. R., Dowdeswell, J. A., Glasser, N. F., and
Huddart, D.: Debris entrainment and transfer in polythermal valley
glaciers, J. Glaciol., 45, 69–86,
https://doi.org/10.3189/S0022143000003051, 1999.
Hambrey, M. J., and Lawson, W.: Structural styles and deformation fields in
glaciers: a review, Geol. Soc., London, Special
Publications, 176, 59–83, https://doi.org/10.1144/GSL.SP.2000.176.01.06,
2000.
Hambrey, M. J., Quincey, D. J., Glasser, N. F., Reynolds, J. M., Richardson,
S. J., and Clemmens, S.: Sedimentological, geomorphological and dynamic
context of debris-mantled glaciers, Mount Everest (Sagarmatha) region,
Nepal, Quaternary Sci. Rev., 27, 2361–2389,
https://doi.org/10.1016/j.quascirev.2008.08.010, 2008.
Herman, F., Beaud, F., Champagnac, J. D., Lemieux, J. M., and Sternai, P.:
Glacial hydrology and erosion patterns: A mechanism for carving glacial
valleys, Earth Planet. Sci. Lett., 310, 498–508,
https://doi.org/10.1016/j.epsl.2011.08.022, 2011.
Herman, F., Braun, J., Deal, E., and Prasicek, G.: The response time of
glacial erosion, J. Geophys. Res.-Earth, 123,
801–817, https://doi.org/10.1002/2017JF004586, 2018.
Herman, F., Seward, D., Valla, P. G., Carter, A., Kohn, B., Willett, S. D.,
and Ehlers, T. A.: Worldwide acceleration of mountain erosion under a
cooling climate, Nature, 504, 423–426,
https://doi.org/10.1038/nature12877, 2013.
Hindmarsh, R. C.: The role of membrane-like stresses in determining the
stability and sensitivity of the Antarctic ice sheets: back pressure and
grounding line motion, Philos. T. Roy. Soc. A, 364, 1733–1767,
https://doi.org/10.1098/rsta.2006.1797, 2006.
Hurford, A. J. and Green, P. F.: The zeta age calibration of fission-track
dating, Chem. Geol., 41, 285–317,
https://doi.org/10.1016/S0009-2541(83)80026-6, 1983.
Iverson, N. R.: A theory of glacial quarrying for landscape evolution
models, Geology, 40, 679–682, https://doi.org/10.1130/G33079.1, 2012.
Iverson, N. R., Cohen, D., Hooyer, T. S., Fischer, U. H., Jackson, M.,
Moore, P. L., and Kohler, J.: Effects of basal debris on glacier
flow, Science, 301, 81–84, https://doi.org/10.1126/science.1083086,
2003.
Jarvis, A., Reuter, R. I., Nelson, A., and Guevara, E.: Hole-filled seamless SRTM
data V4, International Centre for Tropical Agriculture (CIAT), available
at: http://srtm.csi.cgiar.org, (last access: 1 December 2019), 2008.
Jóhannesson, T., Raymond, C. F., and Waddington, E. D.: A simple method
for determining the response time of glaciers, in: Oerlemans J. (Eds.) Glacier fluctuations and climatic change, pp. 343–352, Springer, Dordrecht, https://doi.org/10.1007/978-94-015-7823-3_22, 1989.
Kayastha, R. B., Takeuchi, Y., Nakawo, M., and Ageta, Y.: Practical
prediction of ice melting beneath various thickness of debris cover on
Khumbu Glacier, Nepal, using a positive degree-day factor, IAHS-AISH P, 264,
71–81, 2000.
Kessler, M. A., Anderson, R. S., and Briner J. P.: Fjord insertion into
continental margins driven by topographic steering of ice, Nat. Geosci.,
1, 365–369, https://doi.org/10.1038/ngeo201, 2008.
Kirkbride, M. P.: Processes of glacial transportation, in: Modern and Past
Glacial Environments, edited by: Menzies J., Butterworth-Heinemann, Canada, Butterworth-Heinemann, 147–169,
https://doi.org/10.1016/B978-075064226-2/50009-X, 2002.
Koppes, M., Hallet, B., Rignot, E., Mouginot, J., Wellner, J. S., and Boldt,
K.: Observed latitudinal variations in erosion as a function of glacier
dynamics, Nature, 526, 100–103, https://doi.org/10.1038/nature15385, 2015.
Koppes, M. N. and Montgomery, D. R.: The relative efficacy of fluvial and
glacial erosion over modern to orogenic timescales, Nat. Geosci., 2,
644–647, https://doi.org/10.1038/ngeo616, 2009.
Lukas, S.: A test of the englacial thrusting hypothesis of `hummocky' moraine
formation: case studies from the northwest Highlands,
Scotland, Boreas, 34, 287–307,
https://doi.org/10.1111/j.1502-3885.2005.tb01102.x, 2005.
Matsuoka, N. and Murton, J.: Frost weathering: recent advances and future
directions, Permafrost Periglac., 19, 195–210,
https://doi.org/10.1002/ppp.620, 2008.
MacGregor, K. C., Anderson, R. S., Anderson, S. P., and Waddington, E. D.:
Numerical simulations of longitudinal profile evolution of glacial valleys,
Geology, 28, 1031–1034,
https://doi.org/10.1130/0091-7613(2000)28<1031:NSOGLP>2.0.CO;2, 2000.
MacGregor, K. R., Anderson, R. S., and Waddington, E. D.: Numerical
modelling of glacial erosion and headwall processes in alpine
valleys, Geomorphology, 103, 189–204,
https://doi.org/10.1016/j.geomorph.2008.04.022, 2009.
Menounos, B., Clague, J. J., Clarke, G. K., Marcott, S. A., Osborn, G.,
Clark, P. U., Tennant C., and Novak, A. M.: Did rock avalanche deposits
modulate the late Holocene advance of Tiedemann Glacier, southern Coast
Mountains, British Columbia, Canada?, Earth Planet. Sc.
Lett., 384, 154–164, https://doi.org/10.1016/j.epsl.2013.10.008, 2013.
Moecher, D. P. and Samson, S. D.: Differential zircon fertility of source
terranes and natural bias in the detrital zircon record: Implications for
sedimentary provenance analysis, Earth Planet. Sc.
Lett., 247, 252–266, https://doi.org/10.1016/j.epsl.2006.04.035,
2006.
Molnar, P. and England, P.: Late Cenozoic uplift of mountain ranges and
global climate change: chicken or egg? Nature, 346, 29–34,
https://doi.org/10.1038/346029a0, 1990.
Montgomery, D. R. and Brandon, M. T.: Topographic controls on erosion rates
in tectonically active mountain ranges, Earth Planet. Sc.
Lett., 201, 481–489, https://doi.org/10.1016/S0012-821X(02)00725-2,
2002.
Oerlemans, J.: Glaciers and climate change, CRC Press, Balkema, Utrecht University, ISBN 902-6-5181-37, 2001.
Östrem, G.: Ice melting under a thin layer of moraine, and the existence
of ice cores in moraine ridges, Geogr. Ann., 41, 228–230,
https://doi.org/10.1080/20014422.1959.11907953, 1959.
Roe, G. H. and O'Neal, M. A.: The response of glaciers to intrinsic climate
variability: observations and models of late-Holocene variations in the
Pacific Northwest, J. Glaciol., 55, 839–854,
https://doi.org/10.3189/002214309790152438, 2009.
Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Evidence for
nonlinear, diffusive sediment transport on hillslopes and implications for
landscape morphology, Water Resour. Res., 35, 853–870,
https://doi.org/10.1029/1998WR900090, 1999.
Rowan, A. V., Egholm, D. L., Quincey, D. J., and Glasser, N. F.: Modelling
the feedbacks between mass balance, ice flow and debris transport to predict
the response to climate change of debris-covered glaciers in the
Himalaya, Earth Planet. Sc. Lett., 430, 427–438,
https://doi.org/10.1016/j.epsl.2015.09.004, 2015.
Ruhl, K. W. and Hodges, K. V.: The use of detrital mineral cooling ages to
evaluate steady state assumptions in active orogens: An example from the
central Nepalese Himalaya, Tectonics, 24, TC4015,
https://doi.org/10.1029/2004TC001712, 2005.
Schildgen, T. F., Van der Beek, P. A., Sinclair, H. D., and Thiede, R. C.:
Spatial correlation bias in late-Cenozoic erosion histories derived from
thermochronology, Nature, 559, 89–93,
https://doi.org/10.1038/s41586-018-0260-6, 2018.
Schoof, C.: The effect of cavitation on glacier sliding, Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 461,
609–627, https://doi.org/10.1098/rspa.2004.1350, 2005.
Schoof, C.: Ice-sheet acceleration driven by melt supply
variability, Nature, 468, 803–806, https://doi.org/10.1038/nature09618,
2010.
Sharp, M.: Annual moraine ridges at Skálafellsjökull, south-east
Iceland, J. Glaciol., 30, 82–93,
https://doi.org/10.3189/S0022143000008522, 1984.
Small, R. J.: Englacial and supraglacial sediment: transport and deposition,
in: Glacio-Fluvial Sediment Transfer, edited by: Gurnell, A. M. and Clark, M. J., An
Alpine Perspective, Wiley, Chichester, 111–145, 1987.
Spedding, N.: Hydrological controls on sediment transport pathways:
implications for debris-covered glaciers, IAHS publication, 133–142, ISBN 190-1-5023-17, 2000.
Steer, P., Huismans, R. S., Valla, P. G., Gac, S., and Herman, F.: Bimodal
Plio – Quaternary glacial erosion of fjords and low-relief surfaces in
Scandinavia, Nat. Geosci., 5, 635–639,
https://doi.org/10.1038/ngeo1549, 2012.
Stock, G. M., Ehlers, T. A., and Farley, K. A.: Where does sediment come
from? Quantifying catchment erosion with detrital apatite
thermochronometry, Geology, 34, 725–728, https://doi.org/10.1130/G22592.1, 2006.
Swift, D. A., Nienow, P. W., and Hoey, T. B.: Basal sediment evacuation by
subglacial meltwater: suspended sediment transport from Haut Glacier
d'Arolla, Switzerland, Earth Surf. Proc. Land., 30,
867–883, https://doi.org/10.1002/esp.1197, 2005.
Tennant, C., Menounos, B., Ainslie, B., Shea, J., and Jackson, P.:
Comparison of modeled and geodetically-derived glacier mass balance for
Tiedemann and Klinaklini glaciers, southern Coast Mountains, British
Columbia, Canada, Global Planet. Change, 82, 74–85,
https://doi.org/10.1016/j.gloplacha.2011.11.004, 2012.
Thomson, S. N., Reiners, P. W., Hemming, S. R., and Gehrels, G. E.: The
contribution of glacial erosion to shaping the hidden landscape of East
Antarctica, Nat. Geosci., 6, 203–207, https://doi.org/10.1038/ngeo1722,
2013.
Tranel, L. M., Spotila, J. A., Kowalewski, M. J., and Waller, C. M.: Spatial
variation of erosion in a small, glaciated basin in the Teton Range,
Wyoming, based on detrital apatite thermochronology, Basin
Res., 23, 571–590, https://doi.org/10.1111/j.1365-2117.2011.00502.x,
2011.
Ugelvig, S. V., Egholm, D. L., Anderson, R. S., and Iverson, N. R.: Glacial
Erosion Driven by Variations in Meltwater Drainage, J. Geophys.
Res.-Earth, 123, 2863–2877,
https://doi.org/10.1029/2018JF004680, 2018.
Ugelvig, S. V., Egholm, D. L., and Iverson, N. R.: Glacial landscape
evolution by subglacial quarrying: A multiscale computational
approach, J. Geophys.
Res.-Earth, 121, 2042–2068, https://doi.org/10.1002/2016JF003960, 2016.
Valla, P. G., Van der Beek, P. A., and Braun, J.: Rethinking low-temperature
thermochronology data sampling strategies for quantification of denudation
and relief histories: a case study in the French western Alps, Earth
Planet. Sc. Lett., 307, 309–322,
https://doi.org/10.1016/j.epsl.2011.05.003, 2011a.
Valla, P. G., Shuster, D. L., and Van Der Beek, P. A.: Significant increase
in relief of the European Alps during mid-Pleistocene glaciations, Nat.
Geosci., 4, 688–692, https://doi.org/10.1038/ngeo1242, 2011b.
Vermeesch, P.: How many grains are needed for a provenance study? Earth
Planet. Sc. Lett., 224, 441–451,
https://doi.org/10.1016/j.epsl.2004.05.037, 2004.
Whipple, K. X.: The influence of climate on the tectonic evolution of
mountain belts, Nat. Geosci., 2, 97–104,
https://doi.org/10.1038/ngeo413, 2009.
Willenbring, J. K. and Jerolmack, D. J.: The null hypothesis: globally
steady rates of erosion, weathering fluxes and shelf sediment accumulation
during Late Cenozoic mountain uplift and glaciation, Terra Nova, 28,
11–18, https://doi.org/10.1111/ter.12185, 2016.
Winkler, S. and Matthews, J. A.: Observations on terminal moraine-ridge
formation during recent advances of southern Norwegian
glaciers, Geomorphology, 116, 87–106,
https://doi.org/10.1016/j.geomorph.2009.10.011, 2010.
Yanites, B. J. and Ehlers, T. A.: Intermittent glacial sliding velocities
explain variations in long-timescale denudation, Earth Planet. Sc.
Lett., 450, 52–61, https://doi.org/10.1016/j.epsl.2016.06.022, 2016.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, and aberrations in global climate 65 Ma to
present, Science, 292, 686–693,
https://doi.org/10.1126/science.1059412, 2001.
Short summary
Detrital thermochronometric age distributions of frontal moraines have the potential to retrieve ice erosion patterns. However, modelling erosion and sediment transport by the Tiedemann Glacier ice shows that ice velocity, the source of sediment, and ice flow patterns affect age distribution shape by delaying sediment transfer. Local sampling of frontal moraine can represent only a limited part of the catchment area and thus lead to a biased estimation of the spatial distribution of erosion.
Detrital thermochronometric age distributions of frontal moraines have the potential to retrieve...