Articles | Volume 9, issue 1
https://doi.org/10.5194/esurf-9-105-2021
https://doi.org/10.5194/esurf-9-105-2021
Research article
 | 
02 Mar 2021
Research article |  | 02 Mar 2021

Computing water flow through complex landscapes – Part 3: Fill–Spill–Merge: flow routing in depression hierarchies

Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Richard Barnes on behalf of the Authors (18 Sep 2020)  Manuscript 
ED: Publish as is (02 Nov 2020) by Wolfgang Schwanghart
ED: Publish as is (23 Nov 2020) by A. Joshua West (Editor)
AR by Richard Barnes on behalf of the Authors (11 Dec 2020)  Manuscript 
Short summary
Existing ways of modeling the flow of water amongst landscape depressions such as swamps and lakes take a long time to run. However, as our previous work explains, depressions can be quickly organized into a data structure – the depression hierarchy. This paper explains how the depression hierarchy can be used to quickly simulate the realistic filling of depressions including how they spill over into each other and, if they become full enough, how they merge into one another.