Articles | Volume 9, issue 5
https://doi.org/10.5194/esurf-9-1347-2021
https://doi.org/10.5194/esurf-9-1347-2021
Research article
 | 
11 Oct 2021
Research article |  | 11 Oct 2021

A hybrid data–model approach to map soil thickness in mountain hillslopes

Qina Yan, Haruko Wainwright, Baptiste Dafflon, Sebastian Uhlemann, Carl I. Steefel, Nicola Falco, Jeffrey Kwang, and Susan S. Hubbard

Related authors

Brief Communication: Decadal changes in topography, surface water and subsurface structure across an Arctic coastal tundra site
Jonathan Bachman, John Lamb, Craig Ulrich, Neslihan Taş, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2341,https://doi.org/10.5194/egusphere-2025-2341, 2025
Short summary
Alquimia v1.0: a generic interface to biogeochemical codes – a tool for interoperable development, prototyping and benchmarking for multiphysics simulators
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025,https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Runoff Evaluation in an Earth System Land Model for Permafrost Regions
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753,https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Brief communication: Monitoring snow depth using small, cheap, and easy-to-deploy snow–ground interface temperature sensors
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren N. Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
The Cryosphere, 19, 393–400, https://doi.org/10.5194/tc-19-393-2025,https://doi.org/10.5194/tc-19-393-2025, 2025
Short summary
Disentangling the effect of geomorphological features and tall shrubs on snow depth variation in a sub-Arctic watershed using UAV derived products
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2023-968,https://doi.org/10.5194/egusphere-2023-968, 2023
Preprint archived
Short summary

Cited articles

Andrews, D. J. and Bucknam, R. C.: Fitting degradation of shoreline scarps by a nonlinear diffusion model, J. Geophys. Res.-Sol. Ea., 92, 12857–12867, https://doi.org/10.1029/JB092iB12p12857, 1987. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Brodrick, P., Goulden, T., and Chadwick, K. D.: Custom NEON AOP reflectance mosaics and maps of shade masks, canopy water content, Watershed Function SFA [data set], https://doi.org/10.15485/1618131, 2020.​​​​​​​ 
Brugger, K. A.: Climate in the Southern sawatch range and Elk Mountains, Colorado, U.S.A., during the last glacial maximum: Inferences using a simple degree-day model, Arctic, Antarct. Alp. Res., 42, 164–178, https://doi.org/10.1657/1938-4246-42.2.164, 2010. 
Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design for sensitivity analysis of large models, Environ. Model. Softw., 22, 1509–1518, https://doi.org/10.1016/j.envsoft.2006.10.004, 2007. 
Download
Short summary
We develop a hybrid model to estimate the spatial distribution of the thickness of the soil layer, which also provides estimations of soil transport and soil production rates. We apply this model to two examples of hillslopes in the East River watershed in Colorado and validate the model. The results show that the north-facing (NF) hillslope has a deeper soil layer than the south-facing (SF) hillslope and that the hybrid model provides better accuracy than a machine-learning model.
Share