Articles | Volume 9, issue 5
https://doi.org/10.5194/esurf-9-1347-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-1347-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A hybrid data–model approach to map soil thickness in mountain hillslopes
Qina Yan
CORRESPONDING AUTHOR
Earth and Environmental Science Area, Lawrence Berkeley National
Laboratory, Berkeley, CA, USA
Haruko Wainwright
Earth and Environmental Science Area, Lawrence Berkeley National
Laboratory, Berkeley, CA, USA
Baptiste Dafflon
Earth and Environmental Science Area, Lawrence Berkeley National
Laboratory, Berkeley, CA, USA
Sebastian Uhlemann
Earth and Environmental Science Area, Lawrence Berkeley National
Laboratory, Berkeley, CA, USA
Carl I. Steefel
Earth and Environmental Science Area, Lawrence Berkeley National
Laboratory, Berkeley, CA, USA
Nicola Falco
Earth and Environmental Science Area, Lawrence Berkeley National
Laboratory, Berkeley, CA, USA
Jeffrey Kwang
Department of Geosciences, University of Massachusetts Amherst,
Amherst, MA, USA
Susan S. Hubbard
Earth and Environmental Science Area, Lawrence Berkeley National
Laboratory, Berkeley, CA, USA
Related authors
No articles found.
Jonathan Bachman, John Lamb, Craig Ulrich, Neslihan Taş, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2341, https://doi.org/10.5194/egusphere-2025-2341, 2025
Short summary
Short summary
We studied how Arctic landscapes change as the ground thaws by comparing measurements taken ten years apart. We found that some areas sank and new ponds formed, with different patterns depending on the shape of the land. These changes affect how water and carbon flow and cycle through the environment. The results help understand how and where the Arctic is shifting, and highlight the need for repeated observations to track long-term changes.
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025, https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Short summary
Developing scientific software and making sure it functions properly requires a significant effort. As we advance our understanding of natural systems, however, there is the need to develop yet more complex models and codes. In this work, we present a piece of software that facilitates this work, specifically with regard to reactive processes. Existing tried-and-true codes are made available via this new interface, freeing up resources to focus on the new aspects of the problems at hand.
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753, https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Short summary
Predicting hydrological runoff in Arctic permafrost regions is difficult due to limited observations and complex terrain. We used a detailed physics-based model to improve runoff estimates in a Earth system land model. Our method improved runoff accuracy and worked well across two different Arctic regions. This helps make climate models more reliable for understanding water flow in permafrost areas under a changing climate.
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren N. Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
The Cryosphere, 19, 393–400, https://doi.org/10.5194/tc-19-393-2025, https://doi.org/10.5194/tc-19-393-2025, 2025
Short summary
Short summary
Temporally continuous snow depth estimates are important for understanding changing snow patterns and impacts on frozen ground in the Arctic. In this work, we developed an approach to predict snow depth from variability in snow–ground interface temperature using small temperature sensors that are cheap and easy to deploy. This new technique enables spatially distributed and temporally continuous snowpack monitoring that has not previously been possible.
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2023-968, https://doi.org/10.5194/egusphere-2023-968, 2023
Preprint archived
Short summary
Short summary
Snow depth has a strong impact on soil temperatures and carbon cycling in the arctic. Because of this, we want to understand why snow is deeper in some places than others. Using cameras mounted on a drone, we mapped snow depth, vegetation height, and elevation across a watershed in Alaska. In this paper, we develop novel techniques using image processing and machine learning to characterize the influence of topography and shrubs on snow depth in the watershed.
Utkarsh Mital, Dipankar Dwivedi, James B. Brown, and Carl I. Steefel
Earth Syst. Sci. Data, 14, 4949–4966, https://doi.org/10.5194/essd-14-4949-2022, https://doi.org/10.5194/essd-14-4949-2022, 2022
Short summary
Short summary
We present a new dataset that estimates small-scale variations in precipitation and temperature in mountainous terrain. The dataset is generated using a new machine learning framework that extracts relationships between climate and topography from existing coarse-scale datasets. The generated dataset is shown to capture small-scale variations more reliably than existing datasets and constitutes a valuable resource to model the water cycle in the mountains of Colorado, western United States.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Fadji Z. Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci., 26, 3805–3823, https://doi.org/10.5194/hess-26-3805-2022, https://doi.org/10.5194/hess-26-3805-2022, 2022
Short summary
Short summary
We propose a hillslope clustering approach based on the seasonal changes in groundwater levels and test its performance by comparing it to several common clustering approaches (aridity index, topographic wetness index, elevation, land cover, and machine-learning clustering). The proposed approach is robust as it reasonably categorizes hillslopes with similar elevation, land cover, hydroclimate, land surface processes, and subsurface hydrodynamics, hence a similar hydrologic function.
Carlotta Brunetti, John Lamb, Stijn Wielandt, Sebastian Uhlemann, Ian Shirley, Patrick McClure, and Baptiste Dafflon
Earth Surf. Dynam., 10, 687–704, https://doi.org/10.5194/esurf-10-687-2022, https://doi.org/10.5194/esurf-10-687-2022, 2022
Short summary
Short summary
This paper proposes a method to estimate thermal diffusivity and its uncertainty over time, at numerous locations and at an unprecedented vertical spatial resolution from soil temperature time series. We validate and apply this method to synthetic and field case studies. The improved quantification of soil thermal properties is a cornerstone for advancing the indirect estimation of the fraction of soil components needed to predict subsurface storage and fluxes of water, carbon, and nutrients.
Baptiste Dafflon, Stijn Wielandt, John Lamb, Patrick McClure, Ian Shirley, Sebastian Uhlemann, Chen Wang, Sylvain Fiolleau, Carlotta Brunetti, Franklin H. Akins, John Fitzpatrick, Samuel Pullman, Robert Busey, Craig Ulrich, John Peterson, and Susan S. Hubbard
The Cryosphere, 16, 719–736, https://doi.org/10.5194/tc-16-719-2022, https://doi.org/10.5194/tc-16-719-2022, 2022
Short summary
Short summary
This study presents the development and validation of a novel acquisition system for measuring finely resolved depth profiles of soil and snow temperature at multiple locations. Results indicate that the system reliably captures the dynamics in snow thickness, as well as soil freezing and thawing depth, enabling advances in understanding the intensity and timing in surface processes and their impact on subsurface thermohydrological regimes.
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022, https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Short summary
Climate change could change the groundwater system and threaten water supply. To quantitatively evaluate its impact on water quality, numerical simulations with chemical and reaction processes are required. With the climate projection dataset, we used the newly developed hydrological and chemical model to investigate the movement of contaminants and assist the management of contamination sites.
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle E. Newcomer, Baptiste Dafflon, Erica R. Siirila-Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 26, 429–444, https://doi.org/10.5194/hess-26-429-2022, https://doi.org/10.5194/hess-26-429-2022, 2022
Short summary
Short summary
This paper has developed a tractable approach for characterizing watershed heterogeneity and its relationship with key functions such as ecosystem sensitivity to droughts and nitrogen export. We have applied clustering methods to classify hillslopes into
watershed zonesthat have distinct distributions of bedrock-to-canopy properties as well as key functions. This is a powerful approach for guiding watershed experiments and sampling as well as informing hydrological and biogeochemical models.
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021, https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Short summary
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent neural network to estimate evapotranspiration (ET) and ecosystem respiration (Reco) with only meteorological and remote-sensing inputs. We developed four use cases to demonstrate the applicability of HPM. The results indicate HPM is capable of providing ET and Reco estimations in challenging mountainous systems and enhances our understanding of watershed dynamics at sparsely monitored watersheds.
Cited articles
Andrews, D. J. and Bucknam, R. C.: Fitting degradation of shoreline scarps
by a nonlinear diffusion model, J. Geophys. Res.-Sol. Ea., 92,
12857–12867, https://doi.org/10.1029/JB092iB12p12857, 1987.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Brodrick, P., Goulden, T., and Chadwick, K. D.: Custom NEON AOP reflectance mosaics and maps of shade masks, canopy water content, Watershed Function SFA [data set], https://doi.org/10.15485/1618131, 2020.
Brugger, K. A.: Climate in the Southern sawatch range and Elk Mountains,
Colorado, U.S.A., during the last glacial maximum: Inferences using a simple
degree-day model, Arctic, Antarct. Alp. Res., 42, 164–178,
https://doi.org/10.1657/1938-4246-42.2.164, 2010.
Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design
for sensitivity analysis of large models, Environ. Model. Softw., 22,
1509–1518, https://doi.org/10.1016/j.envsoft.2006.10.004, 2007.
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca,
M., Mu, M., Saatchi, S., Santoro, M., Thurner, M., Weber, U.,
Ahrens, B., Beer, C., Cescatti, A., Randerson, J. T., and Reichstein, M.:
Global covariation of carbon turnover times with climate in terrestrial
ecosystems, Nature, 514, 213–217, https://doi.org/10.1038/nature13731, 2014.
Catani, F., Segoni, S., and Falorni, G.: An empirical geomorphology-based
approach to the spatial prediction of soil thickness at catchment scale,
Water Resour. Res., 46, W05508, https://doi.org/10.1029/2008WR007450, 2010.
Chadwick, K. D., Brodrick, P. G., Grant, K., Goulden, T., Henderson, A.,
Falco, N., Wainwright, H., Williams, K. H., Bill, M., Breckheimer, I.,
Brodie, E. L., Steltzer, H., Williams, C. F. R., Blonder, B., Chen, J.,
Dafflon, B., Damerow, J., Hancher, M., Khurram, A., Lamb, J., Lawrence, C.
R., McCormick, M., Musinsky, J., Pierce, S., Polussa, A., Hastings Porro,
M., Scott, A., Singh, H. W., Sorensen, P. O., Varadharajan, C., Whitney, B.,
and Maher, K.: Integrating airborne remote sensing and field campaigns for
ecology and Earth system science, Methods Ecol. Evol., 11, 1492–1508,
https://doi.org/10.1111/2041-210X.13463, 2020.
Dietrich, W. E., Reiss, R., Hsu, M., and Montgomery, D. R.: A process-based
model for colluvial soil depth and shallow landsliding using digital
elevation data, Hydrol. Process., 9, 383–400, 1995.
Efron, B.: The Jackknife, the Bootstrap and Other Resampling Plans, edited
by CBMS-NSF regional conference series in applied mathematics 1982, Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1982.
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S.
L., Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W.,
Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague,
C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J.,
Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X.,
Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B.,
Safeeq, M., Shen, C., van Verseveld, W., Volk, J., and Yamazaki, D.:
Hillslope Hydrology in Global Change Research and Earth System Modeling,
Water Resour. Res., 55, 1737–1772, https://doi.org/10.1029/2018WR023903, 2019.
Fernandes, N. F. and Dietrich, W. E.: Hillslope evolution by diffusive
processes: The timescale for equilibrium adjustments, Water Resour. Res.,
33, 1307–1318, https://doi.org/10.1029/97WR00534, 1997.
Gaskill, D. L.: Geologic map of the Gothic quadrangle, Gunnison County,
Colorado, https://doi.org/10.3133/gq1689, 1991.
Goulden, T., Hass, B., Brodie, E., Chadwick, K. D., Falco, N., Maher, K., Wainwright, H., and Williams, K.: NEON AOP Survey of Upper East River CO Watersheds: LAZ Files, LiDAR Surface Elevation, Terrain Elevation, and Canopy Height Rasters, Watershed Function SFA [data set], https://doi.org/10.15485/1617203, 2020.
Grant, G. E. and Dietrich, W. E.: The crontier beneath our feet, J. Chem.
Inf. Model., 53, 1689–1699, https://doi.org/10.1017/CBO9781107415324.004, 2017.
Hastie, R.: Problems for Judgment and Decision Making, Annu. Rev. Psychol.,
52, 653–683, https://doi.org/10.1146/annurev.psych.52.1.653, 2001.
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., Finkel, R. C., Mass, A.,
and National, L. L.: The soil production function and landscape equilibrium,
Nature, 388, 358–361, 1997.
Heimsath, A. M., Chappell, J., Dietrich, W. E., Nishiizumi, K., and
Finkel, R. C.: Soil production on a retreating escarpment in southeastern
Australia, Geology, 28, 787–790, https://doi.org/10.1130/0091-7613(2000)28<787:SPOARE>2.0.CO;2, 2000.
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C.:
Stochastic processes of soil production and transport: erosion rates,
topographic variation and cosmogenic nuclides in the Oregon Coast Range,
Earth Surf. Proc. Land., 26, 531–552, https://doi.org/10.1002/esp.209, 2001.
Heimsath, A. M., Furbish, D. J., and Dietrich, W. E.: The illusion of
diffusion: Field evidence for depth-dependent sediment transport, Geology,
33, 949–952, https://doi.org/10.1130/G21868.1, 2005.
Heimsath, A. M., Fink, D., and Hancock, G. R.: The `humped' soil production
function: eroding Arnhem Land, Australia, Earth Surf. Proc. Land.,
34, 1674–1684, https://doi.org/10.1002/esp.1859, 2009.
Hengl, T., Heuvelink, G. B. M., and Stein, A.: A generic framework for
spatial prediction of soil variables based on regression-kriging, Geoderma,
120, 75–93, https://doi.org/10.1016/j.geoderma.2003.08.018, 2004.
Hinckley, E. L. S., Ebel, B. A., Barnes, R. T., Anderson, R. S., Williams,
M. W., and Anderson, S. P.: Aspect control of water movement on hillslopes
near the rain-snow transition of the Colorado Front Range, Hydrol. Process.,
28, 74–85, https://doi.org/10.1002/hyp.9549, 2014.
Hubbard, S. S., Williams, K. H., Agarwal, D., Banfield, J., Beller, H.,
Bouskill, N., Brodie, E., Carroll, R., Dafflon, B., Dwivedi, D., Falco, N.,
Faybishenko, B., Maxwell, R., Nico, P., Steefel, C., Steltzer, H., Tokunaga,
T., Tran, P. A., Wainwright, H., and Varadharajan, C.: The East River,
Colorado, Watershed: A Mountainous Community Testbed for Improving
Predictive Understanding of Multiscale Hydrological-Biogeochemical Dynamics,
Vadose Zone J., 17, 180061, https://doi.org/10.2136/vzj2018.03.0061, 2018.
Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., and
Piñeiro, G.: The Ecology of Soil Carbon: Pools, Vulnerabilities, and
Biotic and Abiotic Controls, Annu. Rev. Ecol. Evol. Syst., 48, 419–445,
https://doi.org/10.1146/annurev-ecolsys-112414-054234, 2017.
Joshua West, A.: Thickness of the chemical weathering zone and implications
for erosional and climatic drivers of weathering and for carbon-cycle
feedbacks, Geology, 40, 811–814, https://doi.org/10.1130/G33041.1, 2012.
Kuriakose, S. L., Devkota, S., Rossiter, D. G., and Jetten, V. G.: Prediction
of soil depth using environmental variables in an anthropogenic landscape, a
case study in the Western Ghats of Kerala, India, CATENA, 79, 27–38,
https://doi.org/10.1016/j.catena.2009.05.005, 2009.
Kilinc, M. Y. and Richardson, E. V.: Mechanics of soil erosion from overland flow generated by simulated rainfall, Hydrol. Pap., 63, available at: http://hdl.handle.net/10217/61574 (last access: October 2021), 1973.
Lal, A. M. W.: Performance comparison of overland flow algorithms, J.
Hydraul. Eng., 124, 342–349,
https://doi.org/10.1061/(ASCE)0733-9429(1998)124:4(342), 1998.
Li, M., Foster, E. J., Le, P. V. V, Yan, Q., Stumpf, A., Hou, T.,
Papanicolaou, A. N., Wacha, K. M., Wilson, C. G., Wang, J., Kumar, P., and Filley, T.: A new dynamic wetness index (DWI) predicts soil moisture
persistence and correlates with key indicators of surface soil geochemistry,
Geoderma, 368, 114239, https://doi.org/10.1016/j.geoderma.2020.114239, 2020.
Morris, M. D.: Factorial sampling plans for preliminary computational
experiments, Technometrics, 33, 161–174,
https://doi.org/10.1080/00401706.1991.10484804, 1991.
Nicótina, L., Tarboton, D. G., Tesfa, T. K., and Rinaldo, A.: Hydrologic
controls on equilibrium soil depths, Water Resour. Res., 47, W04517,
https://doi.org/10.1029/2010WR009538, 2011.
Patton, N. R., Lohse, K. A., Godsey, S. E., Crosby, B. T., and Seyfried, M.
S.: Predicting soil thickness on soil mantled hillslopes, Nat. Commun., 9, 3329, https://doi.org/10.1038/s41467-018-05743-y, 2018.
Patton, N. R., Lohse, K. A., Seyfried, M. S., Godsey, S. E., and Parsons, S.
B.: Topographic controls of soil organic carbon on soil-mantled landscapes,
Sci. Rep., 9, 6390, https://doi.org/10.1038/s41598-019-42556-5, 2019.
Pelletier, J. D. and Rasmussen, C.: Geomorphically based predictive mapping
of soil thickness in upland watersheds, Water Resour. Res., 45, W09417,
https://doi.org/10.1029/2008WR007319, 2009.
Pelletier, J. D., Barron-Gafford, G. A., Breshears, D. D., Brooks, P. D.,
Chorover, J., Durcik, M., Harman, C. J., Huxman, T. E., Lohse, K. A.,
Lybrand, R., Meixner, T., McIntosh, J. C., Papuga, S. A., Rasmussen, C.,
Schaap, M., Swetnam, T. L., and Troch, P. A.: Coevolution of nonlinear trends
in vegetation, soils, and topography with elevation and slope aspect: A case
study in the sky islands of southern Arizona, J. Geophys. Res.-Earth,
118, 741–758, https://doi.org/10.1002/jgrf.20046, 2013.
Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P. A.,
Niu, G.-Y., Williams, Z., Brunke, M. A., and Gochis, D.: A gridded global
data set of soil, intact regolith, and sedimentary deposit thicknesses for
regional and global land surface modeling, J. Adv. Model. Earth Syst., 8,
41–65, https://doi.org/10.1002/2015MS000526, 2016.
Pelletier, J. D., Barron-Gafford, G. A., Gutiérrez-Jurado, H., Hinckley,
E. L. S., Istanbulluoglu, E., McGuire, L. A., Niu, G. Y., Poulos, M. J.,
Rasmussen, C., Richardson, P., Swetnam, T. L., and Tucker, G. E.: Which way
do you lean? Using slope aspect variations to understand Critical Zone
processes and feedbacks, Earth Surf. Proc. Land., 43, 1133–1154,
https://doi.org/10.1002/esp.4306, 2018.
Perron, J. T.: Numerical methods for nonlinear hillslope transport laws, J.
Geophys. Res.-Earth, 116, F02021, https://doi.org/10.1029/2010JF001801, 2011.
Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Evidence for nonlinear,
diffusive sediment transport on hillslopes and implications for landscape
morphology, Water Resour. Res., 35, 853–870, https://doi.org/10.1029/1998WR900090,
1999.
Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Hillslope evolution by
nonlinear, slope-dependent transport: Steady state morphology and
equilibrium adjustment timescales, J. Geophys. Res.-Sol. Ea., 106,
16499–16513, https://doi.org/10.1029/2001JB000323, 2001.
Roering, J. J., Marshall, J., Booth, A. M., Mort, M., and Jin, Q.: Evidence
for biotic controls on topography and soil production, Earth Planet. Sci.
Lett., 298, 183–190, https://doi.org/10.1016/j.epsl.2010.07.040, 2010.
Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., and Dai, Y.: Mapping
the global depth to bedrock for land surface modeling, J. Adv. Model. Earth
Syst., 9, 65–88, https://doi.org/10.1002/2016MS000686, 2017.
Taylor, J. A., Jacob, F., Galleguillos, M., Prévot, L., Guix, N., and
Lagacherie, P.: The utility of remotely-sensed vegetative and terrain
covariates at different spatial resolutions in modelling soil and watertable
depth (for digital soil mapping), Geoderma, 193–194, 83–93,
https://doi.org/10.1016/j.geoderma.2012.09.009, 2013.
Temme, A. J. A. M. and Vanwalleghem, T.: LORICA – A new model for linking
landscape and soil profile evolution: Development and sensitivity analysis,
Comput. Geosci., 90, 131–143, https://doi.org/10.1016/j.cageo.2015.08.004, 2016.
Tesfa, T. K., Tarboton, D. G., Chandler, D. G., and McNamara, J. P.: Modeling
soil depth from topographic and land cover attributes, Water Resour. Res.,
45, W10438, https://doi.org/10.1029/2008WR007474, 2009.
Tokunaga, T. K., Wan, J., Williams, K. H., Brown, W., Henderson, A., Kim,
Y., Tran, A. P., Conrad, M. E., Bill, M., Carroll, R. W. H., Dong, W., Xu,
Z., Lavy, A., Gilbert, B., Romero, S., Christensen, J. N., Faybishenko, B.,
Arora, B., Siirila-Woodburn, E. R., Versteeg, R., Raberg, J. H., Peterson,
J. E., and Hubbard, S. S.: Depth- and Time-Resolved Distributions of Snowmelt-Driven Hillslope Subsurface Flow and Transport and Their Contributions to Surface Waters, Water Resour. Res., 55, 9474–9499,
https://doi.org/10.1029/2019WR025093, 2019.
Tran, A. P., Rungee, J., Faybishenko, B., Dafflon, B., and Hubbard, S. S.:
Assessment of spatiotemporal variability of evapotranspiration and its
governing factors in a mountainous watershed, Water, 11, 243, https://doi.org/10.3390/w11020243, 2019.
Vanags, C., Minasny, B., and Mcbratney, A. B.: The dynamic penetrometer for
assessment of soil mechanical resistance, available at: https://www.regional.org.au/au/asssi/ (last access: February 2020), 1–8, 2004.
Vanwalleghem, T., Stockmann, U., Minasny, B., and Mcbratney, A. B.: A
quantitative model for integrating landscape evolution and soil formation, J. Geophys. Res.-Earth, 118, 331–347, https://doi.org/10.1029/2011JF002296, 2013.
Wainwright, H. M., Finsterle, S., Jung, Y., Zhou, Q., and Birkholzer, J. T.:
Making sense of global sensitivity analyses, Comput. Geosci., 65, 84–94,
https://doi.org/10.1016/j.cageo.2013.06.006, 2014.
Wan, J., Tokunaga, T. K., Williams, K. H., Dong, W., Brown, W., Henderson,
A. N., Newman, A. W., and Hubbard, S. S.: Predicting sedimentary bedrock
subsurface weathering fronts and weathering rates, Sci. Rep., 9, 17198,
https://doi.org/10.1038/s41598-019-53205-2, 2019.
Yan, Q.: Qinayan/Soil-thickness: Soil thickness estimation (v1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4445383, 2021.
Yan, Q., Iwasaki, T., Stumpf, A., Belmont, P., Parker, G., and Kumar, P.:
Hydrogeomorphological differentiation between floodplains and terraces,
Earth Surf. Proc. Land., 43, 218–228, https://doi.org/10.1002/esp.4234, 2018.
Yan, Q., Le, P. V. V, Woo, D. K., Hou, T., Filley, T., and Kumar, P.:
Three-Dimensional Modeling of the Coevolution of Landscape and Soil Organic
Carbon, Water Resour. Res., 55, 1218–1241, https://doi.org/10.1029/2018WR023634,
2019.
Yan, Q., Kumar, P., Wang, Y., Zhao, Y., Lin, H., and Ran, Q.: Sustainability
of soil organic carbon in consolidated gully land in China's Loess Plateau,
Sci. Rep., 10, 16927, https://doi.org/10.1038/s41598-020-73910-7, 2020.
Short summary
We develop a hybrid model to estimate the spatial distribution of the thickness of the soil layer, which also provides estimations of soil transport and soil production rates. We apply this model to two examples of hillslopes in the East River watershed in Colorado and validate the model. The results show that the north-facing (NF) hillslope has a deeper soil layer than the south-facing (SF) hillslope and that the hybrid model provides better accuracy than a machine-learning model.
We develop a hybrid model to estimate the spatial distribution of the thickness of the soil...