Articles | Volume 9, issue 1
Earth Surf. Dynam., 9, 19–28, 2021
https://doi.org/10.5194/esurf-9-19-2021
Earth Surf. Dynam., 9, 19–28, 2021
https://doi.org/10.5194/esurf-9-19-2021

Research article 07 Jan 2021

Research article | 07 Jan 2021

Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds

Veit Ulrich et al.

Related authors

INFLUENCE OF SPATIAL AND TEMPORAL RESOLUTION ON TIME SERIES-BASED COASTAL SURFACE CHANGE ANALYSIS USING HOURLY TERRESTRIAL LASER SCANS
K. Anders, L. Winiwarter, H. Mara, R. C. Lindenbergh, S. E. Vos, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 137–144, https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021,https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021, 2021
TRAINING IN INNOVATIVE TECHNOLOGIES FOR CLOSE-RANGE SENSING IN ALPINE TERRAIN – 3RD EDITION
M. Rutzinger, K. Anders, M. Bremer, B. Höfle, R. Lindenbergh, S. Oude Elberink, F. Pirotti, M. Scaioni, and T. Zieher
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B5-2020, 243–250, https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-243-2020,https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-243-2020, 2020
INFLUENCE OF RANGING UNCERTAINTY OF TERRESTRIAL LASER SCANNING ON CHANGE DETECTION IN TOPOGRAPHIC 3D POINT CLOUDS
L. Winiwarter, K. Anders, D. Wujanz, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 789–796, https://doi.org/10.5194/isprs-annals-V-2-2020-789-2020,https://doi.org/10.5194/isprs-annals-V-2-2020-789-2020, 2020
HIGH-FREQUENCY 3D GEOMORPHIC OBSERVATION USING HOURLY TERRESTRIAL LASER SCANNING DATA OF A SANDY BEACH
K. Anders, R. C. Lindenbergh, S. E. Vos, H. Mara, S. de Vries, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 317–324, https://doi.org/10.5194/isprs-annals-IV-2-W5-317-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-317-2019, 2019
FEATURE RELEVANCE ANALYSIS FOR 3D POINT CLOUD CLASSIFICATION USING DEEP LEARNING
A. Kumar, K. Anders, L Winiwarter, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 373–380, https://doi.org/10.5194/isprs-annals-IV-2-W5-373-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-373-2019, 2019

Related subject area

Cross-cutting themes: Digital Landscapes: Insights into geomorphological processes from high-resolution topography and quantitative interrogation of topographic data
Coastal change patterns from time series clustering of permanent laser scan data
Mieke Kuschnerus, Roderik Lindenbergh, and Sander Vos
Earth Surf. Dynam., 9, 89–103, https://doi.org/10.5194/esurf-9-89-2021,https://doi.org/10.5194/esurf-9-89-2021, 2021
Short summary
Beyond 2D inventories : synoptic 3D landslide volume calculation from repeat LiDAR data
Thomas G. Bernard, Dimitri Lague, and Philippe Steer
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-73,https://doi.org/10.5194/esurf-2020-73, 2020
Revised manuscript accepted for ESurf
Short summary
Short communication: A semiautomated method for bulk fault slip analysis from topographic scarp profiles
Franklin D. Wolfe, Timothy A. Stahl, Pilar Villamor, and Biljana Lukovic
Earth Surf. Dynam., 8, 211–219, https://doi.org/10.5194/esurf-8-211-2020,https://doi.org/10.5194/esurf-8-211-2020, 2020
Short summary
Short Communication: A simple workflow for robust low-cost UAV-derived change detection without ground control points
Kristen L. Cook and Michael Dietze
Earth Surf. Dynam., 7, 1009–1017, https://doi.org/10.5194/esurf-7-1009-2019,https://doi.org/10.5194/esurf-7-1009-2019, 2019
Short summary
Computing water flow through complex landscapes – Part 1: Incorporating depressions in flow routing using FlowFill
Kerry L. Callaghan and Andrew D. Wickert
Earth Surf. Dynam., 7, 737–753, https://doi.org/10.5194/esurf-7-737-2019,https://doi.org/10.5194/esurf-7-737-2019, 2019
Short summary

Cited articles

Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., and Lato, M. J.: Terrestrial laser scanning of rock slope instabilities, Earth Surf. Process. Landforms, 39, 80–97, https://doi.org/10.1002/esp.3493, 2014. 
Barsch, D.: Permafrost creep and rockglaciers, Permafr. Periglac. Process., 3, 175–188, https://doi.org/10.1002/ppp.3430030303, 1992. 
Barsch, D.: Rockglaciers, Indicators for the present and former geoecology in high mountain environments, Springer, Berlin, Germany, 1996. 
Benjamin, J., Rosser, N. J., and Brain, M. J.: Emergent characteristics of rockfall inventories captured at a regional scale, Earth Surf. Process. Landforms, 45, 2773–2787, https://doi.org/10.1002/esp.4929, 2020. 
Bodin, X., Thibert, E., Sanchez, O., Rabatel, A., and Jaillet, S.: Multi-annual kinematics of an active rock glacier quantified from very high-resolution DEMs: An application-case in the French Alps, Remote Sens., 10, 53–65, https://doi.org/10.3390/rs10040547, 2018. 
Download
Short summary
In this work, we use 3D point clouds to detect topographic changes across the surface of a rock glacier. These changes are presented as the relative contribution of surface change during a 3-week period to the annual surface change. By comparing these different time periods and looking at change in different directions, we provide estimates showing that different directions of surface change are dominant at different times of the year. This demonstrates the benefit of frequent monitoring.