Articles | Volume 9, issue 1
https://doi.org/10.5194/esurf-9-19-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-19-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds
Veit Ulrich
3D Geospatial Data Processing Group (3DGeo), Institute of Geography,
Heidelberg University, Heidelberg, Germany
Jack G. Williams
3D Geospatial Data Processing Group (3DGeo), Institute of Geography,
Heidelberg University, Heidelberg, Germany
Vivien Zahs
3D Geospatial Data Processing Group (3DGeo), Institute of Geography,
Heidelberg University, Heidelberg, Germany
Katharina Anders
3D Geospatial Data Processing Group (3DGeo), Institute of Geography,
Heidelberg University, Heidelberg, Germany
Interdisciplinary Center for Scientific Computing (IWR), Heidelberg
University, Heidelberg, Germany
Stefan Hecht
Geomorphology and Soil Geography Research Group, Institute of
Geography, Heidelberg University, Heidelberg, Germany
3D Geospatial Data Processing Group (3DGeo), Institute of Geography,
Heidelberg University, Heidelberg, Germany
Interdisciplinary Center for Scientific Computing (IWR), Heidelberg
University, Heidelberg, Germany
Related authors
No articles found.
Daan Cornelis Hulskemper, José A. Á. Antolínez, Roderik Lindenbergh, and Katharina Anders
EGUsphere, https://doi.org/10.5194/egusphere-2025-4964, https://doi.org/10.5194/egusphere-2025-4964, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
We developed a new method to automatically detect and group short-term topographic changes on sandy beaches using continuous 3D laser scans collected over three years. By distinguishing variations in patterns of sand deposition and erosion, the approach allows scientists to study how beaches change at different moments in time and link these changes to environmental conditions like winds, waves or bulldozers, improving understanding and prediction of dynamics of sandy beaches.
Lotte de Vugt, Edoardo Carraro, Ayoub Fatihi, Enrico Mattea, Eleanor Myall, Daniel Czerwonka-Schröder, and Katharina Anders
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 359–365, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-359-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-359-2025, 2025
Jiapan Wang and Katharina Anders
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 929–936, https://doi.org/10.5194/isprs-annals-X-G-2025-929-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-929-2025, 2025
Jannik S. Meyer, Ronald Tabernig, and Bernhard Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 583–590, https://doi.org/10.5194/isprs-annals-X-G-2025-583-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-583-2025, 2025
William Albert, Hannah Weiser, Ronald Tabernig, and Bernhard Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 25–32, https://doi.org/10.5194/isprs-annals-X-G-2025-25-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-25-2025, 2025
M. Potůčková, J. Albrechtová, K. Anders, L. Červená, J. Dvořák, K. Gryguc, B. Höfle, L. Hunt, Z. Lhotáková, A. Marcinkowska-Ochtyra, A. Mayr, E. Neuwirthová, A. Ochtyra, M. Rutzinger, A. Šedová, A. Šrollerů, and L. Kupková
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 989–996, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-989-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-989-2023, 2023
Lukas Winiwarter, Katharina Anders, Daniel Czerwonka-Schröder, and Bernhard Höfle
Earth Surf. Dynam., 11, 593–613, https://doi.org/10.5194/esurf-11-593-2023, https://doi.org/10.5194/esurf-11-593-2023, 2023
Short summary
Short summary
We present a method to extract surface change information from 4D time series of topographic point clouds recorded with a terrestrial laser scanner. The method uses sensor information to spatially and temporally smooth the data, reducing uncertainties. The Kalman filter used for the temporal smoothing also allows us to interpolate over data gaps or extrapolate into the future. Clustering areas where change histories are similar allows us to identify processes that may have the same causes.
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.
D. Hulskemper, K. Anders, J. A. Á. Antolínez, M. Kuschnerus, B. Höfle, and R. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W2-2022, 53–60, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, 2022
Max Engel, Felix Henselowsky, Fabian Roth, Annette Kadereit, Manuel Herzog, Stefan Hecht, Susanne Lindauer, Olaf Bubenzer, and Gerd Schukraft
E&G Quaternary Sci. J., 71, 213–226, https://doi.org/10.5194/egqsj-71-213-2022, https://doi.org/10.5194/egqsj-71-213-2022, 2022
Short summary
Short summary
The late-glacial Bergstraßenneckar is a former course of the Neckar River in the Upper Rhine Graben of southwest Germany at a time when the confluence with the Rhine river was 50 km further to the north. The former river bends are still visible in topographic maps and satellite imagery. Sediment cores and geophysical measurements from the former river channels let us reconstruct the shift from a running river to silting-up meanders and permit us to date this to ca. 11 000 to 10 500 years ago.
Hannah Weiser, Jannika Schäfer, Lukas Winiwarter, Nina Krašovec, Fabian E. Fassnacht, and Bernhard Höfle
Earth Syst. Sci. Data, 14, 2989–3012, https://doi.org/10.5194/essd-14-2989-2022, https://doi.org/10.5194/essd-14-2989-2022, 2022
Short summary
Short summary
3D point clouds, acquired by laser scanning, allow us to retrieve information about forest structure and individual tree properties. We conducted airborne, UAV-borne and terrestrial laser scanning in German mixed forests, resulting in overlapping point clouds with different characteristics. From these, we generated a comprehensive database of individual tree point clouds and corresponding tree metrics. Our dataset may serve as a benchmark dataset for algorithms in forestry research.
K. Anders, L. Winiwarter, D. Schröder, and B. Höfle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 973–980, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-973-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-973-2022, 2022
V. Zahs, L. Winiwarter, K. Anders, M. Bremer, M. Rutzinger, M. Potůčková, and B. Höfle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1109–1116, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022, 2022
L. Winiwarter, K. Anders, D. Schröder, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 79–86, https://doi.org/10.5194/isprs-annals-V-2-2022-79-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-79-2022, 2022
K. Anders, L. Winiwarter, H. Mara, R. C. Lindenbergh, S. E. Vos, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 137–144, https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021, 2021
Cited articles
Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., and
Lato, M. J.: Terrestrial laser scanning of rock slope instabilities, Earth
Surf. Process. Landforms, 39, 80–97,
https://doi.org/10.1002/esp.3493, 2014.
Barsch, D.: Permafrost creep and rockglaciers, Permafr. Periglac. Process., 3, 175–188,
https://doi.org/10.1002/ppp.3430030303, 1992.
Barsch, D.: Rockglaciers, Indicators for the present and former geoecology
in high mountain environments, Springer, Berlin, Germany, 1996.
Benjamin, J., Rosser, N. J., and Brain, M. J.: Emergent characteristics of
rockfall inventories captured at a regional scale, Earth Surf. Process.
Landforms, 45, 2773–2787, https://doi.org/10.1002/esp.4929,
2020.
Bodin, X., Thibert, E., Sanchez, O., Rabatel, A., and Jaillet, S.:
Multi-annual kinematics of an active rock glacier quantified from very
high-resolution DEMs: An application-case in the French Alps, Remote Sens.,
10, 53–65, https://doi.org/10.3390/rs10040547, 2018.
Bollmann, E., Klug, C., Sailer, R., and Stötter, J.: Quantifying rock
glacier creep using airborne laser scanning: A case study from two rock
glaciers in the Austrian Alps, in: Proceedings of the ICOP10, 10th International Conference on Permafrost, Salekhard, Russia, 25–29 June 2012,
49–54, 2012.
Bollmann, E., Girstmair, A., Mitterer, S., Krainer, K., Sailer, R., and
Stötter, J.: A rock glacier activity index based on rock glacier
thickness changes and displacement rates derived from airborne laser
scanning, Permafrost Periglac., 14, 347–359,
https://doi.org/10.1002/ppp.1852, 2015.
Crepaldi, S., Zhao, Y., Lavy, M., Amanzio, G., Suozzi, E., and De Maio, M.:
Landslide analysis by multi-temporal terrestrial laser scanning (TLS) data:
The Mont de la Saxe landslide,
Rend. Soc. Geol. It., 35, 92–95,
https://doi.org/10.3301/ROL.2015.72, 2015.
Delaloye, R., Lambiel, C., and Gärtner-Roer, I.: Overview of rock
glacier kinematics research in the Swiss Alps: seasonal rhythm, interannual
variations and trends over several decades, Geogr. Helv., 65, 135–145,
https://doi.org/10.5167/uzh-38562, 2010.
Hartl, L., Fischer, A., Klug, C., and Nicholson, L.: Can a simple numerical
model help to fine-tune the analysis of ground-penetrating radar data?
Hochebenkar rock glacier as a case study, Arct. Antarct. Alp. Res., 48,
377–393, https://doi.org/10.1657/AAAR0014-081, 2016a.
Hartl, L., Fischer, A., Stocker-Waldhuber, M., and Abermann, J.: Recent
speed-up of an alpine rock glacier: an updated chronology of the kinematics
of Outer Hochebenkar rock glacier based on geodetic measurements, Geogr.
Ann. A, 98, 129–141, https://doi.org/10.1111/geoa.12127,
2016b.
Hodge, R., Brasington, J., and Richards, K.: Analysing laser-scanned digital
terrain models of gravel bed surfaces: linking morphology to sediment
transport processes and hydraulics, Sedimentology, 56, 2024–2043,
https://doi.org/10.1111/j.1365-3091.2009.01068.x, 2009.
Hodge, R. A.: Using simulated terrestrial laser scanning to analyse errors
in high-resolution scan data of irregular surfaces, ISPRS J.
Photogramm., 65, 227–240,
https://doi.org/10.1016/j.isprsjprs.2010.01.001, 2010.
Ikeda, A., Matsuoka, N., and Kääb, A.: Fast deformation of
perennially frozen debris in a warm rock glacier in the Swiss Alps: An
effect of liquid water, J. Geophys. Res.-Earth, 113,
https://doi.org/10.1029/2007JF000859, 2008.
Kääb, A., Haeberli, W., and Gudmundsson, G. H.: Analysing the creep
of mountain permafrost using high precision aerial photogrammetry: 25 years
of monitoring Gruben rock glacier, Swiss Alps, Permafrost Periglac., 8,
409–414, https://doi.org/10.1002/(SICI)1099-1530(199710/12)8:4<409::AID-PPP267>3.0.CO;2-C, 1997.
Kääb, A., Frauenfelder, R., and Roer, I.: On the response of
rockglacier creep to surface temperature increase, Global Planet. Change,
56, 172–187,
https://doi.org/10.1016/j.gloplacha.2006.07.005, 2007.
Kaufmann, V. and Ladstädter, R.: Monitoring of active rock glaciers by
means of digital photogrammetry, Int. Arch. Photogramm., 34, 108–111, 2002.
Kellerer-Pirklbauer, A., Delaloye, R., Lambiel, C., and Gärtner-Roer, I.:
Interannual variability of rock glacier flow velocities in the European
Alps, Proceedings of the EUCOP5 5th European Conference on Permafrost, Chamonix-Mont Blanc, France, 23 June–1 July 2018, 396–397, 2018.
Kenner, R., Phillips, M., Hauck, C., Hilbich, C., Mulsow, C., Bühler,
Y., Stoffel, A., and Buchroithner, M.: New insights on permafrost genesis
and conservation in talus slopes based on observations at Flüelapass,
Eastern Switzerland, Geomorphology, 290, 101–113,
https://doi.org/10.1016/j.geomorph.2017.04.011, 2017.
Klug, C., Bollmann, E., Kääb, A., Krainer, K., Sailer, R., and
Stötter, J.: Monitoring of permafrost creep on two rock glaciers in the
Austrian eastern Alps: combination of aerophotogrammetry and airborne laser
scanning, Proceedings of the ICOP10, 10th International Conference on Permafrost, Salekhard, Russia, 25–29 June 2012,
215–220,
https://doi.org/10.13140/RG.2.1.1807.7284, 2012.
Klug, C., Rieg, L., Ott, P., Mössinger, M., Sailer, R., and Stötter,
J.: A multi-methodological approach to determine permafrost occurrence and
ground surface subsidence in mountain terrain, Tyrol, Austria, Permafrost
Periglac., 28, 249–265, https://doi.org/10.1002/ppp.1896,
2017.
Krainer, K.: Der aktive Blockgletscher im Äußeren Hochebenkar, in:
Forschung am Blockgletscher, Methoden
und Ergebnisse, edited by: Schallhart, N. and Erschbamer, B., Innsbruck University Press, Innsbruck, Austria,
55–75, 2015.
Krainer, K., Bressan, D., Dietre, B., Hass, J.-N., Hajdas, I., Lang, K.,
Mair, V., Nickus, U., Reidl, D., Thies, H., and Tonidandel, D.: A
10,300-year-old permafrost core from the active rock glacier Lazaun,
southern Ötztal Alps (South Tyrol, northern Italy), Quat. Res.,
83, 324–335, https://doi.org/10.1016/j.yqres.2014.12.005,
2015.
Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex
topography with terrestrial laser scanner: Application to the Rangitikei
canyon (NZ), ISPRS J. Photogramm., 82, 10–14,
https://doi.org/10.1016/j.isprsjprs.2013.04.009, 2013.
Micheletti, N., Tonini, M., and Lane, S. N.: Geomorphological activity at a
rock glacier front detected with a 3D density-based clustering algorithm,
Geomorphology, 278, 287–297,
https://doi.org/10.1016/j.geomorph.2016.11.016, 2016.
Nickus, U., Abermann, J., Fischer, A., Krainer, K., Schneider, H., Span, N.,
and Thies, H.: Rock glacier Äußeres Hochebenkar (Austria) – Recent
results of a monitoring network, Zeitschrift für Gletscherkunde und
Glazialgeologie, 47, 43–62, 2015.
Pętlicki, M. and Kinnard, C.: Calving of Fuerza Aérea Glacier
(Greenwich Island, Antarctica) observed with terrestrial laser scanning and
continuous video monitoring, J. Glaciol., 62, 835–846,
https://doi.org/10.1017/jog.2016.72, 2016.
Pfeiffer, J., Höfle, B., Hämmerle, M., Zahs, V., Rutzinger, M.,
Scaioni, M., Lindenbergh, R., Oude Elberink, S., Pirotti, F., Bremer, M.,
Wujanz, D., and Zieher, T.: Terrestrial laser scanning data of the
Äußeres Hochebenkar rock glacier close to Obergurgl, Austria
acquired during the Innsbruck Summer School of Alpine Research,
PANGAEA,
https://doi.org/10.1594/PANGAEA.902042, 2019.
Roer, I., Avian, M., Delaloye, R., Kaufmann, V., Delaloye, R., Lambiel, C.,
and Kääb, A.: Observations and considerations on collapsing active
rockglaciers in the Alps, Proceedings of the ICOP9, 9th International Conference on Permafrost, Fairbanks, Alaska, USA, 28 June–3 July 2008, 1505–1510,
https://doi.org/10.5167/uzh-6082, 2008.
Sailer, R., Rutzinger, M., Rieg, L., and Wichmann, V.: Digital elevation
models derived from airborne laser scanning point clouds: appropriate
spatial resolutions for multi-temporal characterization and quantification
of geomorphological processes, Earth Surf. Proc. Land., 39, 272–284,
https://doi.org/10.1002/esp.3490, 2014.
Schneider, B.: Die Bewegungsmessungen am Blockgletscher im Äußeren
Hochebenkar (Ötztaler Alpen, Tirol) seit 1938, PhD thesis, Innsbruck University, Department of Geography, Innsbruck, Austria, 137 pp., 1999.
Schneider, B. and Schneider, H.: ABHANDLUNGEN-Zur 60-jährigen Messreihe
der kurzfristigen Geschwindigkeitsschwankungen am Blockgletscher im
Äußeren Hochebenkar, Otztaler Alpen, Tirol, Zeitschrift für Gletscherkunde und Glazialgeologie, 37,
1–34, 2001.
Schürch, P., Densmore, A. L., Rosser, N. J., Lim, M., and McArdell, B.
W.: Detection of surface change in complex topography using terrestrial
laser scanning: application to the Illgraben debris-flow channel, Earth
Surf. Proc. Land., 36, 1847–1859,
https://doi.org/10.1002/esp.2206, 2011.
Sorg, A., Kääb, A., Roesch, A., Bigler, C., and Stoffel, M.:
Contrasting responses of Central Asian rock glaciers to global warming, Sci.
Rep.-UK, 5, 8228, https://doi.org/10.1038/srep08228, 2015.
Soudarissanane, S., Lindenbergh, R., Menenti, M., and Teunissen, P.:
Scanning geometry: Influencing factor on the quality of terrestrial laser
scanning points, ISPRS J. Photogramm., 66,
389–399, https://doi.org/10.1016/j.isprsjprs.2011.01.005, 2011.
Westoby, M. J., Lim, M., Hogg, M., Pound, M. J., Dunlop, L., and Woodward,
J.: Cost-effective erosion monitoring of coastal cliffs, Coast. Eng., 138, 152–164,
https://doi.org/10.1016/j.coastaleng.2018.04.008, 2018.
Williams, J. G., Rosser, N. J., Hardy, R. J., Brain, M. J., and Afana, A. A.: Optimising 4-D surface change detection: an approach for capturing rockfall magnitude–frequency, Earth Surf. Dynam., 6, 101–119, https://doi.org/10.5194/esurf-6-101-2018, 2018.
Williams, J. G., Rosser, N. J., Hardy, R. J., and Brain, M. J.: The
importance of monitoring interval for rockfall magnitude-frequency
estimation, J. Geophys. Res.-Earth., 124, 2841–2853,
https://doi.org/10.1029/2019JF005225, 2019.
Zahs, V., Hämmerle, M., Anders, K., Hecht, S., Sailer, R., Rutzinger,
M., Williams, J. G., and Höfle, B.: Multi-temporal 3D point cloud-based
geomorphological activity quantification and analysis at an Alpine rock
glacier using airborne and terrestrial Lidar, Permafrost Periglac., 30,
222–238, https://doi.org/10.1002/ppp.2004, 2019.
Short summary
In this work, we use 3D point clouds to detect topographic changes across the surface of a rock glacier. These changes are presented as the relative contribution of surface change during a 3-week period to the annual surface change. By comparing these different time periods and looking at change in different directions, we provide estimates showing that different directions of surface change are dominant at different times of the year. This demonstrates the benefit of frequent monitoring.
In this work, we use 3D point clouds to detect topographic changes across the surface of a rock...