Articles | Volume 9, issue 1
https://doi.org/10.5194/esurf-9-19-2021
https://doi.org/10.5194/esurf-9-19-2021
Research article
 | 
07 Jan 2021
Research article |  | 07 Jan 2021

Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds

Veit Ulrich, Jack G. Williams, Vivien Zahs, Katharina Anders, Stefan Hecht, and Bernhard Höfle

Related authors

Coastal process understanding through automated identification of recurring surface dynamics in permanent laser scanning data of a sandy beach
Daan Cornelis Hulskemper, José A. Á. Antolínez, Roderik Lindenbergh, and Katharina Anders
EGUsphere, https://doi.org/10.5194/egusphere-2025-4964,https://doi.org/10.5194/egusphere-2025-4964, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Permanent Laser Scanning and 3D Time Series Analysis for Geomorphic Monitoring using Low-Cost Sensors and Open-Source Software
Lotte de Vugt, Edoardo Carraro, Ayoub Fatihi, Enrico Mattea, Eleanor Myall, Daniel Czerwonka-Schröder, and Katharina Anders
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 359–365, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-359-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-359-2025, 2025
Unsupervised Deep Clustering on Spatiotemporal Objects Extracted from 4D Point Clouds for Automatic Identification of Topographic Processes in Natural Environments
Jiapan Wang and Katharina Anders
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 929–936, https://doi.org/10.5194/isprs-annals-X-G-2025-929-2025,https://doi.org/10.5194/isprs-annals-X-G-2025-929-2025, 2025
Detection of honey bees (Apis mellifera) in hypertemporal LiDAR point cloud time series to extract bee activity zones and times
Jannik S. Meyer, Ronald Tabernig, and Bernhard Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 583–590, https://doi.org/10.5194/isprs-annals-X-G-2025-583-2025,https://doi.org/10.5194/isprs-annals-X-G-2025-583-2025, 2025
Wind during terrestrial laser scanning of trees: Simulation-based assessment of effects on point cloud features and leaf-wood classification
William Albert, Hannah Weiser, Ronald Tabernig, and Bernhard Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 25–32, https://doi.org/10.5194/isprs-annals-X-G-2025-25-2025,https://doi.org/10.5194/isprs-annals-X-G-2025-25-2025, 2025

Cited articles

Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., and Lato, M. J.: Terrestrial laser scanning of rock slope instabilities, Earth Surf. Process. Landforms, 39, 80–97, https://doi.org/10.1002/esp.3493, 2014. 
Barsch, D.: Permafrost creep and rockglaciers, Permafr. Periglac. Process., 3, 175–188, https://doi.org/10.1002/ppp.3430030303, 1992. 
Barsch, D.: Rockglaciers, Indicators for the present and former geoecology in high mountain environments, Springer, Berlin, Germany, 1996. 
Benjamin, J., Rosser, N. J., and Brain, M. J.: Emergent characteristics of rockfall inventories captured at a regional scale, Earth Surf. Process. Landforms, 45, 2773–2787, https://doi.org/10.1002/esp.4929, 2020. 
Bodin, X., Thibert, E., Sanchez, O., Rabatel, A., and Jaillet, S.: Multi-annual kinematics of an active rock glacier quantified from very high-resolution DEMs: An application-case in the French Alps, Remote Sens., 10, 53–65, https://doi.org/10.3390/rs10040547, 2018. 
Download
Short summary
In this work, we use 3D point clouds to detect topographic changes across the surface of a rock glacier. These changes are presented as the relative contribution of surface change during a 3-week period to the annual surface change. By comparing these different time periods and looking at change in different directions, we provide estimates showing that different directions of surface change are dominant at different times of the year. This demonstrates the benefit of frequent monitoring.
Share