Articles | Volume 9, issue 1
https://doi.org/10.5194/esurf-9-29-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-29-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impacts of grazing on vegetation dynamics in a sediment transport complex model
Phillipe Gauvin-Bourdon
Laboratoire d'Érosion Éolienne (LÉÉ),
Département de Géographie, Université de Montréal,
Montréal, H2V 0B3, Canada
James King
CORRESPONDING AUTHOR
Laboratoire d'Érosion Éolienne (LÉÉ),
Département de Géographie, Université de Montréal,
Montréal, H2V 0B3, Canada
Liliana Perez
Laboratoire de Géosimulation Environnementale (LEDGE),
Département de Géographie, Université de Montréal,
Montréal, H2V 0B3, Canada
Related authors
No articles found.
Saeed Harati-Asl, Liliana Perez, and Roberto Molowny-Horas
Geosci. Model Dev., 17, 7423–7443, https://doi.org/10.5194/gmd-17-7423-2024, https://doi.org/10.5194/gmd-17-7423-2024, 2024
Short summary
Short summary
Social–ecological systems are the subject of many sustainability problems. Because of the complexity of these systems, we must be careful when intervening in them; otherwise we may cause irreversible damage. Using computer models, we can gain insight about these complex systems without harming them. In this paper we describe how we connected an ecological model of forest insect infestation with a social model of cooperation and simulated an intervention measure to save a forest from infestation.
Seyed Ali Sayedain, Norman T. O'Neill, James King, Patrick L. Hayes, Daniel Bellamy, Richard Washington, Sebastian Engelstaedter, Andy Vicente-Luis, Jill Bachelder, and Malo Bernhard
Atmos. Meas. Tech., 16, 4115–4135, https://doi.org/10.5194/amt-16-4115-2023, https://doi.org/10.5194/amt-16-4115-2023, 2023
Short summary
Short summary
We used (columnar) ground-based remote sensing (RS) tools and surface measurements to characterize local (drainage-basin) dust plumes at a site in the Yukon. Plume height, particle size, and column-to-surface ratios enabled insights into how satellite RS could be used to analyze Arctic-wide dust transport. This helps modelers refine dust impacts in their climate change simulations. It is an important step since local dust is a key source of dust deposition on snow in the sensitive Arctic region.
Rosemary Huck, Robert G. Bryant, and James King
Atmos. Chem. Phys., 23, 6299–6318, https://doi.org/10.5194/acp-23-6299-2023, https://doi.org/10.5194/acp-23-6299-2023, 2023
Short summary
Short summary
This study shows that mineral aerosol (dust) emission events in high-latitude areas are under-represented in both ground- and space-based detecting methods. This is done through a suite of ground-based data to prove that dust emissions from the proglacial area, Lhù’ààn Mân, occur almost daily but are not always recorded at different timescales. Dust has multiple effects on atmospheric processes; therefore, accurate quantification is important in the calibration and validation of climate models.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Jeffrey Katan and Liliana Perez
Nat. Hazards Earth Syst. Sci., 21, 3141–3160, https://doi.org/10.5194/nhess-21-3141-2021, https://doi.org/10.5194/nhess-21-3141-2021, 2021
Short summary
Short summary
Wildfires are an integral part of ecosystems worldwide, but they also pose a serious risk to human life and property. To further our understanding of wildfires and allow experimentation without recourse to live fires, this study presents an agent-based modelling approach to combine the complexity possible with physical models with the ease of computation of empirical models. Model calibration and validation show bottom-up simulation tracks the core elements of complexity of fire across scales.
Related subject area
Cross-cutting themes: Complex systems in Earth surface processes: nonlinear system dynamics and chaos, self-organisation, self-organised criticality
MPeat2D – a fully coupled mechanical–ecohydrological model of peatland development in two dimensions
The direction of landscape erosion
Data-driven components in a model of inner-shelf sorted bedforms: a new hybrid model
Adilan W. Mahdiyasa, David J. Large, Matteo Icardi, and Bagus P. Muljadi
Earth Surf. Dynam., 12, 929–952, https://doi.org/10.5194/esurf-12-929-2024, https://doi.org/10.5194/esurf-12-929-2024, 2024
Short summary
Short summary
Mathematical models provide insight to analyse peatland behaviour. However, the omission of mechanical processes by the existing models leads to uncertainties in their outputs. We proposed a peatland growth model in 2D that incorporates mechanical, ecological, and hydrological factors, together with the effect of spatial heterogeneity on the peatland system. Our model might assist in understanding the complex interactions and the impact of climate change on the peatland carbon balance.
Colin P. Stark and Gavin J. Stark
Earth Surf. Dynam., 10, 383–419, https://doi.org/10.5194/esurf-10-383-2022, https://doi.org/10.5194/esurf-10-383-2022, 2022
Short summary
Short summary
Landscape erosion is generally considered to take place vertically downward. Here, by writing gradient-driven erosion in Hamiltonian form, we show this is not true. Instead, we find it takes place in two directions simultaneously: (i) normal to the surface and (ii) along rays pointing upstream and either up or down depending on how erosion rate scales with slope. The rays follow the shortest time paths that determine how long it takes for a landscape to respond to changes in external conditions.
E. B. Goldstein, G. Coco, A. B. Murray, and M. O. Green
Earth Surf. Dynam., 2, 67–82, https://doi.org/10.5194/esurf-2-67-2014, https://doi.org/10.5194/esurf-2-67-2014, 2014
Cited articles
Abella, S. R., Engel, E. C., Lund, C. L., and Spencer, J. E.: Early Post-Fire
Plant Establishment on a Mojave Desert Burn, Madroño, 56, 137–148,
https://doi.org/10.3120/0024-9637-56.3.137, 2009.
Ares, J., Bertiller, M., and Bisigato, A.: Modeling and Measurement of
Structural Changes at a Landscape Scale in Dryland Areas, Environ. Model.
Assess., 1–13, 2003.
Aubault, H., Webb, N. P., Strong, C. L., McTainsh, G. H., Leys, J. F., and
Scanlan, J. C.: Grazing impacts on the susceptibility of rangelands to wind
erosion: The effects of stocking rate, stocking strategy and land condition,
Aeolian Res., 17, 89–99, https://doi.org/10.1016/j.aeolia.2014.12.005, 2015.
Baas, A. C. W. and Nield, J. M.: Modelling vegetated dune landscapes,
Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2006GL029152, 2007.
Bagnold, R. A.: The physics of blown sand and desert dunes, Dover
Publications inc., Mineola, 1941.
Bailey, R. M.: Spatial and temporal signatures of fragility and threshold
proximity in modelled semi-arid vegetation, Proc. R. Soc. B Biol. Sci.,
278, 1064–1071, https://doi.org/10.1098/rspb.2010.1750, 2011.
Baas, A. C. W. and Nield, J. M.: Modelling vegetated dune landscapes, Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2006GL029152, 2007.
Baudena, M., D'Andrea, F., and Provenzale, A.: An idealized model for
tree–grass coexistence in savannas: the role of life stage structure and
fire disturbances: A model for tree–grass coexistence, J. Ecol., 98,
74–80, https://doi.org/10.1111/j.1365-2745.2009.01588.x, 2010.
Bestelmeyer, B. T., Okin, G. S., Duniway, M. C., Archer, S. R., Sayre, N.
F., Williamson, J. C., and Herrick, J. E.: Desertification, land use, and the
transformation of global drylands, Front. Ecol. Environ., 13, 28–36,
https://doi.org/10.1890/140162, 2015.
Bestelmeyer, B. T., Peters, D. P. C., Archer, S. R., Browning, D. M., Okin,
G. S., Schooley, R. L., and Webb, N. P.: The Grassland–Shrubland Regime
Shift in the Southwestern United States: Misconceptions and Their
Implications for Management, BioScience, 68, 678–690,
https://doi.org/10.1093/biosci/biy065, 2018.
Bhattachan, A., D'odorico, P., Dintwe, K., Okin, G. S., and Collins, S. L.:
Resilience and recovery potential of duneland vegetation in the southern
Kalahari, Ecosphere, 5, 1–14, https://doi.org/10.1890/ES13-00268.1, 2014.
Bo, T. L., Fu, L. T., and Zheng, X. J.: Modeling the impact of overgrazing on
evolution process of grassland desertification, Aeolian Res., 9, 183–189,
https://doi.org/10.1016/j.aeolia.2013.01.001, 2013.
Bond, W. J., Midgley, G. F., and Woodward, F. I.: What controls South African
vegetation – climate or fire?, South Afr. J. Bot., 69, 79–91,
https://doi.org/10.1016/S0254-6299(15)30362-8, 2003.
Brown, J. F.: Effects of Experimental Burial on Survival, Growth, and
Resource Allocation of Three Species of Dune Plants, J. Ecol., 85, 151,
https://doi.org/10.2307/2960647, 1997.
Burgess, J.: Country pasture/forage resource profiles: Botswana, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 46 pp., 2006.
Burri, K., Gromke, C., Lehning, M., and Graf, F.: Aeolian sediment transport
over vegetation canopies: A wind tunnel study with live plants, Aeolian
Res., 3, 205–213, https://doi.org/10.1016/j.aeolia.2011.01.003, 2011.
Carpenter, D. E., Barbour, M. G., and Bahre, C. J.: Old Field Succession in Mojave Dessert Scrub, Madroño, 33, 111–122, 1986.
Chacon, E., Stobbs, T. H., and Sandland, R. L.: Estimation of herbage
consumption by grazing cattle using measurements of eating behaviour, Grass
Forage Sci., 31, 81–87, https://doi.org/10.1111/j.1365-2494.1976.tb01122.x, 1976.
Chappell, A., Lee, J. A., Baddock, M., Gill, T. E., Herrick, J. E., Leys, J.
F., Marticorena, B., Petherick, L., Schepanski, K., Tatarko, J., Telfer, M.,
and Webb, N. P.: A clarion call for aeolian research to engage with global
land degradation and climate change, Aeolian Res., 32, A1–A3,
https://doi.org/10.1016/j.aeolia.2018.02.007, 2018.
Courrech du Pont, S.: Dune morphodynamics, Comptes Rendus Phys., 16,
118–138, https://doi.org/10.1016/j.crhy.2015.02.002, 2015.
Dech, J. P. and Maun, M. A.: Adventitious Root Production and Plastic
Resource Allocation to Biomass Determine Burial Tolerance in Woody Plants
from Central Canadian Coastal Dunes, Ann. Bot., 98, 1095–1105,
https://doi.org/10.1093/aob/mcl196, 2006.
D'Odorico, P., Bhattachan, A., Davis, K. F., Ravi, S., and Runyan, C. W.:
Global desertification: Drivers and feedbacks, Adv. Water Resour., 51,
326–344, https://doi.org/10.1016/j.advwatres.2012.01.013, 2013.
Dougill, A. J. and Thomas, A. D.: Kalahari sand soils: spatial
heterogeneity, biological soil crusts and land degradation, Land Degrad.
Dev., 15, 233–242, https://doi.org/10.1002/ldr.611, 2004.
Dupont, S., Bergametti, G., and Simoëns, S.: Modeling aeolian erosion in
presence of vegetation, J. Geophys. Res. Earth Surf., 119, 168–187,
https://doi.org/10.1002/2013JF002875, 2014.
Gauvin-Bourdon, P.: ViSTA_GrAM source code, Zenodo, https://doi.org/10.5281/zenodo.3909749 (last access: 7 January 2021), 2020.
Hassler, S. K., Kreyling, J., Beierkuhnlein, C., Eisold, J., Samimi, C.,
Wagenseil, H., and Jentsch, A.: Vegetation pattern divergence between dry and
wet season in a semiarid savanna – Spatio-temporal dynamics of plant
diversity in northwest Namibia, J. Arid Environ., 74, 1516–1524,
https://doi.org/10.1016/j.jaridenv.2010.05.021, 2010.
Hesp, P. A., Dong, Y., Cheng, H., and Booth, J. L.: Wind flow and
sedimentation in artificial vegetation: Field and wind tunnel experiments,
Geomorphology, 337, 165–182, https://doi.org/10.1016/j.geomorph.2019.03.020, 2019.
Hickman, K. R. and Hartnett, D. C.: Effects of grazing intensity on
growth, reproduction, and abundance of three palatable forbs in
25 Kansas tallgrass prairie, Plant Ecol., 159, 23–33, 2002.
Higgins, S. I., Bond, W. J., and Trollope, W. S. W.: Fire, resprouting and
variability: a recipe for grass-tree coexistence in savanna, J. Ecol.,
88, 213–229, https://doi.org/10.1046/j.1365-2745.2000.00435.x, 2000.
Hodgson, J.: The control of herbage intake in the grazing ruminant, Proc.
Nutr. Soc., 44, 339–346, https://doi.org/10.1079/PNS19850054, 1985.
Hodgson, J., Forbes, T. D. A., Armstrong, R. H., Beatie, M. M., and Hunter,
E. A.: Comparative Studies of the Ingestive Behaviour and Herbage Intake of
Sheep and Cattle Grazing Indigenous Hill Plant Communities, Br. Ecol. Soc.,
28, 205–227, https://doi.org/10.2307/2404126, 1991.
Hsu, S.-A.: Wind stress criteria in eolian sand transport, J. Geophys. Res.,
76, 8684–8686, https://doi.org/10.1029/JC076i036p08684, 1971.
Hugenholtz, C. H., Levin, N., Barchyn, T. E., and Baddock, M. C.: Remote
sensing and spatial analysis of aeolian sand dunes: A review and outlook,
Earth-Sci. Rev., 111, 319–334, https://doi.org/10.1016/j.earscirev.2011.11.006,
2012.
Jeltsch, F., Milton, S. J., Dean, W. R. J., and van Rooyen, N.: Tree Spacing
and Coexistence in Semiarid Savannas, J. Ecol., 84, 583,
https://doi.org/10.2307/2261480, 1996.
Jeltsch, F., Milton, S. J., Dean, W. R. J., and van Rooyen, N.: Analysing
Shrub Encroachment in the Southern Kalahari: A Grid-Based Modelling
Approach, J. Appl. Ecol., 34, 1497–1508, https://doi.org/10.2307/2405265, 1997a.
Jeltsch, F., Milton, S. J., Dean, W. R. J., and van Rooyen, N.: Simulated
pattern formation around artificial waterholes in the semi-arid Kalahari, J.
Veg. Sci., 8, 177–188, https://doi.org/10.2307/3237346, 1997b.
Kaufmann, J., Bork, E. W., Blenis, P. V., and Alexander, M. J.: Cattle
habitat selection and associated habitat characteristics under free-range
grazing within heterogeneous Montane rangelands of Alberta, Appl. Anim.
Behav. Sci., 146, 1–10, https://doi.org/10.1016/j.applanim.2013.03.014, 2013.
Kawamura, R.: Study on Sand Movement by Wind, Rep. Phys. Sci. Res. Inst.
Tokyo Univ., 5, 95–112, 1951.
King, J., Nickling, W. G., and Gillies, J. A.: Representation of vegetation
and other nonerodible elements in aeolian shear stress partitioning models
for predicting transport threshold, J. Geophys. Res.-Ea. Surf., 110,
1–15, https://doi.org/10.1029/2004JF000281, 2005.
King, J., Nickling, W. G., and Gillies, J. A.: Aeolian shear stress ratio
measurements within mesquite-dominated landscapes of the Chihuahuan Desert,
New Mexico, USA, Geomorphology, 82, 229–244,
https://doi.org/10.1016/j.geomorph.2006.05.004, 2006.
Kraaij, T. and Milton, S. J.: Vegetation changes (1995–2004) in semi-arid Karoo shrubland, South Africa: Effects of rainfall, wild herbivores and change in land use, J. Arid Environ., 64, 174–192, doi10.1016/j.jaridenv.2005.04.009, 2006.
Lancaster, N. and Baas, A.: Influence of vegetation cover on sand
transport by wind: field studies at Owens Lake, California, Earth
Surf. Process. Landf., 23, 69–82, 1998.
Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A., and Bond, W. J.:
Deciphering the distribution of the savanna biome, New Phytol., 191,
197–209, https://doi.org/10.1111/j.1469-8137.2011.03689.x, 2011.
Leriche, H., LeRoux, X., Gignoux, J., Tuzet, A., Fritz, H., Abbadie, L., and
Loreau, M.: Which functional processes control the short-term effect of
grazing on net primary production in grasslands?, Oecologia, 129,
114–124, https://doi.org/10.1007/s004420100697, 2001.
Lettau, K. and Lettau, H. H.: Experimental and Micrometeorological field
studies of dune migration, in Exploring the world's driest climate, pp.
110–147, Madison., 1978.
Lima, A. R., Sauermann, G., Herrmann, H. J., and Kroy, K.: Modelling a dune
field, Phys. Stat. Mech. Its Appl., 310, 487–500,
https://doi.org/10.1016/S0378-4371(02)00546-0, 2002.
Liu, B. and Coulthard, T. J.: Modelling the interaction of aeolian and
fluvial processes with a combined cellular model of sand dunes and river
systems, Comput. Geosci., 106, 1–9, https://doi.org/10.1016/j.cageo.2017.05.003, 2017.
Ludwig, L., Isele, J., Rahmann, G., Idel, A., and Hülsebush, C.:
Rangeland forage biomass production and composition under different grazing
regimes on a Namibian oraganic livestock farm, in Innovative Research for
Organic 3.0, vol. 2, pp. 558–563, Thünen Report 54, New Delhi, India.,
2017.
Marion, G., Swain, D. L., and Hutchings, M. R.: Understanding foraging
behaviour in spatially heterogeneous environments, J. Theor. Biol., 232,
127–142, https://doi.org/10.1016/j.jtbi.2004.08.005, 2005.
Marion, G., Smith, L. A., Swain, D. L., Davidson, R. S., and Hutchings, M.
R.: Agent-based modelling of foraging behaviour: the impact of spatial
heterogeneity on disease risks from faeces in grazing systems, J. Agric.
Sci., 146, 507–520, https://doi.org/10.1017/S0021859608008022, 2008.
Martin, R. L. and Kok, J. F.: Wind-invariant saltation heights imply linear
scaling of aeolian saltation flux with shear stress, Sci. Adv., 3,
e1602569, https://doi.org/10.1126/sciadv.1602569, 2017.
Maun, M. A.: Adaptations of plants to burial in coastal sand dunes,
Can. J. Bot., 76, 713–738, 1998.
Maun, M. A. and Perumal, J.: Zonation of vegetation on lacustrine coastal
dunes: effects of burial by sand, Ecol. Lett., 2, 14–18,
https://doi.org/10.1046/j.1461-0248.1999.21048.x, 1999.
Mayaud, J.: ViSTA_M17 source code, GitHub, available at: https://github.com/jeromemayaud/ViSTA (last access: 7 January 2021) 2017.
Mayaud, J. R. and Webb, N.: Vegetation in Drylands: Effects on Wind Flow and
Aeolian Sediment Transport, Land, 6, 64, https://doi.org/10.3390/land6030064, 2017.
Mayaud, J. R., Bailey, R. M., and Wiggs, G. F. S.: A coupled
vegetation/sediment transport model for dryland environments, J. Geophys.
Res.-Ea. Surf., 122, 875–900, https://doi.org/10.1002/2016JF004096, 2017a.
Mayaud, J. R., Bailey, R. M., and Wiggs, G. F. S.: Modelled responses of the
Kalahari Desert to 21st century climate and land use change, Sci. Rep.,
7, 3887, https://doi.org/10.1038/s41598-017-04341-0, 2017b.
McInnes, K. L., Erwin, T. A., and Bathols, J. M.: Global Climate Model
projected changes in 10 m wind speed and direction due to anthropogenic
climate change, Atmos. Sci. Lett., 12, 325–333,
https://doi.org/10.1002/asl.341, 2011.
McNaughton, S. J.: Compensatory Plant Growth as a Response to Herbivory,
Oikos, 40, 329, https://doi.org/10.2307/3544305, 1983.
Meyer, T., D'Odorico, P., Okin, G. S., Shugart, H. H., Caylor, K. K.,
O'Donnell, F. C., Bhattachan, A., and Dintwe, K.: An analysis of structure:
biomass structure relationships for characteristic species of the western
Kalahari, Botswana, Afr. J. Ecol., 52, 20–29, https://doi.org/10.1111/aje.12086,
2014.
Middleton, N. and Thomas, D. S. G.: World atlas of desertification, 2nd edn., London, Arnold, London, 1997.
Moore, P. D.: Mystery of moribund marram, Nature, 380, 285–286,
https://doi.org/10.1038/380285a0, 1996.
Nicholson, S. E.: Climatic variations in the Sahel and other African regions
during the past five centuries, J. Arid Environ., 1, 3–24,
https://doi.org/10.1016/S0140-1963(18)31750-6, 1978.
Nicholson, S. E.: Land surface processes and Sahel climate, Rev. Geophys.,
38, 117–139, https://doi.org/10.1029/1999RG900014, 2000.
Nield, J. M. and Baas, A. C. W.: Investigating parabolic and nebkha dune
formation using a cellular automaton modelling approach, Earth Surf.
Process. Landf., 33, 724–740, https://doi.org/10.1002/esp.1571, 2008.
Okin, G. S.: A new model of wind erosion in the presence of vegetation, J.
Geophys. Res.-Ea. Surf., 113, 1–11, https://doi.org/10.1029/2007JF000758, 2008.
Okin, G. S. and Gillette, D. A.: Distribution of vegetation in
wind-dominated landscapes: Implications for wind erosion modeling and
landscape processes, J. Geophys. Res.-Atmos., 106, 9673–9683,
https://doi.org/10.1029/2001JD900052, 2001.
Okin, G. S., Gillette, D. A., and Herrick, J. E.: Multi-scale controls on and
consequences of aeolian processes in landscape change in arid and semi-arid
environments, J. Arid Environ., 65, 253–275,
https://doi.org/10.1016/j.jaridenv.2005.06.029, 2006.
Oñatibia, G. R. and Aguiar, M. R.: Continuous moderate grazing management promotes biomass production in Patagonian arid rangelands, J. Arid Environ., 125, 73–79, https://doi.org/10.1016/j.jaridenv.2015.10.005, 2016.
Orr, R. J., Rutter, S. M., Penning, P. D., and Rook, A. J.: Matching grass
supply to grazing patterns for dairy cows, Grass Forage Sci., 56,
352–361, https://doi.org/10.1046/j.1365-2494.2001.00284.x, 2001.
Owen, P. R.: Saltation of uniform grains in air, J. Fluid Mech., 20,
225–242, https://doi.org/10.1017/S0022112064001173, 1964.
Peters, D. P. C., Bestelmeyer, B. T., Herrick, J. E., Fredrickson, Ed. L.,
Monger, H. C., and Havstad, K. M.: Disentangling Complex Landscapes: New
Insights into Arid and Semiarid System Dynamics, BioScience, 56, 491,
https://doi.org/10.1641/0006-3568(2006)56[491:DCLNII]2.0.CO;2, 2006.
Raupach, M. R., Gillette, D. A., and Leys, J. F.: The effect of roughness
elements on wind erosion threshold, J. Geophys. Res., 98, 3023,
https://doi.org/10.1029/92JD01922, 1993.
Ravi, S., Breshears, D. D., Huxman, T. E., and D'Odorico, P.: Land
degradation in drylands: Interactions among hydrologic–aeolian erosion and
vegetation dynamics, Geomorphology, 116, 236–245,
https://doi.org/10.1016/j.geomorph.2009.11.023, 2010.
Ravi, S., D'Odorico, P., Breshears, D. D., Field, J. P., Goudie, A. S.,
Huxman, T. E., Li, J., Okin, G. S., Swap, R. J., Thomas, A. D., Van Pelt,
S., Whicker, J. J., and Zobeck, T. M.: Aeolian processes and the biosphere,
Rev. Geophys., 49, RG3001, https://doi.org/10.1029/2010RG000328, 2011.
Rietkerk, M., van den Bosch, F., and van de Koppel, J.: Site-Specific
Properties and Irreversible Vegetation Changes in Semi-Arid Grazing Systems,
Oikos, 80, 241, https://doi.org/10.2307/3546592, 1997.
Rietkerk, M., Boerlijst, M. C., van Langevelde, F., HilleRisLambers, R., van
de Koppel, J., Kumar, L., Prins, H. H. T., and de Roos, A. M.:
Self-Organization of Vegetation in Arid Ecosystems, Am. Nat., 160, 524–530, https://doi.org/10.1086/342078, 2002.
Sankaran, M., Hanan, N. P., Scholes, R. J., Ratnam, J., Augustine, D. J.,
Cade, B. S., Gignoux, J., Higgins, S. I., Le Roux, X., Ludwig, F., Ardo, J.,
Banyikwa, F., Bronn, A., Bucini, G., Caylor, K. K., Coughenour, M. B.,
Diouf, A., Ekaya, W., Feral, C. J., February, E. C., Frost, P. G. H.,
Hiernaux, P., Hrabar, H., Metzger, K. L., Prins, H. H. T., Ringrose, S.,
Sea, W., Tews, J., Worden, J., and Zambatis, N.: Determinants of woody cover
in African savannas, Nature, 438, 846–849, https://doi.org/10.1038/nature04070,
2005.
Scanlon, T. M., Caylor, K. K., Levin, S. A., and Rodriguez-Iturbe, I.: Positive feedbacks promote power-law clustering of Kalahari vegetation, Nature, 449, 209–212, https://doi.org/10.1038/nature06060, 2007.
Scholes, R. J. and Archer, S. R.: Tree-Grass Interactions in Savannas, Annu. Rev. Eco. Syst., 28, 517–544, 1997.
Scholes, R. J., Dowty, P. R., Caylor, K., Parsons, D. A. B., Frost, P. G. H.,
and Shugart, H. H.: Trends in savanna structure and composition along an
aridity gradient in the Kalahari, J. Veg. Sci., 13, 419–428,
https://doi.org/10.1111/j.1654-1103.2002.tb02066.x, 2002.
Sharpe, P. and Kenny, L. B.: Chapter 8 – Grazing Behavior, Feed Intake, and Feed Choices, in: Horse Pasture Management, edited by: Sharpe, P., 121–139, Academic Press, https://doi.org/10.1016/B978-0-12-812919-7.00008-1, 2019.
Staver, A. C., Archibald, S., and Levin, S. A.: The Global Extent and
Determinants of Savanna and Forest as Alternative Biome States, Science,
334, 230–232, https://doi.org/10.1126/science.1210465, 2011.
Thomas, D. S. G. and Twyman, C.: Good or bad rangeland? Hybrid knowledge,
science, and local understandings of vegetation dynamics in the Kalahari,
Land Degrad. Dev., 15, 215–231, https://doi.org/10.1002/ldr.610, 2004.
Thomas, D. S. G., Knight, M., and Wiggs, G. F. S.: Remobilization of southern
African desert dune systems by twenty-first century global warming, Nature,
435, 1218–1221, https://doi.org/10.1038/nature03717, 2005.
Van der Putten, W. H., Van Dijk, C., and Peters, B. A. M.: Plant-specific
soil-borne diseases contribute to succession in foredune vegetation, Nature,
362, 53–56, https://doi.org/10.1038/362053a0, 1993.
Van Langevelde, F., Van De Vijver, C. A. D. M., Kumar, L., Van De Koppel,
J., De Ridder, N., Van Andel, J., Skidmore, A. K., Hearne, J. W.,
Stroosnijder, L., Bond, W. J., Prins, H. H. T., and Rietkerk, M.: Effects of
Fire and Herbivory on the Stability of Savanna Ecosystems, Ecology, 84,
337–350, https://doi.org/10.1890/0012-9658(2003)084[0337:EOFAHO]2.0.CO;2, 2003.
Wang, L., Katjiua, M., D'Odorico, P., and Okin, G. S.: The interactive
nutrient and water effects on vegetation biomass at two African savannah
sites with different mean annual precipitation, Afr. J. Ecol., 50,
446–454, https://doi.org/10.1111/j.1365-2028.2012.01339.x, 2012.
Webb, N. P. and Pierre, C.: Quantifying Anthropogenic Dust Emissions, Earths
Future, 6, 286–295, https://doi.org/10.1002/2017EF000766, 2018.
Weber, G. E. and Jeltsch, F.: Spatial aspects of grazing in savanna
rangelands: a modelling study of vegetation dynamics, Ecosyst. Sustain.
Dev., 16, 427–436, 1997.
Weber, G. E., Jeltsch, F., van Rooyen, N., and Milton, S. J.: Simulated
long-term vegetation response to grazing heterogeneity in semi-arid
rangelands, J. Appl. Ecol., 35, 687–699, 1998.
Werner, B. T.: Eolian dunes: computer simulations and attractor
interpretations, Geology, 23, 1107–1110,
https://doi.org/10.1130/0091-7613(1995)023<1107:edcsaa>2.3.co;2,
1995.
Wolfe, S. A. and Nickling, W. G.: The protective role of sparse vegetation
in wind erosion, Prog. Phys. Geogr. Earth Environ., 17, 50–68,
https://doi.org/10.1177/030913339301700104, 1993.
Yan, N. and Baas, A. C. W.: Environmental controls, morphodynamic processes,
and ecogeomorphic interactions of barchan to parabolic dune transformations,
Geomorphology, 278, 209–237, https://doi.org/10.1016/j.geomorph.2016.10.033, 2017.
Yan, N. and Baas, A. C. W.: Transformation of parabolic dunes into mobile
barchans triggered by environmental change and anthropogenic disturbance:
Transformation of parabolic dunes into mobile barchans, Earth Surf. Process.
Landf., 43, 1001–1018, https://doi.org/10.1002/esp.4299, 2018.
Yu, R., Evans, A. J., and Malleson, N.: An agent-based model for assessing
grazing strategies and institutional arrangements in Zeku, China, Agric.
Syst., 171, 135–142, https://doi.org/10.1016/j.agsy.2019.02.004, 2019.
Yuhas, R. H. and Goetz, A. F. H.: Monitoring and modeling semi-arid
landscape response to climate change, in Proceedings of IGARSS '94 – 1994
IEEE International Geoscience and Remote Sensing Symposium, vol. 2,
1036–1038, IEEE, Pasadena, CA, USA., 1994.
Ziegler, N. P., Webb, N. P., Chappell, A., and LeGrand, S. L.: Scale
Invariance of Albedo-Based Wind Friction Velocity, J. Geophys. Res.-Atmos., 125, 1–15, https://doi.org/10.1029/2019JD031978, 2020.
Zingg, A. W.: Wind tunnel studies of the movement of sedimentary material,
in Proceedings of the 5th Hydraulic Conference, vol. 34, 111–135, State
university of Iowa, Iowa city, available at:
http://ir.uiowa.edu/uisie/34 (last access: 7 January 2021), 1953.
Short summary
Arid ecosystem health is a complex interaction between vegetation and climate. Coupled with impacts from grazing, it can result in quick changes in vegetation cover. We present a wind erosion and vegetation health model with active grazers over 100-year tests to find the limits of arid environments for different levels of vegetation, rainfall, wind speed, and grazing. The model shows the resilience of grass landscapes to grazing and its role as an improved tool for managing arid landscapes.
Arid ecosystem health is a complex interaction between vegetation and climate. Coupled with...