Articles | Volume 9, issue 3
https://doi.org/10.5194/esurf-9-487-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-487-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Landslides as geological hotspots of CO2 emission: clues from the instrumented Séchilienne landslide, western European Alps
Pierre Nevers
CORRESPONDING AUTHOR
UMR Chrono-environnement, 16 Route de Gray, 25000 Besançon, France
Julien Bouchez
Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France
Jérôme Gaillardet
Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France
Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France
Christophe Thomazo
UMR CNRS/uB6282 Biogéosciences, 6 Boulevard Gabriel, 21000 Dijon, France
Delphine Charpentier
UMR Chrono-environnement, 16 Route de Gray, 25000 Besançon, France
Laëticia Faure
Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France
Catherine Bertrand
UMR Chrono-environnement, 16 Route de Gray, 25000 Besançon, France
Related authors
No articles found.
Nicolai Brekenfeld, Solenn Cotel, Mikaël Faucheux, Paul Floury, Colin Fourtet, Jérôme Gaillardet, Sophie Guillon, Yannick Hamon, Hocine Henine, Patrice Petitjean, Anne-Catherine Pierson-Wickmann, Marie-Claire Pierret, and Ophélie Fovet
Hydrol. Earth Syst. Sci., 28, 4309–4329, https://doi.org/10.5194/hess-28-4309-2024, https://doi.org/10.5194/hess-28-4309-2024, 2024
Short summary
Short summary
The proposed methodology consists of simultaneously analysing the concentration variation of solute pairs during a storm event by plotting the concentration variation of one solute against the variation of another solute. This can reveal whether two or more end-members contribute to streamflow during a storm event. Furthermore, the variation of the solute ratios during the events can indicate which catchment processes are dominant and which are negligible.
Delphine Charpentier, Gaétan Milesi, Pierre Labaume, Ahmed Abd Elmola, Martine Buatier, Pierre Lanari, and Manuel Muñoz
Solid Earth, 15, 1065–1086, https://doi.org/10.5194/se-15-1065-2024, https://doi.org/10.5194/se-15-1065-2024, 2024
Short summary
Short summary
Understanding the fluid circulation in fault zones is essential to characterize the thermochemical evolution of hydrothermal systems in mountain ranges. The study focused on a paleo-system of the Pyrenees. Phyllosilicates permit us to constrain the evolution of temperature and redox of fluids at the scale of the fault system. A scenario is proposed and involves the circulation of a single highly reducing hydrothermal fluid (~300 °C) that evolves due to redox reactions.
Yutian Ke, Damien Calmels, Julien Bouchez, Marc Massault, Benjamin Chetelat, Aurélie Noret, Hongming Cai, Jiubin Chen, Jérôme Gaillardet, and Cécile Quantin
Earth Surf. Dynam., 12, 347–365, https://doi.org/10.5194/esurf-12-347-2024, https://doi.org/10.5194/esurf-12-347-2024, 2024
Short summary
Short summary
Through a river cross-section, we show that fluvial organic carbon in the lower Huanghe has clear vertical and lateral heterogeneity in elemental and isotopic signals. Bank erosion supplies terrestrial organic carbon to the fluvial transport. Physical erosion of aged and refractory organic carbon, including radiocarbon-dead organic carbon source from the biosphere, from relatively deep soil horizons of the Chinese Loess Plateau contributes to fluvial particulate organic carbon in the Huanghe.
Karim Benzerara, Agnès Elmaleh, Maria Ciobanu, Alexis De Wever, Paola Bertolino, Miguel Iniesto, Didier Jézéquel, Purificación López-García, Nicolas Menguy, Elodie Muller, Fériel Skouri-Panet, Sufal Swaraj, Rosaluz Tavera, Christophe Thomazo, and David Moreira
Biogeosciences, 20, 4183–4195, https://doi.org/10.5194/bg-20-4183-2023, https://doi.org/10.5194/bg-20-4183-2023, 2023
Short summary
Short summary
Iron and manganese are poorly soluble in oxic and alkaline solutions but much more soluble under anoxic conditions. As a result, authigenic minerals rich in Fe and/or Mn have been viewed as diagnostic of anoxic conditions. However, here we reveal a new case of biomineralization by specific cyanobacteria, forming abundant Fe(III)- and Mn(IV)-rich amorphous phases under oxic conditions in an alkaline lake. This might be an overlooked biotic contribution to the scavenging of Fe from water columns.
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2405–2424, https://doi.org/10.5194/bg-20-2405-2023, https://doi.org/10.5194/bg-20-2405-2023, 2023
Short summary
Short summary
Dissolved organic carbon (DOC) is a reservoir of prime importance in the C cycle of both continental and marine systems. It has also been suggested to influence the past Earth climate but is still poorly characterized in ancient-Earth-like environments. In this paper we show how DOC analyses from modern redox-stratified lakes can evidence specific metabolic reactions and environmental factors and how these can help us to interpret the C cycle of specific periods in the Earth's past.
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2347–2367, https://doi.org/10.5194/bg-20-2347-2023, https://doi.org/10.5194/bg-20-2347-2023, 2023
Short summary
Short summary
We describe the C cycle of four modern stratified water bodies from Mexico, a necessary step to better understand the C cycle of primitive-Earth-like environments, which were dominated by these kinds of conditions. We highlight the importance of local external factors on the C cycle of these systems. Notably, they influence the sensitivity of the carbonate record to environmental changes. We also show the strong C-cycle variability among these lakes and their organic C sediment record.
Yutian Ke, Damien Calmels, Julien Bouchez, and Cécile Quantin
Earth Syst. Sci. Data, 14, 4743–4755, https://doi.org/10.5194/essd-14-4743-2022, https://doi.org/10.5194/essd-14-4743-2022, 2022
Short summary
Short summary
In this paper, we introduce the largest and most comprehensive database for riverine particulate organic carbon carried by suspended particulate matter in Earth's fluvial systems: 3546 data entries for suspended particulate matter with detailed geochemical parameters are included, and special attention goes to the elemental and isotopic carbon compositions to better understand riverine particulate organic carbon and its role in the carbon cycle from regional to global scales.
Daniel A. Petrash, Ingrid M. Steenbergen, Astolfo Valero, Travis B. Meador, Tomáš Pačes, and Christophe Thomazo
Biogeosciences, 19, 1723–1751, https://doi.org/10.5194/bg-19-1723-2022, https://doi.org/10.5194/bg-19-1723-2022, 2022
Short summary
Short summary
We spectroscopically evaluated the gradients of dissolved C, N, S, Fe and Mn in a newly formed redox-stratified lake. The lake features an intermediate redox state between nitrogenous and euxinic conditions that encompasses vigorous open sulfur cycling fuelled by the reducible Fe and Mn stocks of the anoxic sediments. This results in substantial bottom water loads of dissolved iron and sulfate. Observations made in this ecosystem have relevance for deep-time paleoceanographic reconstructions.
Quentin Charbonnier, Julien Bouchez, Jérôme Gaillardet, and Éric Gayer
Biogeosciences, 17, 5989–6015, https://doi.org/10.5194/bg-17-5989-2020, https://doi.org/10.5194/bg-17-5989-2020, 2020
Short summary
Short summary
The abundance and isotope composition of the trace metal barium (Ba) allows us to track and quantify nutrient cycling throughout the Amazon Basin. In particular, we show that the Ba biological fingerprint evolves from that of a strong net nutrient uptake in the mountainous area of the Andes towards efficient nutrient recycling on the plains of the Lower Amazon. Our study highlights the fact that the geochemical signature of rock-derived nutrients transported by the Amazon is scarred by life.
Daniel D. Richter, Sharon A. Billings, Peter M. Groffman, Eugene F. Kelly, Kathleen A. Lohse, William H. McDowell, Timothy S. White, Suzanne Anderson, Dennis D. Baldocchi, Steve Banwart, Susan Brantley, Jean J. Braun, Zachary S. Brecheisen, Charles W. Cook, Hilairy E. Hartnett, Sarah E. Hobbie, Jerome Gaillardet, Esteban Jobbagy, Hermann F. Jungkunst, Clare E. Kazanski, Jagdish Krishnaswamy, Daniel Markewitz, Katherine O'Neill, Clifford S. Riebe, Paul Schroeder, Christina Siebe, Whendee L. Silver, Aaron Thompson, Anne Verhoef, and Ganlin Zhang
Biogeosciences, 15, 4815–4832, https://doi.org/10.5194/bg-15-4815-2018, https://doi.org/10.5194/bg-15-4815-2018, 2018
Short summary
Short summary
As knowledge in biology and geology explodes, science becomes increasingly specialized. Given the overlap of the environmental sciences, however, the explosion in knowledge inevitably creates opportunities for interconnecting the biogeosciences. Here, 30 scientists emphasize the opportunities for biogeoscience collaborations across the world’s remarkable long-term environmental research networks that can advance science and engage larger scientific and public audiences.
Roland Baatz, Pamela L. Sullivan, Li Li, Samantha R. Weintraub, Henry W. Loescher, Michael Mirtl, Peter M. Groffman, Diana H. Wall, Michael Young, Tim White, Hang Wen, Steffen Zacharias, Ingolf Kühn, Jianwu Tang, Jérôme Gaillardet, Isabelle Braud, Alejandro N. Flores, Praveen Kumar, Henry Lin, Teamrat Ghezzehei, Julia Jones, Henry L. Gholz, Harry Vereecken, and Kris Van Looy
Earth Syst. Dynam., 9, 593–609, https://doi.org/10.5194/esd-9-593-2018, https://doi.org/10.5194/esd-9-593-2018, 2018
Short summary
Short summary
Focusing on the usage of integrated models and in situ Earth observatory networks, three challenges are identified to advance understanding of ESD, in particular to strengthen links between biotic and abiotic, and above- and below-ground processes. We propose developing a model platform for interdisciplinary usage, to formalize current network infrastructure based on complementarities and operational synergies, and to extend the reanalysis concept to the ecosystem and critical zone.
Paul Floury, Jérôme Gaillardet, Eric Gayer, Julien Bouchez, Gaëlle Tallec, Patrick Ansart, Frédéric Koch, Caroline Gorge, Arnaud Blanchouin, and Jean-Louis Roubaty
Hydrol. Earth Syst. Sci., 21, 6153–6165, https://doi.org/10.5194/hess-21-6153-2017, https://doi.org/10.5194/hess-21-6153-2017, 2017
Short summary
Short summary
We present a new prototype
lab in the fieldnamed River Lab (RL) designed for water quality monitoring to perform a complete analysis at sub-hourly frequency of major dissolved species in river water. The article is an analytical paper to present the proof of concept, its performances and improvements. Our tests reveal a significant improvement of reproducibility compared to conventional analysis in the laboratory. First results are promising for understanding the critical zone.
David Uhlig, Jan A. Schuessler, Julien Bouchez, Jean L. Dixon, and Friedhelm von Blanckenburg
Biogeosciences, 14, 3111–3128, https://doi.org/10.5194/bg-14-3111-2017, https://doi.org/10.5194/bg-14-3111-2017, 2017
Short summary
Short summary
Plants and soil microbiota play an active role in rock weathering. Here we show that the coupling between erosion and weathering might be established by nutrients that are taken up by trees, are not recycled from plant litter and are missing in the dissolved river flux due to forest re-growth after clear cutting or due to erosion as coarse woody debris. To track this nutrient pathway we used magnesium stable isotopes in combination with innovative metrics over annual and millennial timescales.
A. Vallet, C. Bertrand, O. Fabbri, and J. Mudry
Hydrol. Earth Syst. Sci., 19, 427–449, https://doi.org/10.5194/hess-19-427-2015, https://doi.org/10.5194/hess-19-427-2015, 2015
A. Vallet, C. Bertrand, and J. Mudry
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-8945-2013, https://doi.org/10.5194/hessd-10-8945-2013, 2013
Revised manuscript not accepted
Related subject area
Chemical: Isotopic tracing of Earth's surface processes
Clay mineralogy, strontium and neodymium isotope ratios in the sediments of two High Arctic catchments (Svalbard)
Ruth S. Hindshaw, Nicholas J. Tosca, Alexander M. Piotrowski, and Edward T. Tipper
Earth Surf. Dynam., 6, 141–161, https://doi.org/10.5194/esurf-6-141-2018, https://doi.org/10.5194/esurf-6-141-2018, 2018
Short summary
Short summary
For many applications in Earth sciences it is important to know where river and ocean sediments have originated. In this study we used geochemical and mineralogical tracers to characterise sediments from Svalbard. We find that the sediments are formed from two sources: old rocks in Greenland and younger rocks in Siberia. Glaciation influences how much of each end-member is present in the river sediments today, implying that the sediment composition can change through time as the climate changes.
Cited articles
Åberg, G., Jacks, G., Hamilton, P. J.:
Weathering rates and 87Sr 86Sr ratios: An isotopic approach, J. Hydrol., 109, 65–78, https://doi.org/10.1016/0022-1694(89)90007-3, 1989.
Balci, N., Mayer, B., Shanks, W. C., and Mandernack, K. W.: Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur, Geochim. Cosmochim. Ac.,
77, 335–351, https://doi.org/10.1016/j.gca.2011.10.022, 2012.
Barféty, J., Bordet, P., Carme, F., Debelmas, J., Meloux, M.,
Montjuvent, G., and Sarrot Reynauld, J.: Carte géologique détaillée
de la France ( ) no. 797 Vizille, Editions du BRGM, p. 38,
1972.
Barla, G. and Chiriotti, E.: Insights into the behaviours of the large
deep seat
gravitational slope deformation of Rosone, in the Piemont region (Italy),
Felsbau, 13,
425–432, 1995.
Barnes, H. L. (Ed.): Geochemistry of hydrothermal ore deposits,
John Wiley & Sons, New-York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 1997.
Baudement, C., Bertrand, C., Guglielmi, Y., Viseur, S., Vallet, A., and Cappa, F.: Quantification de la dégradation mécanique et chimique d'un versant instable: approche géologique, hydromécanique et hydrochimique: Etude du versant instable de Séchilienne,
Isère (38), JAG – 3e journees des aleas gravitaires, France, 1–6, 2013.
Behrens, R., Bouchez, J., Schuessler, J. A., Dultz, S., Hewawasam, T., and von
Blanckenburg, F.: Mineralogical transformations set slow weathering
rates in low-porosity metamorphic bedrock on mountain slopes in a tropical
climate, Chem. Geol., 411, 283–298, https://doi.org/10.1016/j.chemgeo.2015.07.008, 2015.
Berner, E. K. and Berner, R. A.: Global Environment: Water, Air, and Geochemical Cycles. Upper Saddle River, New Jersey, Prentice Hall, Inc., 376 pp., 1996.
Berner, K. E. and Berner, R. A.: Global Environment: Water, Air and Geochemical Cycles, Princeton Univ. Press, USA, 369–382, 2012.
Bertrand, C., Vallet, A., and Mudry, J.: Hydrochemical Approach of Mechanical
Degradation of the Séchilienne Unstable Slope, in: Engineering Geology
for Society and Territory – Volume 2, edited by: Lollino, G., Giordan,
Crosta, G. B., Corominas, J., Azzam, R., Wasowski, J., and Sciarra, N., Springer
International Publishing Switzerland, chap. 383,
https://doi.org/10.1007/978-3-319-09057-3_383, 2015.
Bickle, M. J., Tipper, E. T., Galy, A., Chapman, H., and Harris, N.: On
Discrimination Between Carbonate and Silicate Inputs to Himalayan Rivers,
Am. J. Sci., 315, 120–166, https://doi.org/10.2475/02.2015.02, 2015.
Binet, S.: L'hydrochimie, marqueur de l'évolution à long terme des versant montagneux fracturés vers de grands mouvements de terrain: application à plusieurs échelles sur la haute vallée de la Tinée (Mercantour, France) et sur le versant de Rosone (Gran Paradiso, Italie), PhD Thesis Université de Franche-Comté, Besançon, 2006.
Binet, S., Spadini, L., Bertrand, C., Guglielmi, Y., Mudry, J., and Scavia, C.: Variability of the groundwater sulfate concentration in fractured rock slopes: a tool to identify active unstable areas, Hydrol. Earth Syst. Sci., 13, 2315–2327, https://doi.org/10.5194/hess-13-2315-2009, 2009.
Blattmann T. M., Wang, S. L., Lupker, M., Märki, L., Haghipour, N.,
Wacker, L., Chung, L. H., Bernasconi, S. M., Plötze, M., and Eglinton, T. I.:
Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric
carbon sinks, Sci. Rep.-UK, 9, 2945, https://doi.org/10.1038/s41598-019-39272-5,
2019.
Bouchez, J., Nevers, P., Gaillardet, J., and Bertrand, C.: Numerical code for solving the geochemical mixing model and making diagrams in Nevers et al., to be published in E-surf (“Landslides as geological hotspots of CO2 to the atmosphere: clues from the instrumented Séchilienne landslide, Western European Alps”) (Version Corresponds to the published version of the article (final)), Zenodo, https://doi.org/10.5281/zenodo.4779121, 2021.
Brass, G. W.: The effect of weathering on the distribution of strontium
isotopes in weathering profiles, Geochim. Cosmochim. Ac., 39,
1647–1653, https://doi.org/10.1016/0016-7037(75)90086-1, 1975.
Bullen, T. D., Krabbenhoft, D. P., and Kendall, C.: Kinetic and mineralogic
controls on the evolution of groundwater chemistry and 87Sr 86Sr in a sandy
silicate aquifer, northern Wisconsin, USA, Geochim. Cosmochim. Ac.,
60, 1807–1821, https://doi.org/10.1016/0016-7037(96)00052-X, 1996.
Bullen, T. D. and Kendall, C.: Tracing of Weathering Reactions and Water
Flowpaths: A Multi-isotope Approach, in: Isotope Tracers in Catchment
Hydrology, edited by: Kendall, C. and McDonnell, J. J., Elsevier Science B.V.,
Amsterdam, 611–646, https://doi.org/10.1016/B978-0-444-81546-0.50025-2,
1998.
Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, H. F., and Otto, J. B.: Variation of seawater 87Sr 86Sr throughout Phanerozoic time,
Geology, 10, 516–519, https://doi.org/10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2, 1982
Calmels, D., Gaillardet, J., Brenot, A., and France-Lanord, C.: Sustained
sulfide oxidation by physical erosion processes in the Mackenzie River
basin: Climatic perspectives, Geology, 35, 1003–1006,
https://doi.org/10.1130/G24132A.1, 2007.
Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M., and Berner, R.
A.: the use of chromium reduction in the analysis of reduced inorganic
sulfur in sediments and shales, Chem. Geol., 54, 149–155,
https://doi.org/10.1016/0009-2541(86)90078-1, 1986.
Cappa, F., Guglielmi, Y., Soukatchoff, V., Mudry, J., Bertrand, C.,
and Charmoille, A.: Hydromechanical modeling of a large moving rock slope
inferred from slope levelling coupled to spring long-term hydrochemical
monitoring: example of the La Clapière landslide (Southern Alps,
France), J. Hydrol., 291, 67–90,
https://doi.org/10.1016/J.JHYDROL.2003.12.013, 2004.
Clow, D. W. and Drever, J. I.: Weathering rates as a function of flow through
an alpine soil, Chem. Geol., 132, 131–141,
https://doi.org/10.1016/S0009-2541(96)00048-4, 1996.
Cortecci, G., Dinelli, E., Bencini, A., Adorni-Braccesi, A., and La Ruffa, G.:
Natural and anthropogenic SO4 sources in the Arno river catchment, northern
Tuscany, Italy: a chemical and isotopic reconnaissance, Appl.
Geochem., 17, 79–92, https://doi.org/10.1016/S0883-2927(01)00100-7,
2002.
Deiana, M., Cervi, F., Pennisi, M., Mussi, M., Bertrand, C., Tazioli, A.,
and Ronchetti, F.: Chemical and isotopic investigations (δ18O, δ2H, 3H, 87Sr 86Sr) to define groundwater processes occurring in a
deep-seated landslide in flysch. Hydrogeol. J., 26, 2669–2691,
https://doi.org/10.1007/s10040-018-1807-1, 2018.
Dotsika, E., Poutoukis, D., Kloppmann, W., Guerrot, C., Voutsa, D., and
Kouimtzis, T. H.: The use of O, H, B, Sr and S isotopes for tracing the
origin of dissolved boron in groundwater in Central Macedonia, Greece,
Appl. Geochem., 25, 1783–1796,
https://doi.org/10.1016/J.APGEOCHEM.2010.09.006, 2010.
Dubois, L., Chanut, M.-A., and Duranthon, J. P.: Amélioration continue des
dispositifs d'auscultation et de surveillance integrés dans le suivi du
versant instable des Ruines de Séchilienne in: Géologues, 182,
edited by: Editions du BRGM, 50–55, 2014.
Emberson, R., Hovius, N., Galy, A., and Marc, O.: Chemical weathering in active
mountain belts controlled by stochastic bedrock landsliding, Nat.
Geosci., 9, 42–45, https://doi.org/10.1038/ngeo2600, 2015.
Emberson, R., Hovius, N., Galy, A., and Marc, O.: Oxidation of sulfides and rapid weathering in recent landslides, Earth Surf. Dynam., 4, 727–742, https://doi.org/10.5194/esurf-4-727-2016, 2016b.
Emberson, R., Galy, A., and Hovius, N.: Weathering of Reactive Mineral Phases in
Landslides Acts as a Source of Carbon Dioxide in Mountain Belts, J.
Geophys. Res.-Earth, 123, 2695–2713.
https://doi.org/10.1029/2018JF004672, 2018.
Fanlo, I. and Ayora, C.: The evolution of the Lorraine evaporitic basin:
implications for the chemical and isotope composition of the Triassic ocean,
Chem. Geol., 146, 135–154, 1998.
Fletcher, R. C., Buss, H. L., and Brantley, S. L.: A spheroidal weathering
model coupling porewater chemistry to soil thicknesses during steady-state
denudation, Earth Planet. Sc. Lett., 244, 444–457,
https://doi.org/10.1016/j.epsl.2006.01.055, 2006.
Follacci, J.: Seize ans de surveillance du glissement de la Clapière
(Alpes maritimes), 220, Rapport, Bulletin du Laboratoire des Ponts et
Chaussés, 220, 35–51, 1999.
Frost, C. D. and Toner, R. N.: Strontium isotopic identification of water-rock
interaction and ground water mixing, Ground Water, 42, 418–432,
https://doi.org/10.1111/j.1745-6584.2004.tb02689.x, 2004.
Fry, B., Cox, J., Gest, H., and Hayes J. M.: Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds, J Bacteriol., 165, 328–330, https://doi.org/10.1128/jb.165.1.328-330.1986, 1986.
Fry, B., Ruf, W., Gest, H., and Hayes, J. M.:
Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution, Chem. Geol., 73,
205–210, https://doi.org/10.1016/0168-9622(88)90001-2, 1988.
Gaillardet, J., Dupre, B., Allegre C. J., and Négrel, P.: Chemical and
physical denudation in the Amazon River Basin, Chem. Geol., 142,
141–173,
https://doi.org/10.1016/S0009-2541(97)00074-0, 1997.
Gaillardet, J., Dupre, B., Louvat, P., and Allegre, C. J.: Global silicate
weathering and CO2 consumption rates deduced from the chemistry of large
rivers, Chem. Geol., 159, 3–30,
https://doi.org/10.1016/S0009-2541(99)00031-5, 1999.
Gammons, C. H., Brown, A., Poulson, S. R., and Henderson, T. H.: Using stable
isotopes (S, O) of sulfate to track local contamination of the Madison karst
aquifer, Montana, from abandoned coal mine drainage, Appl. Geochem.,
31, 228–238, https://doi.org/10.1016/J.APGEOCHEM.2013.01.008, 2013.
Gu, X., Rempe, D., Dietrich, W., West, A., Lin, T. C., Jin, L., and Brantley, S.:
Chemical reactions, porosity, and microfracturing in shale during
weathering: The effect of erosion rate, Geochim. Cosmochim. Ac.,
269, 63–100, https://doi.org/10.1016/j.gca.2019.09.044, 2019.
Guglielmi, Y., Vengeon, J., Bertrand, C., Mudry, J., Follacci, J., and Giraud,
A.: Hydrogeochemistry: an investigation tool to evaluate infiltration into
large moving rock masses (case study of La Clapière and Séchilienne
alpine landslides), B. Eng. Geol. Environ.,
61, 311–324, https://doi.org/10.1007/s10064-001-0144-z, 2002.
Hajj, F., Poszwa, A., Bouchez, J., and Guérold, F.: Radiogenic and
“stable” strontium isotopes in provenance studies: A review and first
results on archaeological wood from shipwrecks, J. Archaeol.
Sci., 86, 24–49, https://doi.org/10.1016/j.jas.2017.09.005, 2017.
Hilton, R. G. and West, A. J.: Mountains, erosion and the carbon cycle, Nature
Reviews Earth & Environment, 1, 284–299,
https://doi.org/10.1038/s43017-020-0058-6, 2020.
Kampschulte, A. and Strauss, H.: The sulfur isotopic evolution of Phanerozoic
seawater based on the analysis of structurally substituted sulfate in
carbonates, Chem. Geol., 204, 255–286,
https://doi.org/10.1016/j.chemgeo.2003.11.013, 2004.
Koepnick, R. B., Denison, R. E., Burke, W. H., Hetherington, E. A., and Dahl, D.
A.: Construction of the Triassic and Jurassic portion of the Phanerozoic
curve of seawater 87Sr 86Sr, Chem. Geol.,
80, 327–349, https://doi.org/10.1016/0168-9622(90)90014-4, 1990.
Lajaunie, M., Gance, J., Nevers, P., Malet, J.-P., Bertrand, C., Garin, T.,
and Ferhat, G.: Structure of the Seìchilienne unstable slope from
large-scale 3d electrical tomography using a resistivity distributed
automated system (r-das), Geophys. J. Int., 219, 129–147,
https://doi.org/10.1093/gji/ggz259, 2019.
Lasaga, A. C.: Chemical kinetics of water-rock interactions, J.
Geophys. Res.-Sol. Ea., 89, 4009–4025,
https://doi.org/10.1029/jb089ib06p04009, 1984.
Lerman, A., Wu, L., and Mackenzie, F. T.: CO2 and H2SO4 consumption in
weathering and material transport to the ocean, and their role in the global
carbon balance, Mar. Chem., 106, 326–350,
https://doi.org/10.1016/j.marchem.2006.04.004, 2007.
Le Roux, O., Jongmans, D., Kasperski, J., Schwartz, S., Potherat, P.,
Lebrouc, V., and Meric, O.: Deep geophysical investigation of the large
Séchilienne landslide (Western Alps, France) and calibration with
geological data, Eng. Geol., 120, 18–31,
https://doi.org/10.1016/J.ENGGEO.2011.03.004, 2011.
Li, S. L., Calmels, D., Hana, G., Gaillardet, J., and Liu, C. Q.: Sulfuric acid
as an agent of carbonate weathering constrained by δ13CDIC: Examples
from Southwest China, Earth Planet. Sc. Lett., 270, 3–4,
189–199, https://doi.org/10.1016/j.epsl.2008.02.039, 2008.
Maréchal, J.-C.: Les circulations d'eau dans les massifs cristallins alpins et leurs relations avec les ouvrages souterrains. PhD Thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Suisse, 1998.
Meric, O., Garambois, S., Jongmans, D., Wathelet, M., Chatelain, J. L.,
and Vengeon, J. M.: Application of geophysical methods for the investigation of
the large gravitational mass movement of Séchilienne, France, Can.
Geotech. J., 42, 1105–1115, https://doi.org/10.1139/t05-034,
2005.
Meybeck, M.: Composition chimique des ruisseaux non pollués en
France, Chemical composition of headwater streams in France, Sciences
Géologiques, 39, 3–77,
https://doi.org/10.3406/sgeol.1986.1719, 1986.
Meynadier, L., Gorge, C., Birck, J., and Allègre, C.: Automated separation
of Sr from natural water samples or carbonate rocks by high performance ion
chromatography, Chem. Geol., 227, 26–36,
https://doi.org/10.1016/j.chemgeo.2005.05.012, 2006.
Moncaster, S. J., Bottrell, S. H., Tellam, J. H., Lloyd, J. W., and Konhauser,
K. O.: Migration and attenuation of agrochemical pollutants: Insights from
isotopic analysis of groundwater sulphate, J. Contam. Hydrol.,
43, 147–163, https://doi.org/10.1016/S0169-7722(99)00104-7, 2000.
Montety, V. de, Marc, V., Emblanch, C., Malet, J.-P., Bertrand, C.,
Maquaire, O., and Bogaard, T. A.: Identifying the origin of groundwater and flow
processes in complex landslides affecting black marls: insights from a
hydrochemical survey, Earth Surf. Proc. Land., 32, 32–48,
https://doi.org/10.1002/esp.1370, 2007.
Montjuvent, G. and Winistorfer, J.: Glaciations quaternaires dans les Alpes
franco-suisses et leur piedmont, Géologie Alpine, 56, 251–282, 1980.
Mudry, J. and Etievant, K.: Synthese hydrogéologique du versant
instable des Ruines de Séchilienne, Unpublished report, UMR
Chrono-Environnement, University of Franche-Comteì, Besançon, 2007.
Négrel, P., Allègre, C. J., Dupré, B., and Lewin, E.: Erosion
sources determined by inversion of major and trace element ratios and
strontium isotopic ratios in river: The Congo Basin case, Earth
Planet. Sc. Lett., 120, 59–76,
https://doi.org/10.1016/0012-821X(93)90023-3, 1993.
Négrel, P. and Deschamps, P.: Natural and anthropogenic budgets of a
small watershed in the massif central (France): Chemical and strontium
isotopic characterization of water and sediments, Aquat. Geochem.,
2, 1–27, https://doi.org/10.1007/BF00240851, 1996.
Négrel, P., Casanova, J., and Aranyossy, J.-F.: Strontium isotope
systematics used to decipher the origin of groundwaters sampled from
granitoids: the Vienne Case (France), Chem. Geol., 177, 287–308,
https://doi.org/10.1016/S0009-2541(00)00414-9, 2001.
Nevers, P., Bouchez, J., Gaillardet, J., Thomazo, C., Faure, L., and Bertrand, C.: Dataset of Nevers et al. in E-surf Discussions: “Landslides as geological hotspots of CO2 to the atmosphere: clues from the instrumented Séchilienne landslide, Western European Alps” (doi:10.5194/esurf-2020-42) [Data set], Zenodo, https://doi.org/10.5281/zenodo.4606732, 2021.
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andreìassian, V., Anctil,
F., and Loumagne, C.: Which potential evapotranspiration input for a lumped
rainfall–runoff model?: Part 2 – towards a simple and efficient potential
evapotranspiration model for rainfall–runoff modelling, J.
Hydrol., 303, 290–306, 2005.
Potherat, P. and Alfonsi, P.: Les mouvements de versant de Séchilienne (Isère). Prise en compte de Théritage structural pour leur simulation numérique, Rev. Fr. Géotech., 95–96, 117–131,
https://doi.org/10.1051/geotech/2001095117,
2001.
Raymo, M. E.: Geochemical evidence supporting T. C. Chamberlin's theory of
glaciation, Geology, 19, 344–347,
https://doi.org/10.1130/0091-7613(1991)019<0344:GESTCC>2.3.CO;2, 1991.
Raymo, M. and Ruddiman, W.: Tectonic forcing of late Cenozoic climate, Nature,
359, 117–122, https://doi.org/10.1038/359117a0, 1992.
Rutqvist, J. and Stephansson, O.: The role of hydromechanical coupling in fractured rock engineering, Hydrogeol. J., 11, 7–46, https://doi.org/10.1007/s10040-002-0241-5, 2003.
Singleton, M. J., Maher, K., DePaolo, D. J., Conrad, M. E., and Evan Dresel, P.:
Dissolution rates and vadose zone drainage from strontium isotope
measurements of groundwater in the Pasco Basin, WA unconfined aquifer,
J. Hydrol., 321, 39–58,
https://doi.org/10.1016/J.JHYDROL.2005.07.044, 2006.
Spence, J. and Telmer, K.: The role of sulfur in chemical weathering and
atmospheric CO2 fluxes: evidence from major ions, δ13CDIC, and
δ34S SO4 in rivers of the Canadian Cordillera, Geochimica
Cosmochem. Ac., 69, 5441–5458, https://doi.org/10.1016/j.gca.2005.07.011, 2005.
Stallard, R. F. and Edmond, J. M.: Geochemistry of the Amazon: 2. The
influence of geology and weathering environment on the dissolved load,
J. Geophys. Res.-Oceans, 88, 9671–9688,
https://doi.org/10.1029/jc088ic14p09671, 1983.
Tessier, A., Campbell, P. G. C., and Bisson, M.: Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51, 844–851,
https://doi.org/10.1021/ac50043a017, 1979.
Torres, M. A., West, A. J., and Li, G.: Sulphide oxidation and carbonate
dissolution as a source of CO2 over geological timescales, Nature,
507, 346–349, https://doi.org/10.1038/nature13030, 2014.
Torres, M. A., West, A. J., Clark, K. E., Paris, G., Bouchez, J., Ponton,
C., and Adkins, J. F.: The acid and alkalinity budgets of weathering in the
Andes–Amazon system: Insights into the erosional control of global
biogeochemical cycles, Earth Planet. Sc. Lett., 450, 381–391,
https://doi.org/10.1016/j.epsl.2016.06.012, 2016.
Vallet, A.: Mouvements de fluides et processus de déstabilisation des versants alpins: Apport de l'étude de l'instabilité de Séchilienne, PhD Thesis, Université de Franche-Comté, Besançon, 2014.
Vallet, A., Bertrand, C., Mudry, J., Bogaard, T., Fabbri, O., Baudement, C.,
and Régent, B.: Contribution of time-related environmental tracing combined
with tracer tests for characterization of a groundwater conceptual model: a
case study at the Séchilienne landslide, western Alps (France),
Hydrogeol. J., 23, 1761–1779,
https://doi.org/10.1007/s10040-015-1298-2, 2015a.
Vallet, A., Charlier, J. B., Fabbri, O., Bertrand, C., Carry, N., and Mudry, J.:
Functioning and precipitation-displacement modelling of rainfall-induced
deep-seated landslides subject to creep deformation, Landslides, 13,
653–670, https://doi.org/10.1007/s10346-015-0592-3, 2015b.
Vengeon, J. M.: Déformation et rupture des versants en terrain métamorphique anisotrope : Apport de l'étude des Ruines de Séchilienne, PhD Thesis, Université Joseph-Fourier – Grenoble I, 1998
Vengeon, J.-M., Couturier, B., and Antoine, P.: Déformations gravitaires
post glaciaires en terrains métamorphiques. Comparaison des indices de
déformation du versant sud de la Toura (Saint-Christophe-en-Oisans,
France) avec le phénomène de rupture interne du versant sud du Mont
Sec (Séchilienne, France), B. Eng. Geol.
Environ., 57, 387–395, https://doi.org/10.1007/s100640050062, 1999.
Woods, T. L., Fullagar, P. D., Spruill, R. K., and Sutton, L. C.: Strontium
isotopes and major elements as tracers of ground water evolution: example
from the Upper Castle Hayne Aquifer of North Carolina, Ground Water, 38,
762–771, https://doi.org/10.1111/j.1745-6584.2000.tb02712.x, 2000.
Zeebe, R. E. and Wolf-Gladrow, D. A.: CO2 in Seawater: Equilibrium, Kinetics, Isotopes, Elsevier Oceanography Series, Amsterdam, 65, 360 pp., 2001.
Zerkle, A. L., Farquhar, J., Johnston, D. T., Cox, R. P., and Canfield, D. E.: Fractionation of Multiple Sulfur Isotopes During Phototrophic Oxidation of Sulfide and Elemental Sulfur by a Green Sulfur Bacterium, Geochim. Cosmochim. Ac., 73, 291–306, https://doi.org/10.1016/j.gca.2008.10.027, 2009