Articles | Volume 9, issue 1
https://doi.org/10.5194/esurf-9-89-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-89-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coastal change patterns from time series clustering of permanent laser scan data
Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands
Roderik Lindenbergh
Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands
Sander Vos
Department of Hydraulic Engineering, Delft University of Technology, Delft, the Netherlands
Related authors
D. Hulskemper, K. Anders, J. A. Á. Antolínez, M. Kuschnerus, B. Höfle, and R. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W2-2022, 53–60, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, 2022
M. Kuschnerus, R. Lindenbergh, Q. Lodder, E. Brand, and S. Vos
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1055–1061, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1055-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1055-2022, 2022
M. Kuschnerus, D. Schröder, and R. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 745–752, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-745-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-745-2021, 2021
Daan Cornelis Hulskemper, José A. Á. Antolínez, Roderik Lindenbergh, and Katharina Anders
EGUsphere, https://doi.org/10.5194/egusphere-2025-4964, https://doi.org/10.5194/egusphere-2025-4964, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
We developed a new method to automatically detect and group short-term topographic changes on sandy beaches using continuous 3D laser scans collected over three years. By distinguishing variations in patterns of sand deposition and erosion, the approach allows scientists to study how beaches change at different moments in time and link these changes to environmental conditions like winds, waves or bulldozers, improving understanding and prediction of dynamics of sandy beaches.
Yushan Liu, Alireza Amiri-Simkooei, Roderik Lindenbergh, and Mirjam Snellen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W10-2025, 169–176, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-169-2025, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-169-2025, 2025
Adriaan L. van Natijne, Thom A. Bogaard, Thomas Zieher, Jan Pfeiffer, and Roderik C. Lindenbergh
Nat. Hazards Earth Syst. Sci., 23, 3723–3745, https://doi.org/10.5194/nhess-23-3723-2023, https://doi.org/10.5194/nhess-23-3723-2023, 2023
Short summary
Short summary
Landslides are one of the major weather-related geohazards. To assess their potential impact and design mitigation solutions, a detailed understanding of the slope is required. We tested if the use of machine learning, combined with satellite remote sensing data, would allow us to forecast deformation. Our results on the Vögelsberg landslide, a deep-seated landslide near Innsbruck, Austria, show that the formulation of such a machine learning system is not as straightforward as often hoped for.
D. Hulskemper, K. Anders, J. A. Á. Antolínez, M. Kuschnerus, B. Höfle, and R. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W2-2022, 53–60, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, 2022
J. P. Meinderts, R. Lindenbergh, D. H. van der Heide, A. Amiri-Simkooei, and L. Truong-Hong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W2-2022, 69–76, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-69-2022, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-69-2022, 2022
L. Truong-Hong, R. C. Lindenbergh, and M. J. Vermeij
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W4-2022, 161–168, https://doi.org/10.5194/isprs-archives-XLVIII-4-W4-2022-161-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W4-2022-161-2022, 2022
A. Nurunnabi, F. N. Teferle, R. C. Lindenbergh, J. Li, and S. Zlatanova
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 59–66, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-59-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-59-2022, 2022
H. S. Kathmann, A. L. van Natijne, and R. C. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1033–1040, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1033-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1033-2022, 2022
M. Kuschnerus, R. Lindenbergh, Q. Lodder, E. Brand, and S. Vos
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1055–1061, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1055-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1055-2022, 2022
F. Dahle, J. Tanke, B. Wouters, and R. Lindenbergh
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 237–244, https://doi.org/10.5194/isprs-annals-V-2-2022-237-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-237-2022, 2022
A. Nurunnabi, F. N. Teferle, D. F. Laefer, R. C. Lindenbergh, and A. Hunegnaw
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-2-W1-2022, 401–408, https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-401-2022, https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-401-2022, 2022
A. Nurunnabi, F. N. Teferle, J. Li, R. C. Lindenbergh, and S. Parvaz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-4-W5-2021, 397–404, https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-397-2021, https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-397-2021, 2021
L. Truong-Hong, N. Nguyen, R. Lindenbergh, P. Fisk, and T. Huynh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-4-W4-2021, 119–124, https://doi.org/10.5194/isprs-archives-XLVI-4-W4-2021-119-2021, https://doi.org/10.5194/isprs-archives-XLVI-4-W4-2021-119-2021, 2021
A. Nurunnabi, F. N. Teferle, J. Li, R. C. Lindenbergh, and A. Hunegnaw
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 31–38, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-31-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-31-2021, 2021
Q. Bai, R. C. Lindenbergh, J. Vijverberg, and J. A. P. Guelen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 115–122, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-115-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-115-2021, 2021
M. Kuschnerus, D. Schröder, and R. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 745–752, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-745-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-745-2021, 2021
K. Anders, L. Winiwarter, H. Mara, R. C. Lindenbergh, S. E. Vos, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 137–144, https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021, 2021
Cited articles
Aarninkhof, S., De Schipper, M., Luijendijk, A., Ruessink, G., Bierkens, M., Wijnberg, K., Roelvink, D., Limpens, J., Baptist, M., Riksen, M., Bouma, T., de Vries, S., Reniers, A., Hulscher, S., Wijdeveld, A., van Dongeren, A., van Gelder-Maas, C., Lodder, Q., and van der Spek, A.: ICON.NL: coastline
observatory to examine coastal dynamics in response to natural forcing and
human interventions, International Conference on Coastal Sediments, 27–31 May 2019, Tampa/St. Petersburg, Florida, USA, 412–419, 2019. a
Anders, K., Lindenbergh, R. C., Vos, S. E., Mara, H., de Vries, S., and Höfle, B.: High-frequency 3D geomorphic observation using hourly
terrestrial laser scanning data of a sandy beach, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W5, 317–324, https://doi.org/10.5194/isprs-annals-IV-2-W5-317-2019, 2019. a, b
Assent, I.: Clustering high dimensional data, WIRES Data Min. Knowl. 2, 340–350, 2012. a
Belgiu, M. and Csillik, O.: Sentinel-2 cropland mapping using pixel-based and
object-based time-weighted dynamic time warping analysis, Remote Sens. Environ., 204, 509–523, 2018. a
Çelik, M., Dadaşer-Çelik, F., and Ş. Dokuz, A.: Anomaly
detection in temperature data using DBSCAN algorithm, in: 2011 International Symposium on Innovations in Intelligent Systems and Applications, 15–18 June 2011, Istanbul, Turkey, 91–95, 2011. a
Coppi, R., D'Urso, P., and Giordani, P.: A fuzzy Clustering model for
multivariate spatial time series, J. Classif., 27, 54–88, 2010. a
de Schipper, M. A., de Vries, S., Ruessink, G., de Zeeuw, R. C., Rutten,
J., van Gelder-Maas, C., and Stive, M. J.: Initial spreading of a mega
feeder nourishment: Observations of the Sand Engine pilot project, Coast.
Eng., 111, 23 – 38, 2016. a
Ertöz, L., Steinbach, M., and Kumar, V.: Finding clusters of different
sizes, shapes, and densities in noisy, high dimensional data, in: Proceedings of the 2003 SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics, 1–3 May 2003, San Francisco, California, USA, 47–58, 2003. a
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.: A density-based algorithm
for discovering clusters in large spatial databases with noise, Proceedings
of the Second International Conference on Knowledge Discovery and Data
Mining, 2–4 August 1996, Portland, Oregon, USA, p. 6, 1996. a
Harmening, C. and Neuner, H.: A spatio-temporal deformation model for laser
scanning point clouds, J. Geodesy, 94, 26, https://doi.org/10.1007/s00190-020-01352-0, 2020. a
Jung, Y., Park, H., Du, D.-Z., and Drake, B. L.: A decision criterion for the
optimal number of clusters in hierarchical clustering, J. Global
Optim., 25, 91–111, 2003. a
Keogh, E. and Kasetty, S.: On the need for time series data mining benchmarks: A survey and empirical demonstration, WIRES Data Min. Knowl., 7, 349–371, 2003. a
Lazarus, E. D. and Goldstein, E. B.: Is there a bulldozer in your model?,
J. Geophys. Res.-Earth, 124, 696–699, 2019. a
Lindenbergh, R., van der Kleij, S., Kuschnerus, M., Vos, S., and de Vries, S.:
Clustering time series of repeated scan data of sandy beaches, ISPRS –
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W13, 1039–1046, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1039-2019, 2019. a, b
Masselink, G. and Lazarus, E. D.: Defining coastal resilience, Water, 11, 2587, https://doi.org/10.3390/w11122587, 2019. a
Neill, D. B.: Expectation-based scan statistics for monitoring spatial time
series data, Int. J. Forecasting, 25, 498–517, 2009. a
O'Dea, A., Brodie, K. L., and Hartzell, P.: Continuous coastal monitoring with an automated terrestrial Lidar scanner, J. Mar. Sci.
Eng., 7, 37, https://doi.org/10.3390/jmse7020037, 2019. a, b
Park, H.-S. and Jun, C.-H.: A simple and fast algorithm for K-medoids
clustering, Expert Syst. Appl., 36, 3336–3341, 2009. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a, b, c
Recuero, L., Wiese, K., Huesca, M., Cicuéndez, V., Litago, J., Tarquis, A. M.,
and Palacios-Orueta, A.: Fallowing temporal patterns assessment in rainfed
agricultural areas based on NDVI time series autocorrelation values,
Int. J. Appl. Earth Obs., 82, 101890, https://doi.org/10.1016/j.jag.2019.05.023, 2019. a
Schubert, E., Sander, J., Ester, M., Kriegel, H.-P., and Xu, X.: DBSCAN
revisited, revisited: Why and how you should (still) use DBSCAN, Association for Computing Machinery, New York, NY, USA, https://doi.org/10.1145/3068335, 2017. a, b
Steinbach, M., Klooster, S., Tan, P., Potter, C., Kumar, V., and Torregrosa,
A.: Clustering earth science data: Goals, issues and results, Proceedings
SIGMOD KDD Workshop on Temporal Data Mining, 26–29 August 2001, San Francisco, California, USA, p. 8, 2001. a
Verleysen, M. and François, D.: The curse of dimensionality in data mining and time series prediction, in: Computational Intelligence and Bioinspired Systems, edited by: Cabestany, J., Prieto, A., and Sandoval, F., Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, Germany, 758–770, 2005. a
Vos, S. and Kuschnerus, M.: CoastScan: Data of daily scans at low tide Kijkduin January 2017, Dataset, 4TU.ResearchData, https://doi.org/10.4121/uuid:409d3634-0f52-49ea-8047-aeb0fefe78af, 2020. a
Vos, S., Lindenbergh, R., and de Vries, S.: CoastScan: Continuous
monitoring of coastal change using terrestrial laser scanning, Proceedings of Coastal Dynamics 2017, 12–16 June 2017, Helsingør, Denmark, 1518–1528, 2017. a
Short summary
Sandy coasts are areas that undergo a lot of changes, which are caused by different influences, such as tides, wind or human activity. Permanent laser scanning is used to generate a three-dimensional representation of a part of the coast continuously over an extended period. By comparing three unsupervised learning algorithms, we develop a methodology to analyse the resulting data set and derive which processes are dominating changes in the beach and dunes.
Sandy coasts are areas that undergo a lot of changes, which are caused by different influences,...