Articles | Volume 9, issue 1
https://doi.org/10.5194/esurf-9-89-2021
https://doi.org/10.5194/esurf-9-89-2021
Research article
 | 
19 Feb 2021
Research article |  | 19 Feb 2021

Coastal change patterns from time series clustering of permanent laser scan data

Mieke Kuschnerus, Roderik Lindenbergh, and Sander Vos

Related authors

CHARACTERIZATION OF MORPHOLOGICAL SURFACE ACTIVITIES DERIVED FROM NEAR-CONTINUOUS TERRESTRIAL LIDAR TIME SERIES
D. Hulskemper, K. Anders, J. A. Á. Antolínez, M. Kuschnerus, B. Höfle, and R. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W2-2022, 53–60, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022,https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, 2022
DETECTING ANTHROPOGENIC VOLUME CHANGES IN CROSS SECTIONS OF A SANDY BEACH WITH PERMANENT LASER SCANNING
M. Kuschnerus, R. Lindenbergh, Q. Lodder, E. Brand, and S. Vos
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1055–1061, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1055-2022,https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1055-2022, 2022
ENVIRONMENTAL INFLUENCES ON THE STABILITY OF A PERMANENTLY INSTALLED LASER SCANNER
M. Kuschnerus, D. Schröder, and R. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 745–752, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-745-2021,https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-745-2021, 2021
ANALYSIS OF FILTERING TECHNIQUES FOR INVESTIGATING LANDSLIDE-INDUCED TOPOGRAPHIC CHANGES IN THE OETZ VALLEY (TYROL, AUSTRIA)
I. Gutierrez, E. Før Gjermundsen, W. D. Harcourt, M. Kuschnerus, F. Tonion, and T. Zieher
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 719–726, https://doi.org/10.5194/isprs-annals-V-2-2020-719-2020,https://doi.org/10.5194/isprs-annals-V-2-2020-719-2020, 2020
CLUSTERING TIME SERIES OF REPEATED SCAN DATA OF SANDY BEACHES
R. Lindenbergh, S. van der Kleij, M. Kuschnerus, S. Vos, and S. de Vries
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1039–1046, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1039-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-1039-2019, 2019

Related subject area

Cross-cutting themes: Digital Landscapes: Insights into geomorphological processes from high-resolution topography and quantitative interrogation of topographic data
Geomorphic indicators of continental-scale landscape transience in the Hengduan Mountains, SE Tibet, China
Katrina D. Gelwick, Sean D. Willett, and Rong Yang
Earth Surf. Dynam., 12, 783–800, https://doi.org/10.5194/esurf-12-783-2024,https://doi.org/10.5194/esurf-12-783-2024, 2024
Short summary
Evaluating the accuracy of binary classifiers for geomorphic applications
Matthew William Rossi
Earth Surf. Dynam., 12, 765–782, https://doi.org/10.5194/esurf-12-765-2024,https://doi.org/10.5194/esurf-12-765-2024, 2024
Short summary
Massive sediment pulses triggered by a multi-stage 130 000 m3 alpine cliff fall (Hochvogel, DE–AT)
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024,https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Multi-sensor monitoring and data integration reveal cyclical destabilization of the Äußeres Hochebenkar rock glacier
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023,https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022,https://doi.org/10.5194/esurf-10-1211-2022, 2022
Short summary

Cited articles

Aarninkhof, S., De Schipper, M., Luijendijk, A., Ruessink, G., Bierkens, M., Wijnberg, K., Roelvink, D., Limpens, J., Baptist, M., Riksen, M., Bouma, T., de Vries, S., Reniers, A., Hulscher, S., Wijdeveld, A., van Dongeren, A., van Gelder-Maas, C., Lodder, Q., and van der Spek, A.: ICON.NL: coastline observatory to examine coastal dynamics in response to natural forcing and human interventions, International Conference on Coastal Sediments, 27–31 May 2019, Tampa/St. Petersburg, Florida, USA, 412–419, 2019. a
Anders, K., Lindenbergh, R. C., Vos, S. E., Mara, H., de Vries, S., and Höfle, B.: High-frequency 3D geomorphic observation using hourly terrestrial laser scanning data of a sandy beach, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W5, 317–324, https://doi.org/10.5194/isprs-annals-IV-2-W5-317-2019, 2019. a, b
Anders, K., Winiwarter, L., Lindenbergh, R., Williams, J. G., Vos, S. E., and Höfle, B.: 4D objects-by-change: Spatiotemporal segmentation of geomorphic surface change from LiDAR time series, ISPRS J. Photogramm., 159, 352–363, 2020. a, b
Assent, I.: Clustering high dimensional data, WIRES Data Min. Knowl. 2, 340–350, 2012. a
Belgiu, M. and Csillik, O.: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis, Remote Sens. Environ., 204, 509–523, 2018. a
Download
Short summary
Sandy coasts are areas that undergo a lot of changes, which are caused by different influences, such as tides, wind or human activity. Permanent laser scanning is used to generate a three-dimensional representation of a part of the coast continuously over an extended period. By comparing three unsupervised learning algorithms, we develop a methodology to analyse the resulting data set and derive which processes are dominating changes in the beach and dunes.