Articles | Volume 10, issue 2
https://doi.org/10.5194/esurf-10-261-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-261-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identification of typical ecohydrological behaviours using InSAR allows landscape-scale mapping of peatland condition
Andrew V. Bradley
CORRESPONDING AUTHOR
Department of Chemical and Environmental Engineering, Faculty of
Engineering, Nottingham Geospatial Institute, Innovation Park, Jubilee
Campus, University of Nottingham, Nottingham, NG7 2TU, UK
Roxane Andersen
Environmental Research Institute, University of Highlands and Islands, Castle Street, Thurso, Scotland, KW14 7JD, UK
Chris Marshall
Environmental Research Institute, University of Highlands and Islands, Castle Street, Thurso, Scotland, KW14 7JD, UK
Andrew Sowter
Terra Motion Limited, Ingenuity Centre, Innovation Park, Jubilee Campus, University of Nottingham, Nottingham, NG7 2TU, UK
David J. Large
Department of Chemical and Environmental Engineering, Faculty of
Engineering, University of Nottingham, Nottingham, NG7 2RG, UK
Related authors
No articles found.
Adilan W. Mahdiyasa, David J. Large, Matteo Icardi, and Bagus P. Muljadi
Earth Surf. Dynam., 12, 929–952, https://doi.org/10.5194/esurf-12-929-2024, https://doi.org/10.5194/esurf-12-929-2024, 2024
Short summary
Short summary
Mathematical models provide insight to analyse peatland behaviour. However, the omission of mechanical processes by the existing models leads to uncertainties in their outputs. We proposed a peatland growth model in 2D that incorporates mechanical, ecological, and hydrological factors, together with the effect of spatial heterogeneity on the peatland system. Our model might assist in understanding the complex interactions and the impact of climate change on the peatland carbon balance.
Samuel Valman, Matthias B. Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabé de la Barreda-Bautista, Andrew Sowter, and Sofie Sjögersten
The Cryosphere, 18, 1773–1790, https://doi.org/10.5194/tc-18-1773-2024, https://doi.org/10.5194/tc-18-1773-2024, 2024
Short summary
Short summary
Climate warming is thawing permafrost that makes up palsa (frost mound) peatlands, risking ecosystem collapse and carbon release as methane. We measure this regional degradation using radar satellite technology to examine ground elevation changes and show how terrain roughness measurements can be used to estimate local permafrost damage. We find that over half of Sweden's largest palsa peatlands are degrading, with the worse impacts to the north linked to increased winter precipitation.
Sofie Sjögersten, Martha Ledger, Matthias Siewert, Betsabé de la Barreda-Bautista, Andrew Sowter, David Gee, Giles Foody, and Doreen S. Boyd
Biogeosciences, 20, 4221–4239, https://doi.org/10.5194/bg-20-4221-2023, https://doi.org/10.5194/bg-20-4221-2023, 2023
Short summary
Short summary
Permafrost thaw in Arctic regions is increasing methane emissions, but quantification is difficult given the large and remote areas impacted. We show that UAV data together with satellite data can be used to extrapolate emissions across the wider landscape as well as detect areas at risk of higher emissions. A transition of currently degrading areas to fen type vegetation can increase emission by several orders of magnitude, highlighting the importance of quantifying areas at risk.
Amy E. Pickard, Marcella Branagan, Mike F. Billett, Roxane Andersen, and Kerry J. Dinsmore
Biogeosciences, 19, 1321–1334, https://doi.org/10.5194/bg-19-1321-2022, https://doi.org/10.5194/bg-19-1321-2022, 2022
Short summary
Short summary
Peatlands have been subject to a range of land management regimes over the past century. This has affected the amount of carbon that drains into surrounding streams and rivers. In our study, we measured carbon concentrations in streams draining from drained, non-drained, and restored areas of the Flow Country blanket bog in N Scotland. We found that drained peatland had higher concentrations and fluxes of carbon relative to non-drained areas. Restored peatland areas were highly variable.
Renée Hermans, Rebecca McKenzie, Roxane Andersen, Yit Arn Teh, Neil Cowie, and Jens-Arne Subke
Biogeosciences, 19, 313–327, https://doi.org/10.5194/bg-19-313-2022, https://doi.org/10.5194/bg-19-313-2022, 2022
Short summary
Short summary
Peatlands are a significant global carbon store, which can be compromised by drainage and afforestation. We measured the peat decomposition under a 30-year-old drained forest plantation: 115 ± 16 g C m−2 yr−1, ca. 40 % of total soil respiration. Considering input of litter from trees, our results indicate that the soils in these 30-year-old drained and afforested peatlands are a net sink for C, since substantially more C enters the soil as organic matter than is decomposed heterotrophically.
Related subject area
Biological: Eco-Hydrology
Short communication: Concentrated impacts by tree canopy drips – hotspots of soil erosion in forests
Adaptive cycles of floodplain vegetation response to flooding and drying
The role of hydrological transience in peatland pattern formation
Ayumi Katayama, Kazuki Nanko, Seonghun Jeong, Tomonori Kume, Yoshinori Shinohara, and Steffen Seitz
Earth Surf. Dynam., 11, 1275–1282, https://doi.org/10.5194/esurf-11-1275-2023, https://doi.org/10.5194/esurf-11-1275-2023, 2023
Short summary
Short summary
Even under forests, soil is eroded by rainfall. This is particularly true when human impact damages vegetation layers. We found that the erosion risk can be greatly increased by structural drip points at branches forming large drops under the tree canopy in the foliated and non-foliated seasons. Our measurements with sand-filled splash cups in Japanese beech forests showed drop energies up to 50 times greater than under freefall precipitation, indicating locally severe sediment detachment.
R. Thapa, M. C. Thoms, M. Parsons, and M. Reid
Earth Surf. Dynam., 4, 175–191, https://doi.org/10.5194/esurf-4-175-2016, https://doi.org/10.5194/esurf-4-175-2016, 2016
Short summary
Short summary
Floodplain vegetation response to flooding and drying represents one of the few quantitative studies that have used adaptive cycles. This paper examines the response of vegetation productivity (measured as NDVI) through a hypothesized adaptive cycle to determine whether the cycle repeats over time and how it is affected by differently sized flood events. Thus, it represents a significant contribution to our knowledge of floodplain vegetation response to multiple flooding and drying sequences.
P. J. Morris, A. J. Baird, and L. R. Belyea
Earth Surf. Dynam., 1, 29–43, https://doi.org/10.5194/esurf-1-29-2013, https://doi.org/10.5194/esurf-1-29-2013, 2013
Cited articles
Almendinger, J. C., Almendinger, J. E., and Glaser, P. H.: Topographic
fluctuations in across a spring fen and raised bog in the Lost River Peatland, northern Minnesota, J. Ecol., 74, 393–401, https://doi.org/10.2307/2260263,
1986.
Alshammari, L., Large D. J., Boyd, D. S., Sowter, A., Anderson, R., Andersen, R., and Marsh, S.: Long-term peatland condition assessment via surface motion monitoring using the ISBAS DInSAR technique over the Flow Country, Scotland, Remote Sens., 10, 1–24, https://doi.org/10.3390/rs10071103, 2018.
Alshammari, L., Boyd, D. S., Sowter, A., Marshall, C., Andersen, R., Gilbert, P., Marsh, S., and Large, D. J.: Use of surface motion characteristics determined by InSAR to assess peatland condition, J. Geophys. Res.-Biogeo., 125, e2018JG004953, https://doi.org/10.1029/2018JG004953, 2020.
Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I., Lehmann, J.,
Amundson, R., Bol, R., Collins, C., Lal, R., Leifeld, J., and Minasny, B.:
Towards a global-scale soil climate mitigation strategy, Nat. Commun., 11,
1–10, https://doi.org/10.1038/s41467-020-18887-7, 2020.
Andersen, R., Cowie, N., Payne, R. J., and Subke, J. A.: The Flow Country
peatlands of Scotland, Mires Peat, 23, 1–2, https://doi.org/10.19189/MaP.2018.OMB.381, 2018.
Artz, R. R. E., Johnson, S., Bruneau, P., Britton, A. J., Mitchell, R. J.,
Ross, L., Donaldson-Selby, G., Donnelly, D., Aitkenhead, M. J., Gimona, A.,
and Poggio, L.: The potential for modelling peatland habitat condition in
Scotland using long-term MODIS data, Sci. Total Environ., 660, 429–442, 2019.
Baden, W. and Eggelsmann, R.: Der Wasserkreislauf eines nordwestdeutschen Hochmoores, in: Schriftenreihe des Kuratoriums fiir Kulturbauwesen, 12, Verleg Wasser und Boden, Hamburg, Germany, 156 pp., 1964.
Bateson, L., Cigna, F., Boon, D., and Sowter, A.: The application of the
Intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK, Int. J. Appl. Earth Obs. Geoinform., 34, 249–257, https://doi.org/10.1016/j.jag.2014.08.018, 2015.
Becker, R. A., Chambers, J. M., and Wilks, A. R.: The New S Language,
Wadsworth & Brooks/Cole, ISBN 10 0412741504 and updated ISBN 13 9780412741500, 1988.
Bellamy, P. E., Stephen, L., Maclean, I. S., and Grant, M. C.: Response of
blanket bog vegetation to drain-blocking, Appl. Veg. Sci., 15, 129–135,
https://doi.org/10.1111/j.1654-109X.2011.01151.x, 2012.
Box, G. E. P. and Cox, D. R.: An Analysis of Transformations, J. R. Stat.
Soc. B., 26, 211–252, 1964.
Bradley, A. V.: InSAR landscape scale peatland condition, Nottingham Research Data Management Repository, University of Nottingham, UK [data set], https://doi.org/10.17639/nott.7123, 2021.
Buras, A., Rammig, A., and Zang, C. S.: Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003, Biogeosciences, 17, 1655–1672, https://doi.org/10.5194/bg-17-1655-2020, 2020.
Caporn, S. J. M., Rosenburgh, A. E., Keightley, A. T., Hinde, S. L., Riggs,
J. L., Buckler, M., and Wright, N. A.: Sphagnum restoration on degraded
blanket and raised bogs in the UK using micropropagated source material: a
review of progress, Mires Peat, 20, 1–17, https://doi.org/10.19189/MaP.2017.OMB.306,
2018.
Chen, C. W. and Zebker, H. A.: Two-dimensional phase unwrapping with use of
statistical models for cost functions in nonlinear optimization, J. Opt. Soc. Am. A, 18, 338–351, https://doi.org/10.1364/JOSAA.18.000338, 2001.
Cigna, F. and Sowter, A.: The relationship between intermittent coherence and precision of ISBAS InSAR ground motion velocities: ERS-1/2 case studies in the UK, Remote Sens. Environ., 202, 177–198, https://doi.org/10.1016/j.rse.2017.05.016, 2017.
Couwenberg, J., Thiele, A., Tanneberger, F., Augustin, J., Bärisch, S.,
Dubovik, D., Liashchynskaya, N., Michaelis, D., Minke, M., Skuratovich, A.,
and Joosten, H.: Assessing greenhouse gas emissions from peatlands using
vegetation as a proxy, Hydrobiologia, 674, 67–89, https://doi.org/10.1007/s10750-011-0729-x, 2011.
Crump, J. (Ed.): Smoke on water: Countering global threats from peatland loss
and degradation, UNEP, GRIDA, GPI, ISBN 9788277011684, https://wedocs.unep.org/bitstream/handle/20.500.11822/22919/Smoke_water_peatland.pdf?sequence=1&isAllowed=y (last access: 18 March 2022), 2017.
Fiaschi, E. P., Holohan, M., Sheehy, M., and Floris, P. S.: InSAR Analysis of Sentinel-1 Data for Detecting Ground Motion in Temperate Oceanic Climate
Zones: A Case Study in the Republic of Ireland, Remote Sens., 11, 348, https://doi.org/10.3390/rs11030348, 2019.
Fritz, C., Campbell, D. I., and Schipper, L. A.: Oscillating peat surface
levels in a restiad peatland, New Zealand – magnitude and spatiotemporal
variability, Hydrol. Process., 22, 3264–3274, https://doi.org/10.1002/hyp.6912, 2008.
Gallego-Sala, A. V. and Prentice, I. C.: Blanket peat biome endangered by
climate change, Nat. Clim. Change, 3, 152–155, https://doi.org/10.1038/nclimate1672, 2013.
Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, F., and Yiou, P.: Advanced spectral methods for climatic time series, Rev. Geophys., 40, 1–40,
https://doi.org/10.1029/2000RG000092, 2002.
Glaser, P. H., Chanton, J. P., Morin, P., Rosenberry, D. O., Siegel, D. I., Ruud, O., Chasar, L. I., and Reeve, A. S.: Surface deformations as indicators of deep ebullition fluxes in a large northern peatland, Global Biogeochem. Cy., 18, GB1003, https://doi.org/10.1029/2003GB002069, 2004.
Gong, W., Thiele, A., Hinz, S., Meyer, F. J., Hooper, A., and Agram, P. S.:
Comparison of small baseline interferometric SAR processors for estimating
ground deformation, Remote Sens., 8, 330, https://doi.org/10.3390/rs8040330, 2016.
González, E. and Rochefort, L.: Declaring success in Sphagnum peatland
restoration: Identifying outcomes from readily measurable vegetation
descriptors, Mires Peat, 24, 1–16, https://doi.org/10.19189/MaP.2017.OMB.305, 2019.
Goode, D. A.: The significance of physical hydrology in the morphological
classification of mires. Classification of Peat and Peatlands, in: Proc Int.
Peat Soc. Symp., International Peat Society, Glasgow, 10–20, 1973.
Günther, A., Barthelmes, A., Huth, V., Joosten, H., Jurasinski, G., Koebsch, F., and Couwenberg, J.: Prompt rewetting of drained peatlands reduces climate warming despite methane emissions, Nat. Commun., 11, 1–5,
https://doi.org/10.1038/s41467-020-15499-z, 2020.
Hancock, M. H., England, B., and Cowie, N. R.: Knockfin Heights: a high-altitude Flow Country peatland showing extensive erosion of uncertain
origin, Mires Peat, 23, 1–20, https://doi.org/10.19189/MaP.2018.OMB.334, 2018.
Harris, L. I., Roulet, N. T., and Moore, T. R.: Drainage reduces the resilience of a boreal peatland, Environ. Res. Commun., 2, 065001,
https://doi.org/10.1088/2515-7620/ab9895, 2020.
Holden, J., Chapman, P. J., and Labadz, J. C., Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration,
Prog. Phys. Geogr., 28, 95–123, https://doi.org/10.1191/0309133304pp403ra, 2004.
Howie, S. A. and Hebda, R. J.: Bog surface oscillation (mire breathing) a
useful measure in raised bog restoration, Hydrol. Process., 32, 1518–1530, https://doi.org/10.1002/hyp.11622, 2018.
Hutchinson, J. N.: The record of peat wasteage in the East Anglian fenlands
at Holme Post, 1848–1978 A.D., J. Ecol., 68, 229–249, 1980.
Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., and Yasmeen, F.:
Forecast: Forecasting functions for time series and linear models, R package
version 8.5 [code], http://pkg.robjhyndman.com/forecast (last access: 18 March 2022), 2019.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled seamless
SRTM data V4, CIAT – International Centre for Tropical Agriculture [data set], http://srtm.csi.cgiar.org (last access: 19 July 2019), 2008.
JHI – The James Hutton Institute: National Soil Map of Scotland, JHI [data set],
https://www.hutton.ac.uk/learning/natural-resource-datasets/soilshutton/soils-maps-scotland,
last access: 22 November 2021.
Kellner, E. and Halldin, S.: Water budget and surface-layer water storage in a Sphagnum bog in central Sweden, Hydrol. Process., 16, 87–103,
https://doi.org/10.1002/hyp.286, 2002.
Kennedy, G. W. and Price, J. S.: A conceptual model of volume-change controls in the hydrology of cutover peats, J. Hydrol., 302, 13–25,
https://doi.org/10.1016/j.jhydrol.2004.06.024, 2005.
Kulczynski, S.: Peat bogs of Polsie. Memoires de l'Academie Polenaise des
Sciences et des Lettres, Class de Sciences Mathematiques et Naturelles
Serie B: Sciences Naturelles, 15, 1949.
Kurimo, H.: Surface fluctuation in three virgin pine mires in eastern Finland, Silva Fennica, 17, 45–64, 1983.
Large, D. J., Marshall, C., Jochmann, M., Jensen, M., Spiro, B. F., and Olaussen, S.: Time, Hydrologic Landscape, and the Long-Term Storage of Peatland Carbon in Sedimentary Basins, J. Geophys. Res.-Earth, 126, e2020JF005762, https://doi.org/10.1029/2020JF005762, 2021.
Lees, K. J., Quaife, T., Artz, R. E. E., Khomik, M., and Clark, J. M.:
Potential for using remote sensing to estimate carbon fluxes across Northern
peatlands: a review, Sci. Total Environ., 615, 857874,
https://doi.org/10.1016/j.scitotenv.2017.09.103, 2018.
Lees, K. J., Artz, R. R. E., Khomik, M., Clark, J., Ritson, J., Hancock, M.,
Cowei, N., and Quaife, T.: Using spectral indices to estimate water content and GPP in sphagnum moss and other peatland vegetation, IEEE T. Geosci. Remote, 58, 4547–4557, 2020.
Leifeld, J. and Menichetti, L.: The underappreciated potential of peatlands in global climate change mitigation strategies, Nat. Commun., 9, 1–7,
https://doi.org/10.1038/s41467-018-03406-6, 2018.
Leifeld, J., Wüst-Galley, C., and Page, S.: Intact and managed peatland
soils as a source and sink of GHGs from 1850 to 2100, Nat. Clim. Change, 9, 945–947, https://doi.org/10.1038/s41558-019-0615-5, 2019.
Lindsay, R.: Peatland Classification, in: The Wetland Book I: Structure and function, management and methods, edited by: Finlayson, C., Everard, M., Irvine, K., McInnes, R. J., Middleton, B. A., Dam, A. V., and Davidson, N., Springer, 1515–1528, https://doi.org/10.1007/978-90-481-9659-3, 2018.
Lindsay, R., Charman, D. J., Everingham, F., O'reilly, R. M., Palmer, M. A.,
Rowell, T. A., and Stroud, D. A.: The flow country: the peatlands of Caithness and Sutherland, in: Nature Conservancy Council, Peterborough 1988, edited by: Ratcliffe, D. A. and Oswald, P. H., JNCC – Joint Nature Conservation Committee, 174 pp., https://repository.uel.ac.uk/item/86qqv (last access: 18 March 2022), 1988.
Liu, H. and Lennartz, B.: Hydraulic properties of peat soils along a bulk
density gradient – A meta study, Hydrol. Process., 33, 101–114,
https://doi.org/10.1002/hyp.13314, 2019.
Mahdiyasa, A. W., Large, D. J., Muljadi, B. P., Icardi, M., and Triantafyllou, S.: MPeat-A fully coupled mechanical-ecohydrological model of
peatland development, Ecohydrology, 15, e2361, https://doi.org/10.1002/eco.2361, 2022.
Marshall, C., Bradley, A. V., Andersen, R., and Large, D. J.: Using peatland
surface motion (bog breathing) to monitor Peatland Action sites, NatureScot
Research Report 1269,
https://www.nature.scot/doc/naturescot-research-report-1269-using-peatland-surface-motion
(last access: 18 March 2022), 2021.
Minasny, B., Berglund, Ö., Connolly, J., Hedley, C., Vries, F. D., Gimona, A., Kempen, B., Kidd, D., Lilja, H., Malone, B., McBratney, A., Roudier, P., O'Rourke, S., Rudiyanto, Padarian, J., Poggio, L., Caten, A.
T., Thompson, D., Tuve, C., and Widyatmanti, W.: Digital mapping of
peatlands – A critical review, Earth Sci. Rev., 196, 102870,
https://doi.org/10.1016/j.earscirev.2019.05.014, 2019.
Money, R. P. and Wheeler, B. D.: Some critical questions concerning the
restorability of damaged raised bogs, Appl. Veg. Sci., 2, 107–116,
https://doi.org/10.2307/1478887, 1999.
Morton, P. A. and Heinemeyer, A.: Bog breathing: the extent of peat shrinkage and expansion on blanket bogs in relation to water table, heather management and dominant vegetation and its implications for carbon stock assessments, Wetl. Ecol. Manage., 27, 467–482, https://doi.org/10.1007/s11273-019-09672-5, 2019.
Mustonen, S. E. and Seuna, P.: Metsaojitusksen vaikutuksesta suon hydrologiaan, Publication 2, National Board of Waters,Water Research Institute, Finland, 1–63, http://hdl.handle.net/10138/26033 (last access: 18 March 2022), 1971.
Osmanoğlu, B., Sunar, F., Wdowinski, S., and Cabral-Cano, E.: Time series analysis of InSAR data: methods and trends, ISPRS J. Photogram. Remote Sens., 115, 90–102, https://doi.org/10.1016/j.isprsjprs.2015.10.003, 2016.
Poggio, L. and Gimona, A.: National scale 3D modelling of soil organic carbon stocks with uncertainty propagation—an example from Scotland, Geoderma, 232, 284–299, https://doi.org/10.1016/j.geoderma.2014.05.004, 2014.
Price, J. S.: Role and character of seasonal peat soil deformation on the hydrology of undisturbed cutover peatlands. Water Resour. Res., 39, 1214,
https://doi.org/10.1029/2002WR001302, 2003.
Price, J. S. and Schlotzhauer, S. M.: Importance of shrinkage and compression
in determining water storage changes in peat: the case of a mined peatland,
Hydrol. Process., 13 2591–2601,
https://doi.org/10.1002/(SICI)1099-1085(199911)13:16<2591::AID-HYP933>3.0.CO;2-E, 1999.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/ (last access: 18 March 2022), 2013.
R Core Team: “Stats v3.6.2” R package, R Foundation for Statistical Computing, Vienna, Austria [code], https://www.rdocumentation.org/packages/stats (last access: 18 March 2022), 2020.
Reeve, A. S., Glaser, P. H., and Rosenberry, D. O.: Seasonal changes in
peatland surface elevation recorded at GPS stations in the Red Lake Peatlands, northern Minnesota, USA, J. Geophys. Res.-Biogeo., 118, 1616–1626, https://doi.org/10.1002/2013JG002404, 2013.
Rochefort, L. and Andersen, R.: Global Peatland Restoration after 30 years:
where are we in this mossy world?, Rest. Ecol., 25, 269–270,
https://doi.org/10.1111/rec.12417, 2017.
Roulet, N. T.: Surface level and water table fluctuations in a subarctic fen, Arct. Alp. Res., 23, 303–310, 1991.
SNH: Scotland Land cover and habitat map 2019, NatureScot [data set], https://www.nature.scot/landscapes-and-habitats/habitat-map-scotland
(last access: 18 March 2022), 2019.
Sloan, T. J., Payne, R. J., Anderson, A. R., Bain, C., Chapman, S., Cowie,
N., Gilbert, P., Lindsay, R., Mauquoy, D., Newton, A. J., and Andersen, R.:
Peatland afforestation in the UK and consequences for carbon storage, Mires
Peat, 23, 01, https://doi.org/10.19189/MaP.2017.OMB.315, 2018.
Sowter, A., Bateson, L., Strange, P., Ambrose, K., and Syafiudin, M. F.:
DInSAR estimation of land motion using intermittent coherence with application to the South Derbyshire and Leicestershire coalfields, Remote
Sens. Lett., 4, 979–987, https://doi.org/10.1080/2150704X.2013.823673, 2013.
Sowter, A., Che Amat, M., Cigna, F., Marsh, S., Athab, A., and Alshammari, L.: Mexico City land subsidence in 2014-2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique, Int. J. App. Earth Obs. Geoinf., 52, 230–242, https://doi.org/10.1016/j.jag.2016.06.015, 2016.
SPECTRA: SSA-MTM Toolkit for Spectral Analysis, SSA-MTM Group, Department of Atmospheric Sciences, University of California, Los Angeles [code], http://research.atmos.ucla.edu/tcd/ssa/guide/guide4.html, last access: 2 May 2021.
Tampuu, T., Praks, J., Uiboupin, R., and Kull, A.: Long Term Interferometric
Temporal Coherence and DInSAR Phase in Northern Peatlands, Remote Sens., 12, 1566, https://doi.org/10.3390/rs12101566, 2020.
Waddington, J. M., Kellner, E., Strack, M., and Price, J. S.: Differential
peat formation, compressibility, and water storage between peatland microforms: Implications for ecosystem function and development, Water Resour. Res., 46, W07538, https://doi.org/10.1029/2009WR008802, 2010.
Waddington, J. M., Morris, P. J., Kettridge, N., Granath, G., Thompson, D.
K., and Moore, P. A.: Hydrological feedbacks in northern peatlands,
Ecohydrology, 8, 113–127, https://doi.org/10.1002/eco.149, 2015.
Winter, T. C.: A conceptual framework for assessing cumulative impacts on the hydrology of nontidal wetlands, Environ. Manage., 12, 605-620, https://doi.org/10.1007/BF01867539,1988.
Short summary
The condition of peatland largely determines its capacity to store carbon, but peatland condition is not accurately known. Combining the knowledge of management, vegetation, and detecting differences in seasonal surface movement from satellite radar data, we map peat condition. In a blanket bog landscape we discovered the presence of wetter and dryer conditions, which could help guide restoration decisions, and we conclude that this approach could be transferred peat management worldwide.
The condition of peatland largely determines its capacity to store carbon, but peatland...