Articles | Volume 10, issue 4
https://doi.org/10.5194/esurf-10-705-2022
https://doi.org/10.5194/esurf-10-705-2022
Research article
 | 
14 Jul 2022
Research article |  | 14 Jul 2022

The imprint of erosion by glacial lake outburst floods in the topography of central Himalayan rivers

Maxwell P. Dahlquist and A. Joshua West

Related authors

Introducing standardized field methods for fracture-focused surface process research
Martha Cary Eppes, Alex Rinehart, Jennifer Aldred, Samantha Berberich, Maxwell P. Dahlquist, Sarah G. Evans, Russell Keanini, Stephen E. Laubach, Faye Moser, Mehdi Morovati, Steven Porson, Monica Rasmussen, and Uri Shaanan
Earth Surf. Dynam., 12, 35–66, https://doi.org/10.5194/esurf-12-35-2024,https://doi.org/10.5194/esurf-12-35-2024, 2024
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024,https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024,https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Role of the forcing sources in morphodynamic modelling of an embayed beach
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024,https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024,https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024,https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary

Cited articles

Allen, G. H., Barnes, J. B., Pavelsky, T. M., and Kirby, E.: Lithologic and tectonic controls on bedrock channel form at the northwest Himalayan front: Bedrock Channel Form, Mohand, India, J. Geophys. Res.-Earth Surf., 118, 1806–1825, https://doi.org/10.1002/jgrf.20113, 2013. a, b
Asahi, K.: Equilibrium-line altitudes of the present and Last Glacial Maximum in the eastern Nepal Himalayas and their implications for SW monsoon climate, Quatern. Int., 212, 26–34, https://doi.org/10.1016/j.quaint.2008.08.004, 2010. a, b
Baynes, E. R. C., Attal, M., Niedermann, S., Kirstein, L. A., Dugmore, A. J., and Naylor, M.: Erosion during extreme flood events dominates Holocene canyon evolution in northeast Iceland, P. Natl. Acad. Sci., 112, 2355–2360, https://doi.org/10.1073/pnas.1415443112, 2015. a
Bharti, V. and Singh, C.: Evaluation of error in TRMM 3B42V7 precipitation estimates over the Himalayan region: Evaluation Of Error In TRMM, J. Geophys. Res.-Atmos., 120, 12458–12473, https://doi.org/10.1002/2015JD023779, 2015. a
Bookhagen, B.: High Resolution Spatiotemporal Distribution of Rainfall Seasonality and Extreme Events Based on a 12-year TRMM Time Series, ucsb [data set], http://www.geog.ucsb.edu/~bodo/TRMM/index.php (last access: 26 April 2022), 2013. a
Download
Short summary
Himalayan rivers are full of giant boulders that rarely move except during glacial lake outburst floods (GLOFs), which therefore must be important drivers of erosion in the Himalayas. GLOFs are rare, so little is known about their long-term erosional impact. We found that rivers in Nepal have channel geometry that, compared with markers of upstream glaciation, confirm GLOFs as a major control on erosion. This previously unrecognized control should be accounted for in landscape evolution studies.