Articles | Volume 10, issue 4
https://doi.org/10.5194/esurf-10-705-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-705-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The imprint of erosion by glacial lake outburst floods in the topography of central Himalayan rivers
Maxwell P. Dahlquist
CORRESPONDING AUTHOR
Department of Earth and Environmental Systems, Sewanee, The University of the South, Sewanee, TN 37383, USA
A. Joshua West
Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
Related authors
Martha Cary Eppes, Alex Rinehart, Jennifer Aldred, Samantha Berberich, Maxwell P. Dahlquist, Sarah G. Evans, Russell Keanini, Stephen E. Laubach, Faye Moser, Mehdi Morovati, Steven Porson, Monica Rasmussen, and Uri Shaanan
Earth Surf. Dynam., 12, 35–66, https://doi.org/10.5194/esurf-12-35-2024, https://doi.org/10.5194/esurf-12-35-2024, 2024
Short summary
Short summary
All rocks have fractures (cracks) that can influence virtually every process acting on Earth's surface where humans live. Yet, scientists have not standardized their methods for collecting fracture data. Here we draw on past work across geo-disciplines and propose a list of baseline data for fracture-focused surface process research. We detail the rationale and methods for collecting them. We hope their wide adoption will improve future methods and knowledge of rock fracture overall.
Martha Cary Eppes, Alex Rinehart, Jennifer Aldred, Samantha Berberich, Maxwell P. Dahlquist, Sarah G. Evans, Russell Keanini, Stephen E. Laubach, Faye Moser, Mehdi Morovati, Steven Porson, Monica Rasmussen, and Uri Shaanan
Earth Surf. Dynam., 12, 35–66, https://doi.org/10.5194/esurf-12-35-2024, https://doi.org/10.5194/esurf-12-35-2024, 2024
Short summary
Short summary
All rocks have fractures (cracks) that can influence virtually every process acting on Earth's surface where humans live. Yet, scientists have not standardized their methods for collecting fracture data. Here we draw on past work across geo-disciplines and propose a list of baseline data for fracture-focused surface process research. We detail the rationale and methods for collecting them. We hope their wide adoption will improve future methods and knowledge of rock fracture overall.
Emily I. Burt, Gregory R. Goldsmith, Roxanne M. Cruz-de Hoyos, Adan Julian Ccahuana Quispe, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 4173–4186, https://doi.org/10.5194/hess-27-4173-2023, https://doi.org/10.5194/hess-27-4173-2023, 2023
Short summary
Short summary
When it rains, water remains in the ground for variable amounts of time before it is taken up by plants or becomes streamflow. Understanding how long water stays in the ground before it is taken up by plants or becomes streamflow helps predict what will happen to the water cycle in future climates. Some studies suggest that plants take up water that has been in the ground for a long time; in contrast, we find that plants take up a significant amount of recent rain.
Emily I. Burt, Daxs Herson Coayla Rimachi, Adan Julian Ccahuana Quispe, Abra Atwood, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 2883–2898, https://doi.org/10.5194/hess-27-2883-2023, https://doi.org/10.5194/hess-27-2883-2023, 2023
Short summary
Short summary
Mountains store and release water, serving as water towers for downstream regions and affecting global sediment and carbon fluxes. We use stream and rain chemistry to calculate how much streamflow comes from recent rainfall across seven sites in the Andes mountains and the nearby Amazon lowlands. We find that the type of rock and the intensity of rainfall control water retention and release, challenging assumptions that mountain topography exerts the primary effect on watershed hydrology.
Madison M. Douglas, Gen K. Li, Woodward W. Fischer, Joel C. Rowland, Preston C. Kemeny, A. Joshua West, Jon Schwenk, Anastasia P. Piliouras, Austin J. Chadwick, and Michael P. Lamb
Earth Surf. Dynam., 10, 421–435, https://doi.org/10.5194/esurf-10-421-2022, https://doi.org/10.5194/esurf-10-421-2022, 2022
Short summary
Short summary
Arctic rivers erode into permafrost and mobilize organic carbon, which can react to form greenhouse gasses or be re-buried in floodplain deposits. We collected samples on a permafrost floodplain in Alaska to determine if more carbon is eroded or deposited by river meandering. The floodplain contained a mixture of young carbon fixed by the biosphere and old, re-deposited carbon. Thus, sediment storage may allow Arctic river floodplains to retain aged organic carbon even when permafrost thaws.
Florian Hofmann, Emily H. G. Cooperdock, A. Joshua West, Dominic Hildebrandt, Kathrin Strößner, and Kenneth A. Farley
Geochronology, 3, 395–414, https://doi.org/10.5194/gchron-3-395-2021, https://doi.org/10.5194/gchron-3-395-2021, 2021
Short summary
Short summary
We use microCT scanning to improve the quality of 3He exposure ages measured in detrital magnetite. We show that the presence of inclusions can significantly increase the measured amount of 3He and thereby the exposure age. By prescreening magnetite with microCT and analyzing only inclusion-free grains, this problem can be avoided. We also calibrate the cosmogenic 3He production rate in magnetite relative to 10Be in quartz, which can be used for similar studies in the future.
Cited articles
Allen, G. H., Barnes, J. B., Pavelsky, T. M., and Kirby, E.: Lithologic and
tectonic controls on bedrock channel form at the northwest Himalayan front:
Bedrock Channel Form, Mohand, India, J. Geophys. Res.-Earth Surf., 118, 1806–1825, https://doi.org/10.1002/jgrf.20113, 2013. a, b
Asahi, K.: Equilibrium-line altitudes of the present and Last Glacial Maximum
in the eastern Nepal Himalayas and their implications for SW monsoon
climate, Quatern. Int., 212, 26–34,
https://doi.org/10.1016/j.quaint.2008.08.004, 2010. a, b
Baynes, E. R. C., Attal, M., Niedermann, S., Kirstein, L. A., Dugmore, A. J.,
and Naylor, M.: Erosion during extreme flood events dominates Holocene canyon
evolution in northeast Iceland, P. Natl. Acad.
Sci., 112, 2355–2360, https://doi.org/10.1073/pnas.1415443112, 2015. a
Bharti, V. and Singh, C.: Evaluation of error in TRMM 3B42V7 precipitation
estimates over the Himalayan region: Evaluation Of Error In TRMM, J. Geophys. Res.-Atmos., 120, 12458–12473, https://doi.org/10.1002/2015JD023779, 2015. a
Bookhagen, B.: High Resolution Spatiotemporal Distribution of Rainfall
Seasonality and Extreme Events Based on a 12-year TRMM Time Series, ucsb [data set],
http://www.geog.ucsb.edu/~bodo/TRMM/index.php (last access: 26 April 2022), 2013. a
Bookhagen, B. and Burbank, D. W.: Topography, relief, and TRMM-derived
rainfall variations along the Himalaya, Geophys. Res. Lett., 33, L08405,
https://doi.org/10.1029/2006GL026037. a
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological
budget: Spatiotemporal distribution of snowmelt and rainfall and their impact
on river discharge, J. Geophys. Res., 115, F03019,
https://doi.org/10.1029/2009JF001426, 2010. a, b
Brozović, N., Burbank, D. W., and Meigs, A. J.: Climatic Limits on Landscape
Development in the Northwestern Himalaya, Science, 276, 571,
https://doi.org/10.1126/science.276.5312.571, 1997. a
Burbank, D. W., Blythe, A. E., Putkonen, J., Pratt-Sitaula, B., Gabet, E.,
Oskin, M., Barros, A., and Ojha, T. P.: Decoupling of erosion and
precipitation in the Himalayas, Nature, 426, 652–655,
https://doi.org/10.1038/nature02187, 2003. a, b
Cenderelli, D. A. and Wohl, E. E.: Flow hydraulics and geomorphic effects of
glacial-lake outburst floods in the Mount Everest region, Nepal, Earth
Surf. Proc. Land., 28, 385–407, https://doi.org/10.1002/esp.448, 2003. a, b
Collins, B. D. and Jibson, R. W.: Assessment of Existing and Potential
Landslide Hazards Resulting from the 25 April 2015 Gorkha, Nepal Earthquake
Sequence, U.S. Geological Survey Open-File Report 2015-1142, 50 p., https://doi.org/10.3133/ofr20151142, 2015. a
Cook, K. L., Turowski, J. M., and Hovius, N.: A demonstration of the importance
of bedload transport for fluvial bedrock erosion and knickpoint propagation:
Bedload Transport And Fluvial Incision, Earth Surf. Proc. Land., 38, 683–695, https://doi.org/10.1002/esp.3313, 2013. a
Croissant, T., Lague, D., Steer, P., and Davy, P.: Rapid post-seismic landslide
evacuation boosted by dynamic river width, Nat. Geosci., 10, 680–684,
https://doi.org/10.1038/ngeo3005, 2017. a
Crosby, B. T. and Whipple, K. X.: Knickpoint initiation and distribution within
fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New
Zealand, Geomorphology, 82, 16–38, https://doi.org/10.1016/j.geomorph.2005.08.023,
2006. a
Crosby, B. T., Whipple, K. X., Gasparini, N. M., and Wobus, C. W.: Formation of
fluvial hanging valleys: Theory and simulation, J. Geophys. Res., 112, F3, https://doi.org/10.1029/2006JF000566, 2007. a, b, c
Cunningham, M. T., Stark, C. P., Kaplan, M. R., and Schaefer, J. M.: Glacial limitation of tropical mountain height, Earth Surf. Dynam., 7, 147–169, https://doi.org/10.5194/esurf-7-147-2019, 2019. a
Dahlquist, M. P. and West, A. J.: Initiation and Runout of Post‐Seismic
Debris Flows: Insights From the 2015 Gorkha Earthquake, Geophys. Res. Lett., 46, 9658–9668, https://doi.org/10.1029/2019GL083548, 2019. a
Dahlquist, M. P. and West, A. J.: Data for: The imprint of erosion by glacial lake outburst floods in the topography of central Himalayan rivers, hydroshare [data set], http://www.hydroshare.org/resource/2883cfeebb3a43f2b9a1b222e2cfff29, last access: 27 June 2022. a
Davis, W. M.: Glacial Erosion in France, Switzerland and Norway, Proc. Boston Soc. Nat. History, 29, 273–321, 1900. a
DiBiase, R. A. and Whipple, K. X.: The influence of erosion thresholds and
runoff variability on the relationships among topography, climate, and
erosion rate, J. Geophys. Res., 116, F4,
https://doi.org/10.1029/2011JF002095, 2011. a, b
Dingle, E. H., Attal, M., and Sinclair, H. D.: Abrasion-set limits on Himalayan
gravel flux, Nature, 544, 471–474, https://doi.org/10.1038/nature22039, 2017. a
Egholm, D. L., Nielsen, S. B., Pedersen, V. K., and Lesemann, J.-E.: Glacial
effects limiting mountain height, Nature, 460, 884–887,
https://doi.org/10.1038/nature08263, 2009. a
Fan, X., Dufresne, A., Siva Subramanian, S., Strom, A., Hermanns, R.,
Tacconi Stefanelli, C., Hewitt, K., Yunus, A. P., Dunning, S., Capra, L.,
Geertsema, M., Miller, B., Casagli, N., Jansen, J. D., and Xu, Q.: The
formation and impact of landslide dams – State of the art, Earth-Sci.
Rev., 203, 103116, https://doi.org/10.1016/j.earscirev.2020.103116, 2020. a
Finnegan, N. J., Roe, G., Montgomery, D. R., and Hallet, B.: Controls on the
channel width of rivers: Implications for modeling fluvial incision of
bedrock, Geology, 33, 229, https://doi.org/10.1130/G21171.1, 2005. a
Finnegan, N. J., Schumer, R., and Finnegan, S.: A signature of transience in
bedrock river incision rates over timescales of 104–107 years, Nature, 505, 391–394, https://doi.org/10.1038/nature12913, 2014. a
Fischer, M., Korup, O., Veh, G., and Walz, A.: Controls of outbursts of moraine-dammed lakes in the greater Himalayan region, The Cryosphere, 15, 4145–4163, https://doi.org/10.5194/tc-15-4145-2021, 2021. a, b
Flint, J. J.: Stream gradient as a function of order, magnitude, and discharge, Water Resour. Res., 10, 969–973, https://doi.org/10.1029/WR010i005p00969, 1974. a, b
Forte, A. M. and Whipple, K. X.: Short communication: The Topographic Analysis Kit (TAK) for TopoToolbox, Earth Surf. Dynam., 7, 87–95, https://doi.org/10.5194/esurf-7-87-2019, 2019. a, b
Gansser, A.: Geology of the Himalayas, ed., Regional Geology Series, John Wiley and Sons Ltd, London, New York, Sydney (tr. Zurich), OCLC 463197816, 1964. a
Gardner, T. W., Jorgensen, D. W., Shuman, C., and Lemieux, R., C.: Geomorphic
and tectonic process rates: Effects of measured time interval, Geology, 15,
259–261, 1987. a
Gerrard, J.: The landslide hazard in the Himalayas: geological control and
human action, Geomorphology, 10, 221–230, 1994. a
Haeberli, W.: Frequency and Characteristics of Glacier Floods in the Swiss
Alps, Ann. Glaciol., 4, 85–90,
https://doi.org/10.3189/S0260305500005280, 1983. a
Hewitt, K.: Catastrophic landslides and their effects on the Upper Indus
streams, Karakoram Himalaya, northern Pakistan, Geomorphology, 26, 47–80,
https://doi.org/10.1016/S0169-555X(98)00051-8, 1998. a
Hilton, R. G. and West, A. J.: Mountains, erosion and the carbon cycle, Nat. Rev. Earth Environ., 1, 284–299, https://doi.org/10.1038/s43017-020-0058-6, 2020. a
Howard, A. D.: A detachment-limited model of drainage basin evolution, Water Resour. Res., 30, 2261–2285, https://doi.org/10.1029/94WR00757, 1994. a, b, c
Huber, M. L., Lupker, M., Gallen, S. F., Christl, M., and Gajurel, A. P.: Timing of exotic, far-traveled boulder emplacement and paleo-outburst flooding in the central Himalayas, Earth Surf. Dynam., 8, 769–787, https://doi.org/10.5194/esurf-8-769-2020, 2020. a, b, c
Jacquet, J., McCoy, S. W., McGrath, D., Nimick, D. A., Fahey, M.,
O'kuinghttons, J., Friesen, B. A., and Leidich, J.: Hydrologic and geomorphic
changes resulting from episodic glacial lake outburst floods: Rio Colonia,
Patagonia, Chile, Geophys. Res. Lett., 44, 854–864,
https://doi.org/10.1002/2016GL071374, 2017. a
Jansen, J. D., Fabel, D., Bishop, P., Xu, S., Schnabel, C., and Codilean,
A. T.: Does decreasing paraglacial sediment supply slow knickpoint retreat?,
Geology, 39, 543–546, https://doi.org/10.1130/G32018.1, 2011. a
Kirby, E. and Whipple, K.: Quantifying differential rock-uplift rates via
stream profile analysis, Geology, 29, 415,
https://doi.org/10.1130/0091-7613(2001)029<0415:QDRURV>2.0.CO;2, 2001. a
Kirchner, J. W., Finkel, R. C., Riebe, C. S., Granger, D. E., Clayton, J. L.,
King, J. G., and Megahan, W. F.: Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales, Geology, 29, 591,
https://doi.org/10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2, 2001. a
Kirchner, N., Greve, R., Stroeven, A. P., and Heyman, J.: Paleoglaciological
reconstructions for the Tibetan Plateau during the last glacial cycle:
evaluating numerical ice sheet simulations driven by GCM-ensembles,
Quaternary Sci. Rev., 30, 248–267,
https://doi.org/10.1016/j.quascirev.2010.11.006, 2011. a, b, c
Korup, O. and Tweed, F.: Ice, moraine, and landslide dams in mountainous
terrain, Quaternary Sci. Rev., 26, 3406–3422,
https://doi.org/10.1016/j.quascirev.2007.10.012, 2007. a
Korup, O., Montgomery, D. R., and Hewitt, K.: Glacier and landslide feedbacks
to topographic relief in the Himalayan syntaxes, Proc. Natl.
Acad. Sci., 107, 5317–5322, https://doi.org/10.1073/pnas.0907531107, 2010. a
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J.: The Tropical
Rainfall Measuring Mission (TRMM) Sensor Package, J. Atmos. Ocean. Technol., 15, 809–817,
https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2, 1998. a
Lague, D., Hovius, N., and Davy, P.: Discharge, discharge variability, and the
bedrock channel profile: Discharge Variability And Channel Profile,
J. Geophys. Res.-Earth Surf., 110, F04006,
https://doi.org/10.1029/2004JF000259, 2005. a
Lang, K. A., Huntington, K. W., and Montgomery, D. R.: Erosion of the Tsangpo
Gorge by megafloods, Eastern Himalaya, Geology, 41, 1003–1006,
https://doi.org/10.1130/G34693.1, 2013. a
Larsen, I. J. and Montgomery, D. R.: Landslide erosion coupled to tectonics and
river incision, Nat. Geosci., 5, 468–473, https://doi.org/10.1038/ngeo1479, 2012. a
Lavé, J. and Avouac, J. P.: Fluvial incision and tectonic uplift across the
Himalayas of central Nepal, J. Geophys. Res., 106, 26561–26591,
https://doi.org/10.1029/2001JB000359, 2001. a, b, c, d
Leopold, L. B. and Maddock, T.: The Hydraulic Geometry of Stream Channels and
Some Physiographic Implications, US Geological Survey Professional Paper
252, p. 57, https://doi.org/10.3133/pp252, 1953. a, b
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.:
Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation, Nat. Clim. Change, 4, 587–592, https://doi.org/10.1038/nclimate2237, 2014. a
Ma, N., Szilagyi, J., Zhang, Y., and Liu, W.:
Complementary‐Relationship‐Based Modeling of Terrestrial
Evapotranspiration Across China During 1982–2012: Validations and
Spatiotemporal Analyses, J. Geophys. Res.-Atmos., 124, 4326–4351, https://doi.org/10.1029/2018JD029850, 2019. a
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017. a
Mason, K.: Indus floods and Shyok glaciers, The Himalayan Journal, 1, 10–29,
1929. a
Massey, F. J.: The Kolmogorov-Smirnov Test for Goodness of Fit, J. Am. Stat. Assoc., 46, 68–78, 1951. a
Montgomery, D. R. and Foufoula-Georgiou, E.: Channel network source
representation using digital elevation models, Water Resour. Res., 29,
3925–3934, https://doi.org/10.1029/93WR02463, 1993. a
Montgomery, D. R., Hallet, B., Yuping, L., Finnegan, N., Anders, A., Gillespie,
A., and Greenberg, H. M.: Evidence for Holocene megafloods down the tsangpo
River gorge, Southeastern Tibet, Quaternary Res., 62, 201–207,
https://doi.org/10.1016/j.yqres.2004.06.008, 2004. a
Mool, P. K.: Glacier Lake Outburst Floods in Nepal, J. Nepal Geol. Soc., 11, 273–280, https://doi.org/10.3126/jngs.v11i0.32802, 1995. a
Pickering, J., Diamond, M., Goodbred, S., Grall, C., Martin, J., Palamenghi,
L., Paola, C., Schwenk, T., Sincavage, R., and Spieß, V.: Impact of
glacial-lake paleofloods on valley development since glacial termination
II: A conundrum of hydrology and scale for the lowstand Brahmaputra-Jamuna
paleovalley system, GSA Bulletin, 131, 58–70, https://doi.org/10.1130/B31941.1,
2019. a, b
Prasicek, G., Herman, F., Robl, J., and Braun, J.: Glacial Steady State
Topography Controlled by the Coupled Influence of Tectonics and Climate,
J. Geophys. Res.-Earth Surf., 123, 1344–1362,
https://doi.org/10.1029/2017JF004559, 2018. a
Ray, Y. and Srivastava, P.: Widespread aggradation in the mountainous catchment
of the Alaknanda–Ganga River System: timescales and implications to
Hinterland–foreland relationships, Quaternary Sci. Rev., 29,
2238–2260, https://doi.org/10.1016/j.quascirev.2010.05.023, 2010. a, b
Raymo, M. E. and Ruddiman, W. F.: Tectonic forcing of late Cenozoic climate,
Nature, 359, 117–122, https://doi.org/10.1038/359117a0, 1992. a
Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F.,
Chamlagain, D., and Godt, J. W.: The size, distribution, and mobility of
landslides caused by the 2015 M w 7.8 Gorkha earthquake, Nepal,
Geomorphology, 301, 121–138, https://doi.org/10.1016/j.geomorph.2017.01.030, 2018. a, b
Roe, G. H., Montgomery, D. R., and Hallet, B.: Orographic precipitation and the
relief of mountain ranges: Orographic Precipitation And Relief,
J. Geophys. Res.-Solid Earth, 108, B6, https://doi.org/10.1029/2001JB001521, 2003. a
Rosenbloom, N. A. and Anderson, R. S.: Hillslope and channel evolution in a
marine terraced landscape, Santa Cruz, California, J. Geophys. Res., 99,
14013–14029, https://doi.org/10.1029/94JB00048, 1994. a
Ruiz-Villanueva, V., Allen, S., Arora, M., Goel, N. K., and Stoffel, M.: Recent
catastrophic landslide lake outburst floods in the Himalayan mountain range,
Prog. Phys. Geog.-Earth Environ., 41, 3–28,
https://doi.org/10.1177/0309133316658614, 2017. a
Scherler, D., Munack, H., Mey, J., Eugster, P., Wittmann, H., Codilean, A. T.,
Kubik, P., and Strecker, M. R.: Ice dams, outburst floods, and glacial
incision at the western margin of the Tibetan Plateau: A >100 k.y. chronology from the Shyok Valley, Karakoram, Geol. Soc. Am. Bull., 126, 738–758, https://doi.org/10.1130/B30942.1, 2014. a
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014. a, b
Schwanghart, W., Bernhardt, A., Stolle, A., Hoelzmann, P., Adhikari, B. R.,
Andermann, C., Tofelde, S., Merchel, S., Rugel, G., Fort, M., and Korup, O.:
Repeated catastrophic valley infill following medieval earthquakes in the
Nepal Himalaya, Science, 351, 147–150, https://doi.org/10.1126/science.aac9865, 2016. a, b
Schwanghart, W., Molkenthin, C., and Scherler, D.: A systematic approach and
software for the analysis of point patterns on river networks, Earth Surf.
Proc. Land., 46, 1847–1862, https://doi.org/10.1002/esp.5127, 2021. a, b
Shields, A.: Application of similarity principles and turbulence research to
bed-load movement, CalTech library, Soil Conservation Service Cooperative
Laboratory, 25992, https://resolver.caltech.edu/CaltechKHR:HydroLabpub167 (last access: 11 July 2022), 1936. a
Sklar, L. S. and Dietrich, W. E.: Sediment and rock strength controls on river
incision into bedrock, Geology, 29, 1087,
https://doi.org/10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2, 2001. a, b
Sklar, L. S. and Dietrich, W. E.: The role of sediment in controlling
steady-state bedrock channel slope: Implications of the saltation–abrasion
incision model, Geomorphology, 82, 58–83,
https://doi.org/10.1016/j.geomorph.2005.08.019, 2006. a
Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J.: Importance
of a stochastic distribution of floods and erosion thresholds in the bedrock
river incision problem: Floods And Thresholds In River Incision,
J. Geophys. Res.: Solid Earth, 108, B2, https://doi.org/10.1029/2001JB001655, 2003. a
Spearman, C.: The Proof and Measurement of Association between Two Things, The American Journal of Psychology, 100, 441–471, 1987. a
Steer, P., Simoes, M., Cattin, R., and Shyu, J. B. H.: Erosion influences the
seismicity of active thrust faults, Nat. Commun., 5, 5564,
https://doi.org/10.1038/ncomms6564, 2014. a
Sternberg, H.: Untersuchungen über längen- und Querprofil geschiebeführender
Flüsse, Zeitschrift für Bauwesen, 25, 486–506, 1875. a
Thomson, S. N., Brandon, M. T., Tomkin, J. H., Reiners, P. W., Vásquez, C.,
and Wilson, N. J.: Glaciation as a destructive and constructive control on
mountain building, Nature, 467, 313–317, https://doi.org/10.1038/nature09365, 2010. a
Turowski, J. M., Yager, E. M., Badoux, A., Rickenmann, D., and Molnar, P.: The
impact of exceptional events on erosion, bedload transport and channel
stability in a step-pool channel, Earth Surf. Proc. Land., 34,
1661–1673, https://doi.org/10.1002/esp.1855, 2009. a
Veh, G., Korup, O., von Specht, S., Roessner, S., and Walz, A.: Unchanged
frequency of moraine-dammed glacial lake outburst floods in the Himalaya,
Nat. Clim. Change, 9, 379–383, https://doi.org/10.1038/s41558-019-0437-5, 2019. a
Veh, G., Korup, O., and Walz, A.: Hazard from Himalayan glacier lake outburst
floods, P. Natl. Acad. Sci., 117, 907–912,
https://doi.org/10.1073/pnas.1914898117, 2020. a
West, A. J., Arnold, M., AumaÎtre, G., Bourlès, D. L., Keddadouche, K., Bickle, M., and Ojha, T.: High natural erosion rates are the backdrop for present-day soil erosion in the agricultural Middle Hills of Nepal, Earth Surf. Dynam., 3, 363–387, https://doi.org/10.5194/esurf-3-363-2015, 2015. a, b
Whittaker, A. C.: How do landscapes record tectonics and climate?, Lithosphere,
4, 160–164, https://doi.org/10.1130/RF.L003.1, 2012. a
Willett, S. D. and Brandon, M. T.: On steady states in mountain belts, Geology,
30, 175, https://doi.org/10.1130/0091-7613(2002)030<0175:OSSIMB>2.0.CO;2, 2002. a
Wilson, A., Hovius, N., and Turowski, J. M.: Upstream-facing convex surfaces:
Bedrock bedforms produced by fluvial bedload abrasion, Geomorphology,
180–181, 187–204, https://doi.org/10.1016/j.geomorph.2012.10.010, 2013. a
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K.,
Crosby, B., and Sheehan, D.: Tectonics from topography: Procedures, promise,
and pitfalls, in: Special Paper 398: Tectonics, Climate, and Landscape
Evolution, Geol. Soc. Am., 398, 55–74,
https://doi.org/10.1130/2006.2398(04), 2006a. a, b
Wobus, C. W., Crosby, B. T., and Whipple, K. X.: Hanging valleys in fluvial
systems: Controls on occurrence and implications for landscape evolution, J. Geophys. Res.-Earth Surf., 111, F02017, https://doi.org/10.1029/2005JF000406, 2006b. a, b
Wobus, C. W., Whipple, K. X., and Hodges, K. V.: Neotectonics of the central
Nepalese Himalaya: Constraints from geomorphology, detrital 40
Ar/ 39 Ar thermochronology, and thermal modeling:
Neotectonics Of Central Nepal, Tectonics, 25, 4, https://doi.org/10.1029/2005TC001935, 2006c. a
Xu, D.: Characteristics of debris flow caused by outburst of glacial lake in
Boqu river, Xizang, China, 1981, GeoJournal, 17, 569–580, https://doi.org/10.1007/BF00209443, 1988. a
Yanites, B. J.: The Dynamics of Channel Slope, Width, and Sediment in Actively
Eroding Bedrock River Systems, J. Geophys. Res.-Earth
Surf., 123, 1504–1527, https://doi.org/10.1029/2017JF004405, 2018. a
Yanites, B. J., Mitchell, N. A., Bregy, J. C., Carlson, G. A., Cataldo, K.,
Holahan, M., Johnston, G. H., Nelson, A., Valenza, J., and Wanker, M.:
Landslides control the spatial and temporal variation of channel width in
southern Taiwan: Implications for landscape evolution and cascading hazards
in steep, tectonically active landscapes: Variation in channel morphology
controlled by landslides in s. Taiwan, Earth Surf. Proc. Land.,
43, 1782–1797, https://doi.org/10.1002/esp.4353, 2018. a
Short summary
Himalayan rivers are full of giant boulders that rarely move except during glacial lake outburst floods (GLOFs), which therefore must be important drivers of erosion in the Himalayas. GLOFs are rare, so little is known about their long-term erosional impact. We found that rivers in Nepal have channel geometry that, compared with markers of upstream glaciation, confirm GLOFs as a major control on erosion. This previously unrecognized control should be accounted for in landscape evolution studies.
Himalayan rivers are full of giant boulders that rarely move except during glacial lake outburst...