Articles | Volume 10, issue 5
https://doi.org/10.5194/esurf-10-953-2022
https://doi.org/10.5194/esurf-10-953-2022
Research article
 | 
07 Oct 2022
Research article |  | 07 Oct 2022

Grain size of fluvial gravel bars from close-range UAV imagery – uncertainty in segmentation-based data

David Mair, Ariel Henrique Do Prado, Philippos Garefalakis, Alessandro Lechmann, Alexander Whittaker, and Fritz Schlunegger

Data sets

Data and code for: Grain size of fluvial gravel bars from close-range UAV imagery - uncertainty in segmentation-based data D. Mair, A. Henrique, D. Prado, P. Garefalakis, A. Lechmann, A. Whittaker, and F. Schlunegger https://doi.org/10.5281/zenodo.6415047

Download
Short summary
Grain size data are important for studying and managing rivers, but they are difficult to obtain in the field. Therefore, methods have been developed that use images from small and remotely piloted aircraft. However, uncertainty in grain size data from such image-based products is understudied. Here we present a new way of uncertainty estimation that includes fully modeled errors. We use this technique to assess the effect of several image acquisition aspects on grain size uncertainty.