Articles | Volume 11, issue 6
https://doi.org/10.5194/esurf-11-1251-2023
https://doi.org/10.5194/esurf-11-1251-2023
Research article
 | Highlight paper
 | 
08 Dec 2023
Research article | Highlight paper |  | 08 Dec 2023

Alpine hillslope failure in the western US: insights from the Chaos Canyon landslide, Rocky Mountain National Park, USA

Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore

Related authors

DCG-MIP: The Debris-Covered Glacier melt Model Intercomparison exPeriment
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837,https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Global mapping of lake-terminating glaciers
Jakob Steiner, William Armstrong, Will Kochtitzky, Robert McNabb, Rodrigo Aguayo, Tobias Bolch, Fabien Maussion, Vibhor Agarwal, Iestyn Barr, Nathaniel R. Baurley, Mike Cloutier, Katelyn DeWater, Frank Donachie, Yoann Drocourt, Siddhi Garg, Gunjan Joshi, Byron Guzman, Stanislav Kutuzov, Thomas Loriaux, Caleb Mathias, Biran Menounos, Evan Miles, Aleksandra Osika, Kaleigh Potter, Adina Racoviteanu, Brianna Rick, Miles Sterner, Guy D. Tallentire, Levan Tielidze, Rebecca White, Kunpeng Wu, and Whyjay Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-315,https://doi.org/10.5194/essd-2025-315, 2025
Preprint under review for ESSD
Short summary
Post-glacial reshaping of Alpine topography induced by landsliding
Coline Ariagno, Philippe Steer, Pierre Valla, and Benjamin Campforts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2088,https://doi.org/10.5194/egusphere-2025-2088, 2025
Short summary
Identifying fracture-controlled resonance modes for structural health monitoring: insights from Hunter Canyon Arch (Utah, USA)
Guglielmo Grechi, Jeffrey R. Moore, Molly E. McCreary, Erin K. Jensen, and Salvatore Martino
Earth Surf. Dynam., 13, 81–95, https://doi.org/10.5194/esurf-13-81-2025,https://doi.org/10.5194/esurf-13-81-2025, 2025
Short summary
Using Network Science to Evaluate Vulnerability of Landslides on Big Sur Coast, California, USA
Vrinda D. Desai, Alexander L. Handwerger, and Karen E. Daniels
EGUsphere, https://doi.org/10.22541/essoar.172494370.04413277/v1,https://doi.org/10.22541/essoar.172494370.04413277/v1, 2025
Short summary

Cited articles

Anderson, L. S., Roe, G. H., and Anderson, R. S.: The effects of interannual climate variability on the moraine record, Geology, 42, 55–58, https://doi.org/10.1130/G34791.1, 2014. a
Barnes, R., Lehman, C., and Mulla, D.: Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation models, Comput. Geosci., 62, 117–127, https://doi.org/10.1016/j.cageo.2013.04.024, 2014. a
Benson, L., Madole, R., Kubik, P., and McDonald, R.: Surface-exposure ages of Front Range moraines that may have formed during the Younger Dryas, 8.2calka, and Little Ice Age events, Quaternary Sci. Rev., 26, 1638–1649, https://doi.org/10.1016/j.quascirev.2007.02.015, 2007. a
Bickel, V. T., Manconi, A., and Amann, F.: Quantitative assessment of digital image correlation methods to detect and monitor surface displacements of large slope instabilities, Remote Sens.-Basel, 10, 865, https://doi.org/10.3390/rs10060865, 2018. a, b
Bodin, X., Krysiecki, J.-M., Schoeneich, P., Le Roux, O., Lorier, L., Echelard, T., Peyron, M., and Walpersdorf, A.: The 2006 Collapse of the Bérard Rock Glacier (Southern French Alps): The 2006's Collapse of the Bérard Rock Glacier, Permafrost Periglac., 28, 209–223, https://doi.org/10.1002/ppp.1887, 2017. a
Download
Editor
Multiple techniques are used to monitor the collapse of an Alpine landslide in the United States. It is shown that the landslide was moving rapidly pre-failure. Given that the frequency of extreme events is likely to increase with future climate change, additional monitoring of Alpine regions is essential to limit hazards from future Alpine mass movements.
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost.  We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Share