Articles | Volume 11, issue 6
https://doi.org/10.5194/esurf-11-1251-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-1251-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Alpine hillslope failure in the western US: insights from the Chaos Canyon landslide, Rocky Mountain National Park, USA
Matthew C. Morriss
CORRESPONDING AUTHOR
Earth Sciences Department, University of Oregon Eugene, OR 97403, USA
Benjamin Lehmann
CORRESPONDING AUTHOR
Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTERRE 38000 Grenoble, France
Benjamin Campforts
Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
Department of Earth Sciences, VU University Amsterdam, Amsterdam, 1081HV, the Netherlands
George Brencher
Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
Brianna Rick
Department of Geosciences, Colorado State University, Fort Collins, CO 80523, USA
Alaska Climate Adaptation Science Center, Fairbanks, AK 99775, USA
Leif S. Anderson
Department of Geology and Geophysics, Salt Lake City, UT, USA
Alexander L. Handwerger
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
Irina Overeem
Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
Jeffrey Moore
Department of Geology and Geophysics, Salt Lake City, UT, USA
Related authors
No articles found.
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
Jakob Steiner, William Armstrong, Will Kochtitzky, Robert McNabb, Rodrigo Aguayo, Tobias Bolch, Fabien Maussion, Vibhor Agarwal, Iestyn Barr, Nathaniel R. Baurley, Mike Cloutier, Katelyn DeWater, Frank Donachie, Yoann Drocourt, Siddhi Garg, Gunjan Joshi, Byron Guzman, Stanislav Kutuzov, Thomas Loriaux, Caleb Mathias, Biran Menounos, Evan Miles, Aleksandra Osika, Kaleigh Potter, Adina Racoviteanu, Brianna Rick, Miles Sterner, Guy D. Tallentire, Levan Tielidze, Rebecca White, Kunpeng Wu, and Whyjay Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-315, https://doi.org/10.5194/essd-2025-315, 2025
Preprint under review for ESSD
Short summary
Short summary
Many mountain glaciers around the world flow into lakes – exactly how many however, has never been mapped. Across a large team of experts we have now identified all glaciers that end in lakes. Only about 1% do so, but they are generally larger than those which end on land. This is important to understand, as lakes can influence the behaviour of glacier ice, including how fast it disappears. This new dataset allows us to better model glaciers at a global scale, accounting for the effect of lakes.
Coline Ariagno, Philippe Steer, Pierre Valla, and Benjamin Campforts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2088, https://doi.org/10.5194/egusphere-2025-2088, 2025
Short summary
Short summary
This study explored the impact of landslides on their topography using a landscape evolution model called ‘Hyland’, which enables long-term topographical analysis. Our finding reveal that landslides are concentrated at two specific elevations over time and predominantly affect the highest and steepest slopes, particularly along ridges and crests. This study is part of the large question about the origin of the erosion acceleration during the Quaternary.
Guglielmo Grechi, Jeffrey R. Moore, Molly E. McCreary, Erin K. Jensen, and Salvatore Martino
Earth Surf. Dynam., 13, 81–95, https://doi.org/10.5194/esurf-13-81-2025, https://doi.org/10.5194/esurf-13-81-2025, 2025
Short summary
Short summary
We investigated the dynamic behavior of a rock arch to understand how fractures influence its stability. Using geophones, we measured its modes of vibration and used numerical modeling to replicate them. We found that higher-order resonance modes are the most sensitive to fractures, indicating their potential as early indicators of structural damage. Therefore, monitoring these higher-order modes could provide a more accurate tool to assess the structural integrity of natural rock landforms.
Vrinda D. Desai, Alexander L. Handwerger, and Karen E. Daniels
EGUsphere, https://doi.org/10.22541/essoar.172494370.04413277/v1, https://doi.org/10.22541/essoar.172494370.04413277/v1, 2025
Short summary
Short summary
Landslide events occur when soil, rock, and debris on slopes become unstable and move downhill, often triggered by heavy rain that reduces friction. Our research evaluates landslide vulnerability using a method that analyzes the spatiotemporal dynamics of landslide-prone areas. We've developed a statistical metric to track changing conditions in these regions. This approach can aid in early warning systems, helping communities and authorities take preventive measures and minimize damage.
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024, https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Short summary
This study uses radar imagery from the Sentinel-1 satellite to derive snow depth from increases in the returning energy. These retrieved depths are then compared to nine lidar-derived snow depths across the western United State to assess the ability of this technique to be used to monitor global snow distributions. We also qualitatively compare the changes in underlying Sentinel-1 amplitudes against both the total lidar snow depths and nine automated snow monitoring stations.
George Brencher, Scott Henderson, and David Shean
EGUsphere, https://doi.org/10.5194/egusphere-2024-3196, https://doi.org/10.5194/egusphere-2024-3196, 2024
Short summary
Short summary
Glacial lakes are often dammed by moraines, which can fail, causing floods. Traditional methods of measuring moraine dam structure are not feasible for thousands of lakes. We instead developed a method to measure moraine dam movement with satellite radar data and applied this approach to the Imja Lake moraine dam in Nepal. We found that the moraine dam moved ~90 cm from 2017–2024, providing information about its internal structure. These data can help guide limited hazard remediation resources.
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024, https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Short summary
MassWastingRunout (MWR) is a new landslide runout model designed for sediment transport, landscape evolution, and hazard assessment applications. MWR is written in Python and includes a calibration utility that automatically determines best-fit parameters for a site and empirical probability density functions of each parameter for probabilistic model implementation. MWR and Jupyter Notebook tutorials are available as part of the Landlab package at https://github.com/landlab/landlab.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Tian Gan, Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Irina Overeem, Albert J. Kettner, Benjamin Campforts, Julia M. Moriarty, Brianna Undzis, Ethan Pierce, and Lynn McCready
Geosci. Model Dev., 17, 2165–2185, https://doi.org/10.5194/gmd-17-2165-2024, https://doi.org/10.5194/gmd-17-2165-2024, 2024
Short summary
Short summary
This study presents the design, implementation, and application of the CSDMS Data Components. The case studies demonstrate that the Data Components provide a consistent way to access heterogeneous datasets from multiple sources, and to seamlessly integrate them with various models for Earth surface process modeling. The Data Components support the creation of open data–model integration workflows to improve the research transparency and reproducibility.
Ian Delaney, Leif Anderson, and Frédéric Herman
Earth Surf. Dynam., 11, 663–680, https://doi.org/10.5194/esurf-11-663-2023, https://doi.org/10.5194/esurf-11-663-2023, 2023
Short summary
Short summary
This paper presents a two-dimensional subglacial sediment transport model that evolves a sediment layer in response to subglacial sediment transport conditions. The model captures sediment transport in supply- and transport-limited regimes across a glacier's bed and considers both the creation and transport of sediment. Model outputs show how the spatial distribution of sediment and water below a glacier can impact the glacier's discharge of sediment and erosion of bedrock.
Deniz Tobias Gök, Dirk Scherler, and Leif Stefan Anderson
The Cryosphere, 17, 1165–1184, https://doi.org/10.5194/tc-17-1165-2023, https://doi.org/10.5194/tc-17-1165-2023, 2023
Short summary
Short summary
We performed high-resolution debris-thickness mapping using land surface temperature (LST) measured from an unpiloted aerial vehicle (UAV) at various times of the day. LSTs from UAVs require calibration that varies in time. We test two approaches to quantify supraglacial debris cover, and we find that the non-linearity of the relationship between LST and debris thickness increases with LST. Choosing the best model to predict debris thickness depends on the time of the day and the terrain aspect.
Jeffrey S. Munroe and Alexander L. Handwerger
Hydrol. Earth Syst. Sci., 27, 543–557, https://doi.org/10.5194/hess-27-543-2023, https://doi.org/10.5194/hess-27-543-2023, 2023
Short summary
Short summary
Rock glaciers are mixtures of ice and rock debris that are common landforms in high-mountain environments. We evaluated the role of rock glaciers as a component of mountain hydrology by collecting water samples during the summer and fall of 2021. Our results indicate that the water draining from rock glaciers late in the melt season is likely derived from old buried ice; they further demonstrate that this water collectively makes up about a quarter of streamflow during the month of September.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Chuxuan Li, Alexander L. Handwerger, Jiali Wang, Wei Yu, Xiang Li, Noah J. Finnegan, Yingying Xie, Giuseppe Buscarnera, and Daniel E. Horton
Nat. Hazards Earth Syst. Sci., 22, 2317–2345, https://doi.org/10.5194/nhess-22-2317-2022, https://doi.org/10.5194/nhess-22-2317-2022, 2022
Short summary
Short summary
In January 2021 a storm triggered numerous debris flows in a wildfire burn scar in California. We use a hydrologic model to assess debris flow susceptibility in pre-fire and postfire scenarios. Compared to pre-fire conditions, postfire conditions yield dramatic increases in peak water discharge, substantially increasing debris flow susceptibility. Our work highlights the hydrologic model's utility in investigating and potentially forecasting postfire debris flows at regional scales.
Benjamin Lehmann, Robert S. Anderson, Xavier Bodin, Diego Cusicanqui, Pierre G. Valla, and Julien Carcaillet
Earth Surf. Dynam., 10, 605–633, https://doi.org/10.5194/esurf-10-605-2022, https://doi.org/10.5194/esurf-10-605-2022, 2022
Short summary
Short summary
Rock glaciers are some of the most frequently occurring landforms containing ice in mountain environments. Here, we use field observations, analysis of aerial and satellite images, and dating methods to investigate the activity of the rock glacier of the Vallon de la Route in the French Alps. Our results suggest that the rock glacier is characterized by two major episodes of activity and that the rock glacier system promotes the maintenance of mountain erosion.
Liesa Brosens, Benjamin Campforts, Gerard Govers, Emilien Aldana-Jague, Vao Fenotiana Razanamahandry, Tantely Razafimbelo, Tovonarivo Rafolisy, and Liesbet Jacobs
Earth Surf. Dynam., 10, 209–227, https://doi.org/10.5194/esurf-10-209-2022, https://doi.org/10.5194/esurf-10-209-2022, 2022
Short summary
Short summary
Obtaining accurate information on the volume of geomorphic features typically requires high-resolution topographic data, which are often not available. Here, we show that the globally available 12 m TanDEM-X DEM can be used to accurately estimate gully volumes and establish an area–volume relationship after applying a correction. This allowed us to get a first estimate of the amount of sediment that has been mobilized by large gullies (lavaka) in central Madagascar over the past 70 years.
Alexander L. Handwerger, Mong-Han Huang, Shannan Y. Jones, Pukar Amatya, Hannah R. Kerner, and Dalia B. Kirschbaum
Nat. Hazards Earth Syst. Sci., 22, 753–773, https://doi.org/10.5194/nhess-22-753-2022, https://doi.org/10.5194/nhess-22-753-2022, 2022
Short summary
Short summary
Rapid detection of landslides is critical for emergency response and disaster mitigation. Here we develop a global landslide detection tool in Google Earth Engine that uses satellite radar data to measure changes in the ground surface properties. We find that we can detect areas with high landslide density within days of a triggering event. Our approach allows the broader hazard community to utilize these state-of-the-art data for improved situational awareness of landslide hazards.
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Short summary
Scientists use computer simulation models to understand how Earth surface processes work, including floods, landslides, soil erosion, river channel migration, ocean sedimentation, and coastal change. Research benefits when the software for simulation modeling is open, shared, and coordinated. The Community Surface Dynamics Modeling System (CSDMS) is a US-based facility that supports research by providing community support, computing tools and guidelines, and educational resources.
Brianna Rick, Daniel McGrath, William Armstrong, and Scott W. McCoy
The Cryosphere, 16, 297–314, https://doi.org/10.5194/tc-16-297-2022, https://doi.org/10.5194/tc-16-297-2022, 2022
Short summary
Short summary
Glacial lakes impact societies as both resources and hazards. Lakes form, grow, and drain as glaciers thin and retreat, and understanding lake evolution is a critical first step in assessing their hazard potential. We map glacial lakes in Alaska between 1984 and 2019. Overall, lakes grew in number and area, though lakes with different damming material (ice, moraine, bedrock) behaved differently. Namely, ice-dammed lakes decreased in number and area, a trend lost if dam type is not considered.
Riley Finnegan, Jeffrey R. Moore, and Paul R. Geimer
Earth Surf. Dynam., 9, 1459–1479, https://doi.org/10.5194/esurf-9-1459-2021, https://doi.org/10.5194/esurf-9-1459-2021, 2021
Short summary
Short summary
We performed controlled helicopter flights near seven rock arches and towers in Utah, USA, and recorded how their natural vibrations changed as the helicopter performed different maneuvers. We found that arches and towers vibrate up to 1000 times faster during these flights compared to time periods just before the helicopter's approach. Our study provides data that can be used to predict long-term damage to culturally significant rock features from sustained helicopter flights over time.
Mauro Häusler, Paul Richmond Geimer, Riley Finnegan, Donat Fäh, and Jeffrey Ralston Moore
Earth Surf. Dynam., 9, 1441–1457, https://doi.org/10.5194/esurf-9-1441-2021, https://doi.org/10.5194/esurf-9-1441-2021, 2021
Short summary
Short summary
Natural rock arches are valued landmarks worldwide. As ongoing erosion can lead to rockfall and collapse, it is important to monitor the structural integrity of these landforms. One suitable technique involves measurements of resonance, produced when mainly natural sources, such as wind, vibrate the spans. Here we explore the use of two advanced processing techniques to accurately measure the resonant frequencies, damping ratios, and deflection patterns of several rock arches in Utah, USA.
George Brencher, Alexander L. Handwerger, and Jeffrey S. Munroe
The Cryosphere, 15, 4823–4844, https://doi.org/10.5194/tc-15-4823-2021, https://doi.org/10.5194/tc-15-4823-2021, 2021
Short summary
Short summary
We use satellite InSAR to inventory and monitor rock glaciers, frozen bodies of ice and rock debris that are an important water resource in the Uinta Mountains, Utah, USA. Our inventory contains 205 rock glaciers, which occur within a narrow elevation band and deform at 1.94 cm yr-1 on average. Uinta rock glacier movement changes seasonally and appears to be driven by spring snowmelt. The role of rock glaciers as a perennial water resource is threatened by ice loss due to climate change.
Joseph P. Verdian, Leonard S. Sklar, Clifford S. Riebe, and Jeffrey R. Moore
Earth Surf. Dynam., 9, 1073–1090, https://doi.org/10.5194/esurf-9-1073-2021, https://doi.org/10.5194/esurf-9-1073-2021, 2021
Short summary
Short summary
River behavior depends on the size of rocks they carry. Rocks are born on hillslopes where erosion removes fragments from solid bedrock. To understand what controls the size of rock fragments, we measured the spacing between cracks exposed in 15 bare-rock cliffs and the size of rocks on the ground below. We found that, for each site, the average rock size could be predicted from the average distance between cracks, which varied with rock type. This shows how rock type can influence rivers.
Arthur Depicker, Gerard Govers, Liesbet Jacobs, Benjamin Campforts, Judith Uwihirwe, and Olivier Dewitte
Earth Surf. Dynam., 9, 445–462, https://doi.org/10.5194/esurf-9-445-2021, https://doi.org/10.5194/esurf-9-445-2021, 2021
Short summary
Short summary
We investigated how shallow landslide occurrence is impacted by deforestation and rifting in the North Tanganyika–Kivu rift region (Africa). We developed a new approach to calculate landslide erosion rates based on an inventory compiled in biased © Google Earth imagery. We find that deforestation increases landslide erosion by a factor of 2–8 and for a period of roughly 15 years. However, the exact impact of deforestation depends on the geomorphic context of the landscape (rejuvenated/relict).
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021, https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Short summary
Wave-transported boulders are important records for storm and tsunami impact over geological timescales. Their use for hazard assessment requires chronological information. We investigated the potential of a new dating technique, luminescence rock surface exposure dating, for estimating transport ages of wave-emplaced boulders. Our results indicate that the new approach may provide chronological information on decadal to millennial timescales for boulders not datable by any other method so far.
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021, https://doi.org/10.5194/tc-15-265-2021, 2021
Short summary
Short summary
Many glaciers are thinning rapidly beneath debris cover (loose rock) that reduces melt, including Kennicott Glacier in Alaska. This contradiction has been explained by melt hotspots, such as ice cliffs, scattered within the debris cover. However, at Kennicott Glacier declining ice flow explains the rapid thinning. Through this study, Kennicott Glacier is now the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.
Rabiul H. Biswas, Frédéric Herman, Georgina E. King, Benjamin Lehmann, and Ashok K. Singhvi
Clim. Past, 16, 2075–2093, https://doi.org/10.5194/cp-16-2075-2020, https://doi.org/10.5194/cp-16-2075-2020, 2020
Short summary
Short summary
A new approach to reconstruct the temporal variation of rock surface temperature using the thermoluminescence (TL) of feldspar is introduced. Multiple TL signals or thermometers in the range of 210 to 250 °C are sensitive to typical surface temperature fluctuations and can be used to constrain thermal histories of rocks over ~50 kyr. We show that it is possible to recover thermal histories of rocks using inverse modeling and with δ18O anomalies as a priori information.
Alexander L. Handwerger, Shannan Y. Jones, Mong-Han Huang, Pukar Amatya, Hannah R. Kerner, and Dalia B. Kirschbaum
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-315, https://doi.org/10.5194/nhess-2020-315, 2020
Manuscript not accepted for further review
Short summary
Short summary
The rapid and accurate mapping of landslides is critical for emergency response, disaster mitigation, and understanding landslide processes. Here we present a new approach to detect landslides anywhere in the world using freely available synthetic aperture radar data and open source tools in Google Earth Engine. Importantly, our methods do not require specialized processing software or training, which allows the broader hazards community to utilize these state-of-the-art remote sensing tools.
Mariela Perignon, Jordan Adams, Irina Overeem, and Paola Passalacqua
Earth Surf. Dynam., 8, 809–824, https://doi.org/10.5194/esurf-8-809-2020, https://doi.org/10.5194/esurf-8-809-2020, 2020
Short summary
Short summary
We propose a machine learning approach for the classification and analysis of large delta systems. The approach uses remotely sensed data, channel network extraction, and the analysis of 10 metrics to identify clusters of islands with similar characteristics. The 12 clusters are grouped in six main classes related to morphological processes acting on the system. The approach allows us to identify spatial patterns in large river deltas to inform modeling and the collection of field observations.
Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020, https://doi.org/10.5194/gmd-13-3863-2020, 2020
Short summary
Short summary
Landslides shape the Earth’s surface and are a dominant source of terrestrial sediment. Rivers, then, act as conveyor belts evacuating landslide-produced sediment. Understanding the interaction among rivers and landslides is important to predict the Earth’s surface response to past and future environmental changes and for mitigating natural hazards. We develop HyLands, a new numerical model that provides a toolbox to explore how landslides and rivers interact over several timescales.
Cited articles
Anderson, L. S., Roe, G. H., and Anderson, R. S.: The effects of interannual climate variability on the moraine record, Geology, 42, 55–58, https://doi.org/10.1130/G34791.1, 2014. a
Barnes, R., Lehman, C., and Mulla, D.: Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation models, Comput. Geosci., 62, 117–127, https://doi.org/10.1016/j.cageo.2013.04.024, 2014. a
Benson, L., Madole, R., Kubik, P., and McDonald, R.: Surface-exposure ages of Front Range moraines that may have formed during the Younger Dryas, 8.2calka, and Little Ice Age events, Quaternary Sci. Rev., 26, 1638–1649, https://doi.org/10.1016/j.quascirev.2007.02.015, 2007. a
Bickel, V. T., Manconi, A., and Amann, F.: Quantitative assessment of digital image correlation methods to detect and monitor surface displacements of large slope instabilities, Remote Sens.-Basel, 10, 865, https://doi.org/10.3390/rs10060865, 2018. a, b
Bodin, X., Krysiecki, J.-M., Schoeneich, P., Le Roux, O., Lorier, L., Echelard, T., Peyron, M., and Walpersdorf, A.: The 2006 Collapse of the Bérard Rock Glacier (Southern French Alps): The 2006's Collapse of the Bérard Rock Glacier, Permafrost Periglac., 28, 209–223, https://doi.org/10.1002/ppp.1887, 2017. a
Bogaard, T. A. and Greco, R.: Landslide hydrology: from hydrology to pore pressure, WIREs Water, 3, 439–459, https://doi.org/10.1002/wat2.1126, 2016. a
Braithwaite, R. J. and Hughes, P. D.: Positive degree-day sums in the Alps: a direct link between glacier melt and international climate policy, J. Glaciol., 68, 901–911, https://doi.org/10.1017/jog.2021.140, 2022. a, b
Brown, R. D., Brasnett, B., and Robinson, D.: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation, Atmosphere-Ocean, 41, 1–14, https://doi.org/10.3137/ao.410101, 2003. a, b
Bürgmann, R., Rosen, P. A., and Fielding, E. J.: Synthetic Aperture Radar Interferometry to Measure Earth's Surface Topography and Its Deformation, Annu. Rev. Earth Pl. Sc., 28, 169–209, https://doi.org/10.1146/annurev.earth.28.1.169, 2000. a
Carson, M. A.: Angles of repose, angles of shearing resistance and angles of talus slopes, Earth Surf. Processes, 2, 363–380, https://doi.org/10.1002/esp.3290020408, 1977. a, b
Christian, J. E., Koutnik, M., and Roe, G.: Committed retreat: controls on glacier disequilibrium in a warming climate, J. Glaciol., 64, 675–688, https://doi.org/10.1017/jog.2018.57, 2018. a, b
Cossart, E., Braucher, R., Fort, M., Bourlès, D., and Carcaillet, J.: Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): Evidence from field data and 10Be cosmic ray exposure ages, Geomorphology, 95, 3–26, https://doi.org/10.1016/j.geomorph.2006.12.022, 2008. a, b
Cruden, D. and Varnes, D.: Landslide Types and Processes, U.S. National Academy of Sciences, Special Report, National Research Council, Transportation Research Board, 247, 36–57, https://www.researchgate.net/profile/David-Cruden/publication/295704933_TEXT_of_1993_DRAFT/links/56ccd62f08aeb52500c09e29/TEXT-of-1993-DRAFT.pdf (last access: 12 September 2023) 1996. a
Dai, C., Higman, B., Lynett, P. J., Jacquemart, M., Howat, I. M., Liljedahl, A. K., Dufresne, A., Freymueller, J. T., Geertsema, M., Ward Jones, M., and Haeussler, P. J.: Detection and Assessment of a Large and Potentially Tsunamigenic Periglacial Landslide in Barry Arm, Alaska, Geophys. Res. Lett., 47, e2020GL089800, https://doi.org/10.1029/2020GL089800, 2020. a, b
Deline, P., Gruber, S., Amann, F., Bodin, X., Delaloye, R., Failletaz, J., Fischer, L., Geertsema, M., Giardino, M., Hasler, A., Kirkbride, M., Krautblatter, M., Magnin, F., McColl, S., Ravanel, L., Schoeneich, P., and Weber, S.: Ice loss from glaciers and permafrost and related slope instability in high-mountain regions, in: Snow and Ice-Related Hazards, Risks, and Disasters, Elsevier, 501–540, https://doi.org/10.1016/B978-0-12-817129-5.00015-9, 2021. a, b, c, d, e
Dematteis, N., Giordan, D., Troilo, F., Wrzesniak, A., and Godone, D.: Ten-Year Monitoring of the Grandes Jorasses Glaciers Kinematics. Limits, Potentialities, and Possible Applications of Different Monitoring Systems, Remote Sens.-Basel, 13, 3005, https://doi.org/10.3390/rs13153005, 2021. a
Duncan, J. M.: State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes, J. Geotech. Eng.-ASCE, 122, 577–596, https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577), 1996. a
Duncan, J. M.: Factors of Safety and Reliability in Geotechnical Engineering, J. Geotech. Geoenviron., 126, 307–316, https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307), 2000. a
Eberhardt, E., Preisig, G., and Gischig, V.: Progressive failure in deep-seated rockslides due to seasonal fluctuations in pore pressures and rock mass fatigue, in: Landslides and Engineered Slopes. Experience, Theory and Practice, CRC Press, 16 pp., ISBN 9781315375007, 2016. a
Eriksen, H. Ø., Rouyet, L., Lauknes, T. R., Berthling, I., Isaksen, K., Hindberg, H., Larsen, Y., and Corner, G. D.: Recent Acceleration of a Rock Glacier Complex, Ádjet, Norway, Documented by 62 Years of Remote Sensing Observations, Geophys. Res. Lett., 45, 8314–8323, https://doi.org/10.1029/2018GL077605, 2018. a, b
Fukozono, T.: Recent studies on time prediction of slope failure, Landslide News, 4, 9–12, https://cir.nii.ac.jp/crid/1570572699789681280 (last access: 11 September 2023), 1990. a
Geertsema, M., Schwab, J. W., Blais-Stevens, A., and Sakals, M. E.: Landslides impacting linear infrastructure in west central British Columbia, Nat. Hazards, 48, 59–72, https://doi.org/10.1007/s11069-008-9248-0, 2009. a
Geertsema, M., Menounos, B., Bullard, G., Carrivick, J. L., Clague, J. J., Dai, C., Donati, D., Ekstrom, G., Jackson, J. M., Lynett, P., Pichierri, M., Pon, A., Shugar, D. H., Stead, D., Del Bel Belluz, J., Friele, P., Giesbrecht, I., Heathfield, D., Millard, T., Nasonova, S., Schaeffer, A. J., Ward, B. C., Blaney, D., Blaney, E., Brillon, C., Bunn, C., Floyd, W., Higman, B., Hughes, K. E., McInnes, W., Mukherjee, K., and Sharp, M. A.: The 28 November 2020 Landslide, Tsunami, and Outburst Flood – A Hazard Cascade Associated With Rapid Deglaciation at Elliot Creek, British Columbia, Canada, Geophys. Res. Lett., 49, e2021GL096716, https://doi.org/10.1029/2021GL096716, 2022. a, b, c
Giordan, D., Dematteis, N., Allasia, P., and Motta, E.: Classification and kinematics of the Planpincieux Glacier break-offs using photographic time-lapse analysis, J. Glaciol., 66, 188–202, https://doi.org/10.1017/jog.2019.99, 2020. a
Goodrich, L. E.: The influence of snow cover on the ground thermal regime, Can. Geotech. J., 19, 421–432, https://doi.org/10.1139/t82-047, 1982. a
Handwerger, A. L., Roering, J. J., Schmidt, D. A., and Rempel, A. W.: Kinematics of earthflows in the Northern California Coast Ranges using satellite interferometry, Geomorphology, 246, 321–333, https://doi.org/10.1016/j.geomorph.2015.06.003, 2015. a
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh, M. G., and Gonzalez, M. R.: SoilGrids1km – Global Soil Information Based on Automated Mapping, PLoS ONE, 9, e105992, https://doi.org/10.1371/journal.pone.0105992, 2014. a
Huggel, C., Salzmann, N., Allen, S., Caplan-Auerbach, J., Fischer, L., Haeberli, W., Larsen, C., Schneider, D., and Wessels, R.: Recent and future warm extreme events and high-mountain slope stability, Philos. T. Roy. Soc. A, 368, 2435–2459, https://doi.org/10.1098/rsta.2010.0078, 2010. a
Huggel, C., Clague, J. J., and Korup, O.: Is climate change responsible for changing landslide activity in high mountains?: Climate change and landslides in high mountains, Earth Surf. Processes, 37, 77–91, https://doi.org/10.1002/esp.2223, 2012. a
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.: Accelerated global glacier mass loss in the early twenty-first century, Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021. a
Ito, Y. and Ikari, M. J.: Velocity- and slip-dependent weakening in simulated fault gouge: Implications for multimode fault slip: Velocity- and slip-dependent friction, Geophys. Res. Lett., 42, 9247–9254, https://doi.org/10.1002/2015GL065829, 2015. a
Itoh, K.: Analysis of the phase unwrapping algorithm, Appl. Optics, 21, 2470–2470, https://doi.org/10.1364/AO.21.002470, 1982. a
Iverson, R. M., George, D. L., Allstadt, K., Reid, M. E., Collins, B. D., Vallance, J. W., Schilling, S. P., Godt, J. W., Cannon, C. M., Magirl, C. S., Baum, R. L., Coe, J. A., Schulz, W. H., and Bower, J. B.: Landslide mobility and hazards: implications of the 2014 Oso disaster, Earth Planet. Sc. Lett., 412, 197–208, https://doi.org/10.1016/j.epsl.2014.12.020, 2015. a, b, c
Ives, J. D. and Fahey, B. D.: Permafrost Occurrence in the Front Range, Colorado Rocky Mountains, U.S.A., J. Glaciol., 10, 105–111, https://doi.org/10.3189/S0022143000013034, 1971. a, b
Jafarov, E. E., Marchenko, S. S., and Romanovsky, V. E.: Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset, The Cryosphere, 6, 613–624, https://doi.org/10.5194/tc-6-613-2012, 2012. a
Johnson, G., Chang, H., and Fountain, A.: Active rock glaciers of the contiguous United States: geographic information system inventory and spatial distribution patterns, Earth Syst. Sci. Data, 13, 3979–3994, https://doi.org/10.5194/essd-13-3979-2021, 2021. a, b
Kääb, A., Leinss, S., Gilbert, A., Bühler, Y., Gascoin, S., Evans, S. G., Bartelt, P., Berthier, E., Brun, F., Chao, W.-A., Farinotti, D., Gimbert, F., Guo, W., Huggel, C., Kargel, J. S., Leonard, G. J., Tian, L., Treichler, D., and Yao, T.: Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability, Nat. Geosci., 11, 114–120, https://doi.org/10.1038/s41561-017-0039-7, 2018. a
Kenner, R., Phillips, M., Beutel, J., Hiller, M., Limpach, P., Pointner, E., and Volken, M.: Factors Controlling Velocity Variations at Short-Term, Seasonal and Multiyear Time Scales, Ritigraben Rock Glacier, Western Swiss Alps, Permafrost Periglac., 28, 675–684, https://doi.org/10.1002/ppp.1953, 2017. a
Kersten, M. S.: Thermal properties of soils, vol. 52, University of Minnesota – Institute of Technology, https://conservancy.umn.edu/bitstream/handle/11299/124271/eng_ex_bulletin_28.pdf?sequence=1 (last access: 10 September 2023), 1949. a
Kos, A., Amann, F., Strozzi, T., Delaloye, R., Ruette, J., and Springman, S.: Contemporary glacier retreat triggers a rapid landslide response, Great Aletsch Glacier, Switzerland, Geophys. Res. Lett., 43, 2016GL071708, https://doi.org/10.1002/2016GL071708, 2016. a
Labuz, J. F. and Zang, A.: Mohr–Coulomb Failure Criterion, Rock Mech. Rock Eng., 45, 975–979, https://doi.org/10.1007/s00603-012-0281-7, 2012. a
Lacroix, P., Belart, J. M. C., Berthier, E., Sæmundsson, Þ., and Jónsdóttir, K.: Mechanisms of Landslide Destabilization Induced by Glacier-Retreat on Tungnakvíslarjökull Area, Iceland, Geophys. Res. Lett., 49, e2022GL098302, https://doi.org/10.1029/2022GL098302, 2022. a
Lipovsky, P. S., Evans, S. G., Clague, J. J., Hopkinson, C., Couture, R., Bobrowsky, P., Ekström, G., Demuth, M. N., Delaney, K. B., Roberts, N. J., Clarke, G., and Schaeffer, A.: The July 2007 rock and ice avalanches at Mount Steele, St. Elias Mountains, Yukon, Canada, Landslides, 5, 445–455, https://doi.org/10.1007/s10346-008-0133-4, 2008. a
Marcer, M., Serrano, C., Brenning, A., Bodin, X., Goetz, J., and Schoeneich, P.: Evaluating the destabilization susceptibility of active rock glaciers in the French Alps, The Cryosphere, 13, 141–155, https://doi.org/10.5194/tc-13-141-2019, 2019. a
Marzeion, B., Cogley, J. G., Richter, K., and Parkes, D.: Attribution of global glacier mass loss to anthropogenic and natural causes, Science, 345, 919–921, https://doi.org/10.1126/science.1254702, 2014. a
Milliner, C. and Donnellan, A.: Using Daily Observations from Planet Labs Satellite Imagery to Separate the Surface Deformation between the 4 July Mw 6.4 Foreshock and 5 July Mw 7.1 Mainshock during the 2019 Ridgecrest Earthquake Sequence, Seismol. Res. Lett., 91, 1986–1997, https://doi.org/10.1785/0220190271, 2020. a
Morriss, M. C., Lehmann, B., Campforts, B., Brencher, G., Rick, B., Anderson, L., Handwerger, A., Overeem, I., and Moore, J.: Alpine hillslope failure in the western US: Insights from Chaos Canyon landslide, Rocky Mountain National Park USA, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7854068, 2023.
Mutter, E. Z. and Phillips, M.: Thermal Evidence of Recent Talik Formation in Ritigraben Rock Glacier: Swiss Alps, in: Proceedings of the 10th International Conference on Permafrost, The Northern Publisher, Salekhard, Russia, 25–29 June 2012, 479–483, https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A20703 (last access: 14 September 2023), 2012. a
NPS: NPS Visitation Numbers, https://www.nps.gov/aboutus/visitation-numbers.htm (last access: 10 October 2023), 2022. a
NRCS: SNOwpack TELemetry Network (SNOTEL), https://data.nal.usda.gov/dataset/snowpack-telemetry-network-snotel (last access: 7 February 2023), 2023. a
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H., Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov, A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda, S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., Yamkhin, J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316, https://doi.org/10.1016/j.earscirev.2019.04.023, 2019. a, b, c
O'Connor, J. E. and Costa, J. E.: Geologic and hydrologic hazards in glacierized basins in North America resulting from 19th and 20th century global warming, Nat. Hazards, 8, 121–140, https://doi.org/10.1007/BF00605437, 1993. a
Overeem, I., Jafarov, E., Wang, K., Schaefer, K., Stewart, S., Clow, G., Piper, M., and Elshorbany, Y.: A Modeling Toolbox for Permafrost Landscapes, Eos, 99, https://doi.org/10.1029/2018EO105155, 2018. a
Pudasaini, S. P. and Krautblatter, M.: A two-phase mechanical model for rock-ice avalanches, J. Geophys. Res.-Earth, 119, 2272–2290, https://doi.org/10.1002/2014JF003183, 2014. a
Ravanel, L. and Deline, P.: Climate influence on rockfalls in high-Alpine steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the “Little Ice Age”, Holocene, 21, 357–365, https://doi.org/10.1177/0959683610374887, 2011. a, b, c
Rocscience: Slide 2 2D Limit Equilibrium Slope Stability for Soil and Rock Slopes, https://www.rocscience.com/software/slide2 (last access: 2 April 2023) 2021. a
Rosen, P. A., Gurrola, E., Sacco, G. F., and Zebker, H.: The InSAR scientific computing environment, in: EUSAR 2012, 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012, 730–733, 2012. a
Schaefer, K. and Jafarov, E.: A parameterization of respiration in frozen soils based on substrate availability, Biogeosciences, 13, 1991–2001, https://doi.org/10.5194/bg-13-1991-2016, 2016. a
Scuderi, M., Collettini, C., and Marone, C.: Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault, Earth Planet. Sc. Lett., 477, 84–96, https://doi.org/10.1016/j.epsl.2017.08.009, 2017. a
Shan, W., Guo, Y., Wang, F., Marui, H., and Strom, A. (Eds.): Landslides in Cold Regions in the Context of Climate Change, Environmental Science and Engineering, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-00867-7, 2014. a
Slater, A. G. and Lawrence, D. M.: Diagnosing Present and Future Permafrost from Climate Models, J. Climate, 26, 5608–5623, https://doi.org/10.1175/JCLI-D-12-00341.1, 2013. a
Stoffel, M. and Huggel, C.: Effects of climate change on mass movements in mountain environments, Progress in Physical Geography: Earth and Environment, 36, 421–439, https://doi.org/10.1177/0309133312441010, 2012. a
Sturm, M., Holmgren, J., and Liston, G.: A seasonal snow cover classification system for local to global applications, J. Climate, 8, 1261–1283, 1995. a
USGS: National Hydrography Dataset (ver. USGS National Hydrography Dataset Best Resolution (NHD), http://prd-tnm.s3-website-us-west-2.amazonaws.com/?prefix=StagedProducts/Hydrography/NHD/HU4/HighResolution/GDB/ (last access: 2 October 2022), 2019. a
Viesca, R. C. and Rice, J. R.: Nucleation of slip-weakening rupture instability in landslides by localized increase of pore pressure, J. Geophys. Res.-Sol. Ea., 117, B03104, https://doi.org/10.1029/2011JB008866, 2012. a
Voight, B.: A Relation to Describe Rate-Dependent Material Failure, Science, 243, 200–203, https://doi.org/10.1126/science.243.4888.200, 1989. a
Whalley, W. B. and Martin, H. E.: Rock glaciers: II models and mechanisms, Progress in Physical Geography: Earth and Environment, 16, 127–186, https://doi.org/10.1177/030913339201600201, 1992. a, b
Yunjun, Z., Fattahi, H., and Amelung, F.: Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction, Comput. Geosci., 133, 104331, https://doi.org/10.1016/j.cageo.2019.104331, 2019. a
Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime: An overview: Snow cover and ground thermal regime, Rev. Geophys., 43, RG4002, https://doi.org/10.1029/2004RG000157, 2005. a
Editor
Multiple techniques are used to monitor the collapse of an Alpine landslide in the United States. It is shown that the landslide was moving rapidly pre-failure. Given that the frequency of extreme events is likely to increase with future climate change, additional monitoring of Alpine regions is essential to limit hazards from future Alpine mass movements.
Multiple techniques are used to monitor the collapse of an Alpine landslide in the United...
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky...