Articles | Volume 11, issue 4
https://doi.org/10.5194/esurf-11-695-2023
https://doi.org/10.5194/esurf-11-695-2023
Research article
 | 
28 Jul 2023
Research article |  | 28 Jul 2023

Testing the sensitivity of the CAESAR-Lisflood landscape evolution model to grid cell size

Christopher J. Skinner and Thomas J. Coulthard

Related authors

Flash Flood!: a SeriousGeoGames activity combining science festivals, video games, and virtual reality with research data for communicating flood risk and geomorphology
Chris Skinner
Geosci. Commun., 3, 1–17, https://doi.org/10.5194/gc-3-1-2020,https://doi.org/10.5194/gc-3-1-2020, 2020
Short summary
Temperature effects on the spatial structure of heavy rainfall modify catchment hydro-morphological response
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020,https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary
Taking a Breath of the Wild: are geoscientists more effective than non-geoscientists in determining whether video game world landscapes are realistic?
Rolf Hut, Casper Albers, Sam Illingworth, and Chris Skinner
Geosci. Commun., 2, 117–124, https://doi.org/10.5194/gc-2-117-2019,https://doi.org/10.5194/gc-2-117-2019, 2019
Short summary
Global sensitivity analysis of parameter uncertainty in landscape evolution models
Christopher J. Skinner, Tom J. Coulthard, Wolfgang Schwanghart, Marco J. Van De Wiel, and Greg Hancock
Geosci. Model Dev., 11, 4873–4888, https://doi.org/10.5194/gmd-11-4873-2018,https://doi.org/10.5194/gmd-11-4873-2018, 2018
Short summary
The sensitivity of landscape evolution models to spatial and temporal rainfall resolution
Tom J. Coulthard and Christopher J. Skinner
Earth Surf. Dynam., 4, 757–771, https://doi.org/10.5194/esurf-4-757-2016,https://doi.org/10.5194/esurf-4-757-2016, 2016
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Implications for the resilience of modern coastal systems derived from mesoscale barrier dynamics at Fire Island, New York
Daniel J. Ciarletta, Jennifer L. Miselis, Julie C. Bernier, and Arnell S. Forde
Earth Surf. Dynam., 12, 449–475, https://doi.org/10.5194/esurf-12-449-2024,https://doi.org/10.5194/esurf-12-449-2024, 2024
Short summary
Quantifying the migration rate of drainage divides from high-resolution topographic data
Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi
Earth Surf. Dynam., 12, 433–448, https://doi.org/10.5194/esurf-12-433-2024,https://doi.org/10.5194/esurf-12-433-2024, 2024
Short summary
Long-term monitoring (1953–2019) of geomorphologically active sections of Little Ice Age lateral moraines in the context of changing meteorological conditions
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024,https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Coevolving edge rounding and shape of glacial erratics: the case of Shap granite, UK
Paul A. Carling
Earth Surf. Dynam., 12, 381–397, https://doi.org/10.5194/esurf-12-381-2024,https://doi.org/10.5194/esurf-12-381-2024, 2024
Short summary
Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics
Gary Parker, Chenge An, Michael P. Lamb, Marcelo H. Garcia, Elizabeth H. Dingle, and Jeremy G. Venditti
Earth Surf. Dynam., 12, 367–380, https://doi.org/10.5194/esurf-12-367-2024,https://doi.org/10.5194/esurf-12-367-2024, 2024
Short summary

Cited articles

Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010. 
Beven, K. and Kirkby, M.: A physically based, variable contributing area model of basin hydrology/Un modèèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrolog. Sci. J., 24, 37–41 https://doi.org/10.1080/02626667909491834, 1979. 
Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design for sensitivity analysis of large models, Environ. Model. Softw., 22, 1509–1518, https://doi.org/10.1016/j.envsoft.2006.10.004, 2007. 
Claessens, L., Heuvelink, G. B. M., Schoorl, J. M., and Veldkamp, A.: DEM resolution effects on shallow landslide hazard and soil redistribution modelling, Earth Surf. Proc. Land., 30, 461–477, https://doi.org/10.1002/esp.1155, 2005. 
Coulthard, T. J.: CAESAR-Lisflood 1.9b SOURCE.zip, CAESAR-Lisflood Files, SourceForge, https://sourceforge.net/projects/caesar-lisflood/files/CAESAR-lisflood 1.9b SOURCE.zip/download (last access: 24 July 2023), 2016. 
Download
Short summary
Landscape evolution models allow us to simulate the way the Earth's surface is shaped and help us to understand relevant processes, in turn helping us to manage landscapes better. The models typically represent the land surface using a grid of square cells of equal size, averaging heights in those squares. This study shows that the size chosen by the modeller for these grid cells is important, with larger sizes making sediment output events larger but less frequent.