Articles | Volume 12, issue 1
https://doi.org/10.5194/esurf-12-105-2024
https://doi.org/10.5194/esurf-12-105-2024
Research article
 | 
10 Jan 2024
Research article |  | 10 Jan 2024

Stochastic properties of coastal flooding events – Part 2: Probabilistic analysis

Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent

Related authors

Stochastic properties of coastal flooding events – Part 1: convolutional-neural-network-based semantic segmentation for water detection
Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent
Earth Surf. Dynam., 12, 1–10, https://doi.org/10.5194/esurf-12-1-2024,https://doi.org/10.5194/esurf-12-1-2024, 2024
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Field monitoring of pore water pressure in fully and partly saturated debris flows at Ohya landslide scar, Japan
Shunsuke Oya, Fumitoshi Imaizumi, and Shoki Takayama
Earth Surf. Dynam., 12, 67–86, https://doi.org/10.5194/esurf-12-67-2024,https://doi.org/10.5194/esurf-12-67-2024, 2024
Short summary
Analysis of autogenic bifurcation processes resulting in river avulsion
Gabriele Barile, Marco Redolfi, and Marco Tubino
Earth Surf. Dynam., 12, 87–103, https://doi.org/10.5194/esurf-12-87-2024,https://doi.org/10.5194/esurf-12-87-2024, 2024
Short summary
Bedload transport fluctuations, flow conditions, and disequilibrium ratio at the Swiss Erlenbach stream: results from 27 years of high-resolution temporal measurements
Dieter Rickenmann
Earth Surf. Dynam., 12, 11–34, https://doi.org/10.5194/esurf-12-11-2024,https://doi.org/10.5194/esurf-12-11-2024, 2024
Short summary
Stochastic properties of coastal flooding events – Part 1: convolutional-neural-network-based semantic segmentation for water detection
Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent
Earth Surf. Dynam., 12, 1–10, https://doi.org/10.5194/esurf-12-1-2024,https://doi.org/10.5194/esurf-12-1-2024, 2024
Short summary
Coexistence of two dune scales in a lowland river
Judith Y. Zomer, Bart Vermeulen, and Antonius J. F. Hoitink
Earth Surf. Dynam., 11, 1283–1298, https://doi.org/10.5194/esurf-11-1283-2023,https://doi.org/10.5194/esurf-11-1283-2023, 2023
Short summary

Cited articles

Atkinson, A. L., Power, H. E., Moura, T., Hammond, T., Callaghan, D. P., and Baldock, T. E.: Assessment of runup predictions by empirical models on non-truncated beaches on the south-east Australian coast, Coast. Eng., 119, 15–31, https://doi.org/10.1016/j.coastaleng.2016.10.001, 2017. a, b
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019. a
Cramér, H.: On the composition of elementary errors, Scandinav. Actuar. J., 1928, 13–74, https://doi.org/10.1080/03461238.1928.10416862, 1928. a
Durán Vinent, O., Schaffer, B. E., and Rodriguez-Iturbe, I.: Stochastic dynamics of barrier island elevation, P. Natl. Acad. Sci. USA, 118, e2013349118, https://doi.org/10.1073/pnas.2013349118, 2021. a
García‐Medina, G., Özkan‐Haller, H. T., Holman, R. A., and Ruggiero, P.: Large runup controls on a gently sloping dissipative beach, J. Geophys. Res.-Oceans, 122, 5998–6010, https://doi.org/10.1002/2017jc012862, 2017. a, b
Short summary
We provide a detailed characterization of the frequency, intensity and duration of flooding events at a site along the Texas coast. Our analysis demonstrates the suitability of relatively simple wave run-up models to estimate the frequency and intensity of coastal flooding. Our results validate and expand a probabilistic model of coastal flooding driven by wave run-up that can then be used in coastal risk management in response to sea level rise.