Articles | Volume 12, issue 6
https://doi.org/10.5194/esurf-12-1391-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-1391-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Landscape response to tectonic deformation and cyclic climate change since ca. 800 ka in the southern central Andes
Elizabeth N. Orr
CORRESPONDING AUTHOR
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Department of Geography, Durham University, Durham, DH1 3LE, United Kingdom
Taylor F. Schildgen
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute for Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Stefanie Tofelde
Institute of Geological Sciences, Freie Universität Berlin, 12249 Berlin, Germany
Hella Wittmann
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Ricardo N. Alonso
Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, 4400 Argentina
Related authors
No articles found.
Charlotte Läuchli, Nestor Gaviria-Lugo, Anne Bernhardt, Hella Wittmann, Patrick J. Frings, Mahyar Mohtadi, Andreas Lückge, and Dirk Sachse
EGUsphere, https://doi.org/10.5194/egusphere-2025-3153, https://doi.org/10.5194/egusphere-2025-3153, 2025
Short summary
Short summary
Large-scale atmospheric pathways connecting climate across latitudes are poorly documented in the past. Here, we report a high resolution spatial and temporal reconstruction of the evolution of the Southern Hemisphere Westerlies since the Last Glacial Maximum, which, compared with the past evolution of the Intertropical Convergence Zone, allows identifying the dominant atmospheric pathways acting on past climate in South America.
Fergus McNab, Taylor F. Schildgen, Jens Martin Turowski, and Andrew D. Wickert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2468, https://doi.org/10.5194/egusphere-2025-2468, 2025
Short summary
Short summary
Alluvial rivers form networks, but many concepts we use to analyse their long-term evolution derive from models that treat them as single streams. We develop a model including tributary interactions and show that, while patterns of sediment output can be similar for network and single-segment models, complex signal propagation affects aggradation and incision within networks. We argue that understanding a specific catchment's evolution requires a model with its specific network structure.
Jens M. Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 13, 97–117, https://doi.org/10.5194/esurf-13-97-2025, https://doi.org/10.5194/esurf-13-97-2025, 2025
Short summary
Short summary
Channel belts comprise the area affected by a river due to lateral migration and floods. As a landform, they affect water resources and flood hazard, and they often host unique ecological communities. We develop a model describing the evolution of channel-belt area over time. The model connects the behaviour of the river to the evolution of the channel belt over a timescale of centuries. A comparison to selected data from experiments and real river systems verifies the random walk approach.
Lingxiao Gong, Peter van der Beek, Taylor F. Schildgen, Edward R. Sobel, Simone Racano, Apolline Mariotti, and Fergus McNab
Earth Surf. Dynam., 12, 973–994, https://doi.org/10.5194/esurf-12-973-2024, https://doi.org/10.5194/esurf-12-973-2024, 2024
Short summary
Short summary
We choose the large Saryjaz river from South Tian Shan to analyse topographic and fluvial metrics. By quantifying the spatial distribution of major metrics and comparing with modelling patterns, we suggest that the observed transience was triggered by a big capture event during the Plio-Pleistocene and potentially affected by both tectonic and climate factors. This conclusion underlines the importance of local contingent factors in driving drainage development.
Sophia Dosch, Niels Hovius, Marisa Repasch, Joel Scheingross, Jens M. Turowski, Stefanie Tofelde, Oliver Rach, and Dirk Sachse
Earth Surf. Dynam., 12, 907–927, https://doi.org/10.5194/esurf-12-907-2024, https://doi.org/10.5194/esurf-12-907-2024, 2024
Short summary
Short summary
The transport of plant debris in rivers is an important part of the global carbon cycle and influences atmospheric carbon levels through time. We sampled plant debris at the bed of a lowland river and determined the sources as it is transported hundreds of kilometers. Plant debris can persist at the riverbed, but mechanical breakdown reduces its amount, and it is only a small fraction compared to the suspended load. This plant debris and transport patterns need further investigation globally.
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024, https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary
Short summary
Fluvial valleys are ubiquitous landforms, and understanding their formation and evolution affects a wide range of disciplines from archaeology and geology to fish biology. Here, we develop a model to predict the width of fluvial valleys for a wide range of geographic conditions. In the model, fluvial valley width is controlled by the two competing factors of lateral channel mobility and uplift. The model complies with available data and yields a broad range of quantitative predictions.
Nestor Gaviria-Lugo, Charlotte Läuchli, Hella Wittmann, Anne Bernhardt, Patrick Frings, Mahyar Mohtadi, Oliver Rach, and Dirk Sachse
Biogeosciences, 20, 4433–4453, https://doi.org/10.5194/bg-20-4433-2023, https://doi.org/10.5194/bg-20-4433-2023, 2023
Short summary
Short summary
We analyzed how leaf wax hydrogen isotopes in continental and marine sediments respond to climate along one of the strongest aridity gradients in the world, from hyperarid to humid, along Chile. We found that under extreme aridity, the relationship between hydrogen isotopes in waxes and climate is non-linear, suggesting that we should be careful when reconstructing past hydrological changes using leaf wax hydrogen isotopes so as to avoid overestimating how much the climate has changed.
Emma Lodes, Dirk Scherler, Renee van Dongen, and Hella Wittmann
Earth Surf. Dynam., 11, 305–324, https://doi.org/10.5194/esurf-11-305-2023, https://doi.org/10.5194/esurf-11-305-2023, 2023
Short summary
Short summary
We explored the ways that boulders and bedrock affect the shapes of hills and valleys by testing how quickly they erode compared to soil. We found that bedrock and boulders mostly erode more slowly than soil and predict that fracture patterns affect where they exist. We also found that streams generally follow fault orientations. Together, our data imply that fractures influence landscapes by weakening bedrock, causing it to erode faster and to eventually form a valley where a stream may flow.
Peter van der Beek and Taylor F. Schildgen
Geochronology, 5, 35–49, https://doi.org/10.5194/gchron-5-35-2023, https://doi.org/10.5194/gchron-5-35-2023, 2023
Short summary
Short summary
Thermochronometric data can provide unique insights into the patterns of rock exhumation and the driving mechanisms of landscape evolution. Several well-established thermal models allow for a detailed exploration of how cooling rates evolved in a limited area or along a transect, but more regional analyses have been challenging. We present age2exhume, a thermal model that can be used to rapidly provide a synoptic overview of exhumation rates from large regional thermochronologic datasets.
Aaron Bufe, Kristen L. Cook, Albert Galy, Hella Wittmann, and Niels Hovius
Earth Surf. Dynam., 10, 513–530, https://doi.org/10.5194/esurf-10-513-2022, https://doi.org/10.5194/esurf-10-513-2022, 2022
Short summary
Short summary
Erosion modulates Earth's carbon cycle by exposing a variety of lithologies to chemical weathering. We measured water chemistry in streams on the eastern Tibetan Plateau that drain either metasedimentary or granitoid rocks. With increasing erosion, weathering shifts from being a CO2 sink to being a CO2 source for both lithologies. However, metasedimentary rocks typically weather 2–10 times faster than granitoids, with implications for the role of lithology in modulating the carbon cycle.
Cited articles
Allen, P. A.: Time scales of tectonic landscapes and their sediment routing systems, Geological Society, London, Special Publications, 296, 7–28, https://doi.org/10.1144/SP296.2, 2008.
Alonso, R. N.: Estratigrafía del Cenozoico de la cuenca de Pastos Grandes (Puna Salteña) con énfasis en la Formación, Revista de la Asociación Geológica Argentina, 47, 189–199, 1992.
Alonso, R. N., Bookhagen, B., Carrapa, B., Coutand, I., Haschke, M., Hilley, G. E., Schoenbohm, L., Sobel, E. R., Strecker, M. R., Trauth, M. H., and Villanueva, A.: Tectonics, climate, and landscape evolution of the southern central Andes: the Argentine Puna Plateau and adjacent regions between 22 and 30° S, The Andes: Active Subduction Orogeny, 265–283, https://doi.org/10.1007/978-3-540-48684-8_12, 2006.
Armitage, J. J., Dunkley Jones, T., Duller, R. A., Whittaker, A. C., and Allen, P. A.: Temporal buffering of climate-driven sediment flux cycles by transient catchment response, Earth Planet. Sc. Lett., 369–370, 200–210, https://doi.org/10.1016/j.epsl.2013.03.020, 2013.
Baker, P. A. and Fritz, S. C.: Nature and causes of Quaternary climate variation of tropical South America, Quaternary Sci. Rev., 124, 31–47, https://doi.org/10.1016/j.quascirev.2015.06.011, 2015.
Baker, P. A., Rigsby, C. A., Seltzer, G. O., Fritz, S. C., Lowenstein, T. K., Bacher, N. P., and Veliz, C.: Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano, Nature, 409, 698–701, https://doi.org/10.1038/35055524, 2001.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last 10 million years, Quaternary Sci. Rev., 10, 297–317, https://doi.org/10.1016/0277-3791(91)90033-Q, 1991.
Berger, A., Li, X. S., and Loutre, M. F.: Modelling northern hemisphere ice volume over the last 3 Ma, Quaternary Sci. Rev., 18, 1–11, https://doi.org/10.1016/S0277-3791(98)00033-X, 1999.
Bernard, T., Sinclair, H. D., Gailleton, B., Mudd, S. M., and Ford, M.: Lithological control on the post-orogenic topography and erosion history of the Pyrenees, Earth Planet. Sc. Lett., 518, 53–66, https://doi.org/10.1016/j.epsl.2019.04.034, 2019.
Blard, P.-H., Braucher, R., Lavé, J., and Bourlès, D.: Cosmogenic 10Be production rate calibrated against 3He in the high Tropical Andes (3800–4900 m, 20–22° S), Earth Planet. Sc. Lett., 382, 140–149, https://doi.org/10.1016/j.epsl.2013.09.010, 2013.
Bobst, A. L., Lowenstein, T. K., Jordan, T. E., Godfrey, L. V., Ku, T. L., and Luo, S.: A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile, Palaeogeogr. Palaeocl., 173, 21–42, https://doi.org/10.1016/S0031-0182(01)00308-X, 2001.
Bonorino, G. G. and Abascal, L.: Drainage and base-level adjustments during evolution of a late Pleistocene piggyback basin, Eastern Cordillera, Central Andes of northwestern Argentina, GSA Bulletin, 124, 1858–1870, https://doi.org/10.1130/B30395.1, 2012.
Bookhagen, B. and Strecker, M. R.: Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes, Geophys. Res. Lett., 35, L06403, https://doi.org/10.1029/2007GL032011, 2008.
Brocard, G., Willenbring, J., Suski, B., Audra, P., Authemayou, C., Cosenza-Muralles, B., Morán-Ical, S., Demory, F., Rochette, P., Vennemann, T., and Holliger, K.: Rate and processes of river network rearrangement during incipient faulting: The case of the Cahabón River, Guatemala, Am. J. Sci., 312, 449–507, https://doi.org/10.2475/05.2012.01, 2012.
Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to Northern Hemisphere cooling, Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546, 2006.
Brooke, S. A., Whittaker, A. C., Armitage, J. J., D'Arcy, M., and Watkins, S. E.: Quantifying sediment transport dynamics on alluvial fans from spatial and temporal changes in grain size, Death Valley, California, J. Geophys. Res.-Earth, 123, 2039–2067, https://doi.org/10.1029/2018JF004622, 2018.
Bufe, A., Burbank, D. W., Liu, L., Bookhagen, B., Qin, J., Chen, J., Li, T., Thompson Jobe, J. A., and Yang, H.: Variations of lateral bedrock erosion rates control planation of uplifting folds in the foreland of the Tian Shan, NW China, J. Geophys. Res.-Earth, 122, 2431–2467, https://doi.org/10.1002/2016JF004099, 2017.
Buter, A., Heckmann, T., Filisetti, L., Savi, S., Mao, L., Gems, B., and Comiti, F.: Effects of catchment characteristics and hydro-meteorological scenarios on sediment connectivity in glacierised catchments, Geomorphology, 402, 108128, https://doi.org/10.1016/j.geomorph.2022.108128, 2022.
Castelltort, S. and Van Den Driessche, J.: How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record?, Sediment. Geol., 157, 3–13, https://doi.org/10.1016/S0037-0738(03)00066-6, 2003.
Castino, F., Bookhagen, B., and Strecker, M. R.: Rainfall variability and trends of the past six decades (1950–2014) in the subtropical NW Argentine Andes, Clim. Dynam., 48, 1049–1067, https://doi.org/10.1007/s00382-016-3127-2, 2017.
Cesta, J. M. and Ward, D. J.: Timing and nature of alluvial fan development along the Chajnantor Plateau, northern Chile, Geomorphology, 273, 412–427, https://doi.org/10.1016/j.geomorph.2016.09.003, 2016.
Clarke, L., Quine, T. A., and Nicholas, A.: An experimental investigation of autogenic behaviour during alluvial fan evolution, Geomorphology, 115, 278–285, https://doi.org/10.1016/j.geomorph.2009.06.033, 2010.
Counts, R. C., Murari, M. K., Owen, L. A., Mahan, S. A., and Greenan, M.: Late Quaternary chronostratigraphic framework of terraces and alluvium along the lower Ohio River, southwestern Indiana and western Kentucky, USA, Quaternary Sci. Rev., 110, 72–91, https://doi.org/10.1016/j.quascirev.2014.11.011, 2015.
Crivellari, S., Chiessi, C. M., Kuhnert, H., Häggi, C., da Costa Portilho-Ramos, R., Zeng, J. Y., Zhang, Y., Schefuß, E., Mollenhauer, G., Hefter, J., and Alexandre, F.: Increased Amazon freshwater discharge during late Heinrich Stadial 1, Quaternary Sci. Rev., 181, 144–155, https://doi.org/10.1016/j.quascirev.2017.12.005, 2018.
D'Arcy, M., Schildgen, T. F., Tofelde, S., Strecker, M. R., Wittmann, H., Düsing, W., Weissmann, P., and Roda-Boluda, D. C.: Catchment-alluvial fan systems record > 200 ka of millennial-scale climate changes in the subtropical Andes, EGU General Assembly Conference Abstracts, Vienna, 8–13 April 2018, https://ui.adsabs.harvard.edu/abs/2018EGUGA..20.4710D/abstract (last access: 4 December 2024), 2018.
D'Arcy, M. K., Schildgen, T. F., Strecker, M. R., Wittmann, H., Duesing, W., Mey, J., Tofelde, S., Weissmann, P., and Alonso, R. N.: Timing of past glaciation at the Sierra de Aconquija, northwestern Argentina, and throughout the Central Andes, Quaternary Sci. Rev., 204, 37–57, https://doi.org/10.1016/j.quascirev.2018.11.022, 2019a.
D'Arcy, M. K., Schildgen, T. F., Turowski, J. M., and Dinezio, P.: Inferring the timing of abandonment of aggraded alluvial surfaces dated with cosmogenic nuclides. Earth Surface Dynamics, 7, 755–771, https://doi.org/10.5194/esurf-7-755-2019, 2019b (code available at: https://doi.org/10.5194/esurf-7-755-2019-supplement).
DeCelles, P. G., Carrapa, B., Horton, B. K., and Gehrels, G. E.: Cenozoic foreland basin system in the central Andes of northwestern Argentina: Implications for Andean geodynamics and modes of deformation, Tectonics, 30, TC6013, https://doi.org/10.1029/2011TC002948, 2011.
Del Vecchio, J., DiBiase, R. A., Corbett, L. B., Bierman, P. R., Caffee, M. W., and Ivory, S. J.: Increased erosion rates following the onset of Pleistocene periglaciation at Bear Meadows, Pennsylvania, USA, Geophys. Res. Lett., 49, e2021GL096739, https://doi.org/10.1029/2021GL096739, 2022.
Dey, S., Thiede, R. C., Schildgen, T. F., Wittmann, H., Bookhagen, B., Scherler, D., Jain, V., and Strecker, M. R.: Climate-driven sediment aggradation and incision since the late Pleistocene in the NW Himalaya, India, Earth Planet. Sc. Lett., 449, 321–331, https://doi.org/10.1016/j.epsl.2016.05.050, 2016.
Dortch, J. M., Tomkins, M. D., Saha, S., Murari, M. K., Schoenbohm, L. M., and Curl, D.: A tool for the ages: The Probabilistic Cosmogenic Age Analysis Tool (P-CAAT), Quat. Geochronol., 71, 101323, https://doi.org/10.1016/j.quageo.2022.101323, 2022.
Dühnforth, M., Densmore, A. L., Ivy-Ochs, S., Allen, P. A., and Kubik, P. W.: Timing and patterns of debris flow deposition on Shepherd and Symmes creek fans, Owens Valley, California, deduced from cosmogenic 10Be, J. Geophys. Res.-Earth, 112, F03S15, https://doi.org/10.1029/2006JF000562, 2007.
Dühnforth, M., Densmore, A. L., Ivy-Ochs, S., Allen, P., and Kubik, P. W.: Early to Late Pleistocene history of debris-flow fan evolution in western Death Valley (California) using cosmogenic 10Be and 26Al, Geomorphology, 281, 53–65, https://doi.org/10.1016/j.geomorph.2016.12.020, 2017.
Dunai, T. J., Loìpez, G. A. G., and Juez-Larré, J.: Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms, Geology, 33, 321–324, https://doi.org/10.1130/G21184.1, 2005.
Fisher, G. B., Luna, L. V., Amidon, W. H., Burbank, D. W., de Boer, B., Stap, L. B., Bookhagen, B., Godard, V., Oskin, M. E., Alonso, R. N., and Tuenter, E.: Milankovitch-paced erosion in the southern Central Andes, Nat. Commun., 14, 424, https://doi.org/10.1038/s41467-023-36022-0, 2023.
Fritz, S. C., Baker, P. A., Lowenstein, T. K., Seltzer, G. O., Rigsby, C. A., Dwyer, G. S., Tapia, P. M., Arnold, K. K., Ku, T. L., and Luo, S.: Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America, Quaternary Res., 61, 95–104, https://doi.org/10.1016/j.yqres.2003.08.007, 2004.
Fritz, S. C., Baker, P. A., Seltzer, G. O., Ballantyne, A., Tapia, P., Cheng, H., and Edwards, R. L.: Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project, Quaternary Res., 68, 410–420, https://doi.org/10.1016/j.yqres.2007.07.008, 2007.
Fritz, S. C., Baker, P. A., Ekdahl, E., Seltzer, G. O., and Stevens, L. R.: Millennial-scale climate variability during the Last Glacial period in the tropical Andes, Quaternary Sci. Rev., 29, 1017–1024, https://doi.org/10.1016/j.quascirev.2010.01.001, 2010.
Fryirs, K. A., Brierley, G. J., Preston, N. J., and Kasai, M.: Buffers, barriers and blankets: The (dis) connectivity of catchment-scale sediment cascades, Catena, 70, 49–67, https://doi.org/10.1016/j.catena.2006.07.007, 2007.
Ganev, P. N., Dolan, J. F., Frankel, K. L., and Finkel, R. C.: Rates of extension along the Fish Lake Valley fault and transtensional deformation in the Eastern California shear zone–Walker Lane belt, Lithosphere, 2, 33–49, https://doi.org/10.1130/L51.1, 2010.
García, V. H., Hongn, F., and Cristallini, E. O.: Late Miocene to recent morphotectonic evolution and potential seismic hazard of the northern Lerma valley: clues from Lomas de Medeiros, Cordillera Oriental, NW Argentina, Tectonophysics, 608, 1238–1253, https://doi.org/10.1016/j.tecto.2013.06.021, 2013.
Godard, V., Tucker, G. E., Burch Fisher, G., Burbank, D. W., and Bookhagen, B.: Frequency-dependent landscape response to climatic forcing, Geophys. Res. Lett., 40, 859–863, https://doi.org/10.1002/grl.50253, 2013.
Godfrey, L. V., Jordan, T. E., Lowenstein, T. K., and Alonso, R. L.: Stable isotope constraints on the transport of water to the Andes between 22 and 26 S during the last glacial cycle, Palaeogeogr. Palaeocl., 194, 299–317, https://doi.org/10.1016/S0031-0182(03)00283-9, 2003.
Gosling, W. D., Bush, M. B., Hanselman, J. A., and Chepstow-Lusty, A.: Glacial-interglacial changes in moisture balance and the impact on vegetation in the southern hemisphere tropical Andes (Bolivia/Peru), Palaeogeogr. Palaeocl., 259, 35–50, https://doi.org/10.1016/j.palaeo.2007.02.050, 2008.
Gray, H. J., Owen, L. A., Dietsch, C., Beck, R. A., Caffee, M. A., Finkel, R. C., and Mahan, S. A.: Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas fault zone, Quaternary Sci. Rev., 105, 66–85, https://doi.org/10.1016/j.quascirev.2014.09.009, 2014.
Guarnieri, P. and Pirrotta, C.: The response of drainage basins to the late Quaternary tectonics in the Sicilian side of the Messina Strait (NE Sicily), Geomorphology, 95, 260–273, https://doi.org/10.1016/j.geomorph.2007.06.013, 2008.
Gulick, S. P., Jaeger, J. M., Mix, A. C., Asahi, H., Bahlburg, H., Belanger, C. L., Berbel, G. B., Childress, L., Cowan, E., Drab, L., and Forwick, M.: Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska, P. Natl. Acad. Sci. USA, 112, 15042–15047, https://doi.org/10.1073/pnas.1512549112, 2015.
Haeuselmann, P., Granger, D. E., Jeannin, P. Y., and Lauritzen, S. E.: Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland, Geology, 35, 143–146, https://doi.org/10.1130/G23094A, 2007.
Hain, M. P., Strecker, M. R., Bookhagen, B., Alonso, R. N., Pingel, H., and Schmitt, A. K.: Neogene to Quaternary broken foreland formation and sedimentation dynamics in the Andes of NW Argentina (25° S), Tectonics, 30, TC2006, https://doi.org/10.1029/2010TC002703, 2011.
Harvey, A. M.: The coupling status of alluvial fans and debris cones: a review and synthesis, Earth Surf. Proc. Land., 37, 64–76, https://doi.org/10.1002/esp.2213, 2012.
Harvey, A. M., Silva, P. G., Mather, A. E., Goy, J. L., Stokes, M., and Zazo, C.: The impact of Quaternary sea-level and climatic change on coastal alluvial fans in the Cabo de Gata ranges, southeast Spain, Geomorphology, 28, 1–22, https://doi.org/10.1016/S0169-555X(98)00100-7, 1999.
Haselton, K., Hilley, G., and Strecker, M. R.: Average Pleistocene climatic patterns in the southern central Andes: Controls on mountain glaciation and paleoclimate implications, J. Geol., 110, 211–226. 2002.
Hedrick, K., Owen, L. A., Rockwell, T. K., Meigs, A., Costa, C., Caffee, M. W., Masana, E., and Ahumada, E.: Timing and nature of alluvial fan and strath terrace formation in the Eastern Precordillera of Argentina, Quaternary Sci. Rev., 80, 143–168, https://doi.org/10.1016/j.quascirev.2013.05.004, 2013.
Hidy, A. J., Gosse, J. C., Pederson, J. L., Mattern, J. P., and Finkel, R. C.: A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: An example from Lees Ferry, Arizona, Geochem. Geophy. Geosy., 11, Q0AA10, https://doi.org/10.1029/2010GC003084, 2010.
Hilley, G. E. and Strecker, M. R.: Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada del Toro Basin, NW Argentina, Bull. Geol. Soc. Am., 117, 887–901, https://doi.org/10.1130/B25602.1, 2005.
Howard, A. D.: Equilibrium and time scales in geomorphology: Application to sand-bed alluvial streams, Earth Surf. Proc. Land., 7, 303–325, https://doi.org/10.1002/esp.3290070403, 1982.
Hughes, P. D.: Geomorphology and Quaternary stratigraphy: The roles of morpho-, litho-, and allostratigraphy, Geomorphology, 123, 189–199, https://doi.org/10.1016/j.geomorph.2010.07.025, 2010.
Imbrie, J. D. and McIntyre, A.: SST vs time for core RC24-16 (specmap.056), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.441754, 2006.
Kelly, M. A., Lowell, T. V., Applegate, P. J., Phillips, F. M., Schaefer, J. M., Smith, C. A., Kim, H., Leonard, K. C., and Hudson, A. M.: A locally calibrated, late glacial 10Be production rate from a low-latitude, high-altitude site in the Peruvian Andes, Quat. Geochronol., 26, 70–85, https://doi.org/10.1016/j.quageo.2013.10.007, 2015.
Kleinert, K. and Strecker, M. R.: Climate change in response to orographic barrier uplift: Paleosol and stable isotope evidence from the late Neogene Santa Maria basin, northwestern Argentina, Geol. Soc. Am. Bull., 113, 728–742, https://doi.org/10.1130/0016-7606(2001)113<0728:CCIRTO>2.0.CO;2, 2001.
Kober, F., Zeilinger, G., Ivy-Ochs, S., Dolati, A., Smit, J., and Kubik, P. W.: Climatic and tectonic control on fluvial and alluvial fan sequence formation in the Central Makran Range, SE-Iran, Global Planet. Change, 111, 133–149, https://doi.org/10.1016/j.gloplacha.2013.09.003, 2013.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes, Earth Planet. Sc. Lett., 386, 149–160, https://doi.org/10.1016/j.epsl.2013.10.052, 2014.
Lisiecki, L. E. and Raymo, M. E.: Diachronous benthic δ18O responses during late Pleistocene terminations, Paleoceanography, 24, PA3210, https://doi.org/10.1029/2009PA001732, 2009.
Luna, L. V., Bookhagen, B., Niedermann, S., Rugel, G., Scharf, A., and Merchel, S.: Glacial chronology and production rate cross-calibration of five cosmogenic nuclide and mineral systems from the southern Central Andean Plateau, Earth Planet. Sc. Lett., 500, 242–253, https://doi.org/10.1016/j.epsl.2018.07.034, 2018.
Ma, Y. and Stuart, F. M.: The use of in-situ cosmogenic 21Ne in studies on long-term landscape development, Acta Geochimica, 37, 310–322, https://doi.org/10.1007/s11631-017-0216-9, 2018.
Mackin, J.: Concept of the graded river, Geol. Soc. Am. Bull., 59, 463–512, 1948.
Malamud, B. D., Jordan, T. E., Alonso, R. A., Gallardo, E. F., Gonzalez, R. E., and Kelley, S. A.: Pleistocene Lake Lerma, Salta Province, NW Argentina, in: XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Buenos Aires, 13–18 October 1996, Vol. 1, 103–114, 1996.
Marrett, R. and Strecker, M. R.: Response of intracontinental deformation in the central Andes to late Cenozoic reorganization of South American Plate motions, Tectonics, 19, 452–467, https://doi.org/10.1029/1999TC001102, 2000.
Marrett, R. A., Allmendinger, R. W., Alonso, R. N., and Drake, R. E.: Late Cenozoic tectonic evolution of the Puna Plateau and adjacent foreland, northwestern Argentine Andes, J. S. Am. Earth Sci., 7, 179–207, https://doi.org/10.1016/0895-9811(94)90007-8, 1994.
Martin, L. C., Blard, P. H., Lavé, J., Condom, T., Prémaillon, M., Jomelli, V., Brunstein, D., Lupker, M., Charreau, J., Mariotti, V., and Tibari, B.: Lake Tauca highstand (Heinrich Stadial 1a) driven by a southward shift of the Bolivian High, Science Advances, 4, https://doi.org/10.1126/sciadv.aar2514, 2018.
Martin, L. C. P., Blard, P.-H., Lavé, J., Braucher, R., Lupker, M., Condom, T., Charreau, J., Mariotti, V., ASTER Team, and Davy, E.: In situ cosmogenic 10Be production rate in the High Tropical Andes, Quat. Geochronol., 30, 54–68, https://doi.org/10.1016/j.quageo.2015.06.012, 2015.
Martin, L. C. P., Blard, P.-H., Balco, G., Lavé, J., Delunel, R., Lifton, N., and Laurent, V.: The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages, Quat. Geochronol., 38, 25–49, https://doi.org/10.1016/j.quageo.2016.11.006, 2017.
Martini, M. A., Kaplan, M. R., Strelin, J. A., Astini, R. A., Schaefer, J. M., Caffee, M. W., and Schwartz, R.: Late Pleistocene glacial fluctuations in Cordillera oriental, subtropical Andes, Quaternary Sci. Rev., 171, 245–259, https://doi.org/10.1016/j.quascirev.2017.06.033, 2017.
Mather, A. E., Stokes, M., and Whitfield, E.: River terraces and alluvial fans: The case for an integrated Quaternary fluvial archive, Quaternary Sci. Rev., 166, 74–90, https://doi.org/10.1016/j.quascirev.2016.09.022, 2017.
Mazzuoli, R., Vezzoli, L., Omarini, R., Acocella, V., Gioncada, A., Matteini, M., Dini, A., Guillou, H., Hauser, N., Uttini, A., and Scaillet, S.: Miocene magmatism and tectonics of the easternmost sector of the Calama–Olacapato–El Toro fault system in Central Andes at ∼ 24° S: Insights into the evolution of the Eastern Cordillera, GSA Bulletin, 120, 1493–1517, https://doi.org/10.1130/B26109.1, 2008.
McFadden, L. D., Ritter, J. B., and Wells, S. G.: Use of Multiparameter Relative-Age Methods for Age Estimation and Correlation of Alluvial Fan Surfaces on a Desert Piedmont, Eastern Mojave Desert, California, Quaternary Res., 32, 276–290, https://doi.org/10.1016/0033-5894(89)90094-X, 1989.
McIntyre, A. and Imbrie, J. D.: Stable isotopes of sediment core V30-40 (specmap.010), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.56361, 2000.
McNab, F., Schildgen, T. F., Turowski, J. M., and Wickert, A. D.: Diverse responses of alluvial rivers to periodic environmental change, Geophys. Res. Lett., 50, e2023GL103075, https://doi.org/10.1029/2023GL103075, 2023.
Mescolotti, P. C., do Nascimento Pupim, F., Ladeira, F. S. B., Sawakuchi, A. O., Santa Catharina, A., and Assine, M. L.: Fluvial aggradation and incision in the Brazilian tropical semi-arid: Climate-controlled landscape evolution of the São Francisco River, Quaternary Sci. Rev., 263, 106977, https://doi.org/10.1016/j.quascirev.2021.106977, 2021.
Mey, J., D'Arcy, M. K., Schildgen, T. F., Egholm, D. L., Wittmann, H., and Strecker, M. R.: Temperature and precipitation in the southern Central Andes during the last glacial maximum, Heinrich Stadial 1, and the Younger Dryas, Quaternary Sci. Rev., 248, 106592, https://doi.org/10.1016/j.quascirev.2020.106592, 2020.
Milanez Fernandes, V., Schildgen, T., Ruby, A., Wittmann-Oelze, H., and McNab, F.: Pleistocene Landscape Evolution in Southern Patagonia: A Record of Regional Incision from 10Be Dating of Fluvial Terraces, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15938, https://doi.org/10.5194/egusphere-egu23-15938, 2023.
Mosblech, N. A., Bush, M. B., Gosling, W. D., Hodell, D., Thomas, L., Van Calsteren, P., Correa-Metrio, A., Valencia, B. G., Curtis, J., and Van Woesik, R.: North Atlantic forcing of Amazonian precipitation during the last ice age, Nat. Geosci., 5, 817–820, https://doi.org/10.1038/ngeo1588, 2012.
Mouchené, M., van der Beek, P., Carretier, S., and Mouthereau, F.: Autogenic versus allogenic controls on the evolution of a coupled fluvial megafan–mountainous catchment system: numerical modelling and comparison with the Lannemezan megafan system (northern Pyrenees, France), Earth Surf. Dynam., 5, 125–143, https://doi.org/10.5194/esurf-5-125-2017, 2017.
Mouslopoulou, V., Begg, J., Fülling, A., Moraetis, D., Partsinevelos, P., and Oncken, O.: Distinct phases of eustatic and tectonic forcing for late Quaternary landscape evolution in southwest Crete, Greece, Earth Surf. Dynam., 5, 511–527, https://doi.org/10.5194/esurf-5-511-2017, 2017.
Nicholas, A. P. and Quine, T. A.: Modeling alluvial landform change in the absence of external environmental forcing, Geology, 35, 527–530, https://doi.org/10.1130/G23377A.1, 2007.
Novello, V. F., Cruz, F. W., Vuille, M., Stríkis, N. M., Edwards, R. L., Cheng, H., Emerick, S., De Paula, M. S., Li, X., Barreto, E. D. S., and Karmann, I.: A high-resolution history of the South American Monsoon from Last Glacial Maximum to the Holocene, Sci. Rep., 7, 44267, https://doi.org/10.1038/srep44267, 2017.
Orr, E. N., Owen, L. A., Saha, S., and Caffee, M. W.: Climate-driven late Quaternary fan surface abandonment in the NW Himalaya, in: Untangling the Quaternary Period—A Legacy of Stephen C. Porter, edited by: Waitt, R. B., Thackray, G. D., and Gillespie, A. R., Geological Society of America, 63–80, https://doi.org/10.1130/2020.2548(04), 2021.
Owen, L. A., Clemmens, S. J., Finkel, R. C., and Gray, H.: Late Quaternary alluvial fans at the eastern end of the San Bernardino Mountains, Southern California, Quaternary Sci. Rev., 87, 114–134, https://doi.org/10.1016/j.quascirev.2014.01.003, 2014.
Paola, C., Heller, P. L., and Angevine, C. L.: The large-scale dynamics of grain-size variation in alluvial basins, 1: theory, Basin Res., 4, 73–90, https://doi.org/10.1111/j.1365-2117.1992.tb00145.x, 1992.
Pearson, D. M., Kapp, P., DeCelles, P. G., Reiners, P. W., Gehrels, G. E., Ducea, M. N., and Pullen, A.: Influence of pre-Andean crustal structure on Cenozoic thrust belt kinematics and shortening magnitude: Northwestern Argentina, Geosphere, 9, 1766–1782, 2013, https://doi.org/10.1130/GES00923.1.
Pedersen, V. K. and Egholm, D. L.: Glaciations in response to climate variations preconditioned by evolving topography, Nature, 493, 206–210, https://doi.org/10.1038/nature11786, 2013.
Peri, V. G., Haghipour, N., Christl, M., Terrizzano, C., Kaveh-Firouz, A., Leiva, M. F., Pérez, P., Yamin, M., Barcelona, H., and Burg, J. P.: Quaternary landscape evolution in the Western Argentine Precordillera constrained by 10Be cosmogenic dating, Geomorphology, 396, 107984, https://doi.org/10.1016/j.geomorph.2021.107984, 2022.
Pingel, H., Strecker, M. R., Alonso, R. N., and Schmitt, A. K.: Neotectonic basin and landscape evolution in the Eastern Cordillera of NW Argentina, Humahuaca Basin (∼ 24 S), Basin Res., 25, 554–573, https://doi.org/10.1111/bre.12016, 2013.
Pingel, H., Mulch, A., Alonso, R. N., Cottle, J., Hynek, S. A., Poletti, J., Rohrmann, A., Schmitt, A. K., Stockli, D. F., and Strecker, M. R.: Surface uplift and convective rainfall along the southern Central Andes (Angastaco Basin, NW Argentina), Earth Planet. Sc. Lett., 440, 33–42, https://doi.org/10.1016/j.epsl.2016.02.009, 2016.
Pingel, H., Alonso, R. N., Altenberger, U., Cottle, J., and Strecker, M. R.: Miocene to Quaternary basin evolution at the southeastern Andean Plateau (Puna) margin (ca. 24° S lat, Northwestern Argentina), Basin Res., 31, 808–826, https://doi.org/10.1111/bre.12346, 2019a.
Pingel, H., Schildgen, T., Strecker, M. R., and Wittmann, H.: Pliocene–Pleistocene orographic control on denudation in northwest Argentina, Geology, 47, 359–362, https://doi.org/10.1130/G45800.1, 2019b.
Pingel, H., Strecker, M. R., Mulch, A., Alonso, R. N., Cottle, J., and Rohrmann, A.: Late Cenozoic topographic evolution of the Eastern Cordillera and Puna Plateau margin in the southern Central Andes (NW Argentina), Earth Planet. Sc. Lett., 535, 116112, https://doi.org/10.1016/j.epsl.2020.116112, 2020.
Phillips, F. M., Zreda, M. G., Smith, S. S., Elmore, D., Kubik, P. W., and Sharma, P.: Cosmogenic chlorine-36 chronology for glacial deposits at Bloody Canyon, eastern Sierra Nevada, Science, 248, 1529–1532, https://doi.org/10.1126/science.248.4962.1529, 1990.
Placzek, C., Quade, J., and Patchett, P. J.: Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change, Geol. Soc. Am. Bull., 118, 515–532, https://doi.org/10.1130/B25770.1, 2006.
Prush, V. B. and Oskin, M. E.: A mechanistic erosion model for cosmogenic nuclide inheritance in single-clast exposure ages, Earth Planet. Sc. Lett., 535, 116066, https://doi.org/10.1016/j.epsl.2020.116066, 2020.
Ratnayaka, K., Hetzel, R., Hornung, J., Hampel, A., Hinderer, M., and Frechen, M.: Postglacial alluvial fan dynamics in the Cordillera Oriental, Peru, and palaeoclimatic implications, Quaternary Res., 91, 431–449, https://doi.org/10.1017/qua.2018.106, 2019.
Robinson, R. A. J., Spencer, J. Q. G., Strecker, M. R., Richter, A., and Alonso, R. N.: Luminescence dating of alluvial fans in intramontane basins of NW Argentina, in: Alluvial Fans: Geomorphology, Sedimentology, Dynamics, edited by: Harvey, A. M., Mather, A. E., and Stokes, M., Geol. Soc. Sp., 251, 153–168. 2005.
Rohais, S., Bonnet, S., and Eschard, R.: Sedimentary record of tectonic and climatic erosional perturbations in an experimental coupled catchment-fan system, Basin Res., 24, 198–212, https://doi.org/10.1111/j.1365-2117.2011.00520.x, 2012.
Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., and Walsh, J. P.: Environmental signal propagation in sedimentary systems across timescales, Earth-Sci. Rev., 153, 7–29, https://doi.org/10.1016/j.earscirev.2015.07.012, 2016.
Savi, S., Schildgen, T. F., Tofelde, S., Wittmann, H., Scherler, D., Mey, J., Alonso, R. N., and Strecker, M. R.: Climatic controls on debris-flow activity and sediment aggradation: The Del Medio fan, NW Argentina, J. Geophys. Res.-Earth, 121, 2424–2445, https://doi.org/10.1002/2016JF003912, 2016.
Savi, S., Tofelde, S., Wickert, A. D., Bufe, A., Schildgen, T. F., and Strecker, M. R.: Interactions between main channels and tributary alluvial fans: channel adjustments and sediment-signal propagation, Earth Surf. Dynam., 8, 303–322, https://doi.org/10.5194/esurf-8-303-2020, 2020.
Schildgen, T. F., Robinson, R. A. J., Savi, S., Phillips, W. M., Spencer, J. Q. G., Bookhagen, B., Scherler, D., Tofelde, S., Alonso, R. N., Kubik, P. W., Binnie, S. A., and Strecker, M. R.: Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity, J. Geophys. Res.-Earth 121, 392–414, https://doi.org/10.1002/2015JF003607, 2016.
Schwab, K. and Schäfer, A.: Sedimentation und Tektonik im mittleren Abschnitt des Río Toro in der Ostkordillere NW-Argentiniens, Geol. Rundsch., 65, 175–194, https://doi.org/10.1007/BF01808462, 1976.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Simpson, G. and Castelltort, S.: Model shows that rivers transmit high-frequency climate cycles to the sedimentary record, Geology, 40, 1131–1134, https://doi.org/10.1130/G33451.1, 2012.
Seagren, E. G. and Schoenbohm, L. M.: Drainage reorganization across the Puna Plateau margin (NW Argentina): Implications for the preservation of orogenic plateaus, J. Geophys. Res.-Earth, 126, e2021JF006147, https://doi.org/10.1029/2021JF006147, 2021.
Seagren, E. G., McMillan, M., and Schoenbohm, L. M.: Tectonic control on drainage evolution in broken forelands: Examples from NW Argentina, Tectonics, 41, e2020TC006536, https://doi.org/10.1029/2020TC006536, 2022.
Spelz, R. M., Fletcher, J. M., Owen, L. A., and Caffee, M. W.: Quaternary alluvial-fan development, climate and morphologic dating of fault scarps in Laguna Salada, Baja California, Mexico, Geomorphology, 102, 578–594, https://doi.org/10.1016/j.geomorph.2008.06.001, 2008.
Steffen, D., Schlunegger, F., and Preusser, F.: Drainage basin response to climate change in the Pisco valley, Peru. Geology, 37, 491–494, https://doi.org/10.1130/G25475A.1, 2009.
Steffen, D., Schlunegger, F., and Preusser, F.: Late Pleistocene fans and terraces in the Majes valley, southern Peru, and their relation to climatic variations, Int. J. Earth Sci., 99, 1975–1989, https://doi.org/10.1007/s00531-009-0489-2, 2010.
Sternai, P., Herman, F., Valla, P. G., and Champagnac, J. D.: Spatial and temporal variations of glacial erosion in the Rhône valley (Swiss Alps): Insights from numerical modeling, Earth Planet. Sc. Lett., 368, 119–131, https://doi.org/10.1016/j.epsl.2013.02.039, 2013.
Strecker, M. R., Alonso, R. N., Bookhagen, B., Carrapa, B., Hilley, G. E., Sobel, E. R., and Trauth, M. H.: Tectonics and climate of the southern central Andes, Annu. Rev. Earth Pl. Sc., 35, 747–787, https://doi.org/10.1146/annurev.earth.35.031306.140158, 2007.
Strecker, M. R., Alonso, R., Bookhagen, B., Carrapa, B., Coutand, I., Hain, M. P., Hilley, G. E., Mortimer, E., Schoenbohm, L., and Sobel, E. R.: Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes?, Geology, 37, 643–646, https://doi.org/10.1130/G25545A.1, 2009.
Streit, R. L., Burbank, D. W., Strecker, M. R., Alonso, R. N., Cottle, J. M., and Kylander-Clark, A. R. C.: Controls on intermontane basin filling, isolation and incision on the margin of the Puna Plateau, NW Argentina (∼ 23° S), Basin Res., 29, 131–155, https://doi.org/10.1111/bre.12141, 2017.
Terrizzano, C. M., García Morabito, E., Christl, M., Likerman, J., Tobal, J., Yamin, M., and Zech, R.: Climatic and Tectonic forcing on alluvial fans in the Southern Central Andes, Quaternary Sci. Rev., 172, 131–141, https://doi.org/10.1016/j.quascirev.2017.08.002, 2017.
Tobal, J. E., Morabito, E. G., Terrizzano, C. M., Zech, R., Colavitto, B., Struck, J., Christl, M., and Ghiglione, M. C.: Quaternary landscape evolution of Patagonia at the Chilean Triple Junction: Climate and tectonic forcings, Quaternary Sci. Rev., 261, 106960, https://doi.org/10.1016/j.quascirev.2021.106960, 2021.
Tofelde, S., Schildgen, T. F., Savi, S., Pingel, H., Wickert, A. D., Bookhagen, B., Wittmann, H., Alonso, R. N., Cottle, J., and Strecker, M. R.: 100 kyr fluvial cut-and-fill terrace cycles since the Middle Pleistocene in the southern Central Andes, NW Argentina, Earth Planet. Sc. Lett., 473, 141–153, https://doi.org/10.1016/j.epsl.2017.06.001, 2017.
Tofelde, S., Duesing, W., Schildgen, T. F., Wickert, A. D., Wittmann, H., Alonso, R. N., and Strecker, M.: Effects of deep-seated versus shallow hillslope processes on cosmogenic 10Be concentrations in fluvial sand and gravel, Earth Surf. Proc. Landf., 43, 3086–3098, https://doi.org/10.1002/esp.4471, 2018.
Tofelde, S., Savi, S., Wickert, A. D., Bufe, A., and Schildgen, T. F.: Alluvial channel response to environmental perturbations: fill-terrace formation and sediment-signal disruption, Earth Surf. Dynam., 7, 609–631, https://doi.org/10.5194/esurf-7-609-2019, 2019.
Tofelde, S., Bernhardt, A., Guerit, L., and Romans, B. W.: Times associated with source-to-sink propagation of environmental signals during landscape transience, Front. Earth Sci., 9, 628315, https://doi.org/10.3389/feart.2021.628315, 2021.
Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. Van De, Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012, https://doi.org/10.1256/qj.04.176, 2005.
Valla, P. G., Shuster, D. L., and Van Der Beek, P. A.: Significant increase in relief of the European Alps during mid-Pleistocene glaciations, Nat. Geosci., 4, 688–692, https://doi.org/10.1038/ngeo1242, 2011.
van den Berg, A. P. H., van Saparoea, V., and Postma, G.: Control of climate change on the yield of river systems, in: Recent Advances in Models of Siliciclastic Shallow-Marine Stratigraphy, edited by: Hampson, G. J., Steel, R. J., Burgess, P. M., and Dalrymple, R. W., SEPM Spec. P., 90, 15–33, https://doi.org/10.2110/pec.08.90.0015, 2008.
Ventra, D. and Nichols, G. J.: Autogenic dynamics of alluvial fans in endorheic basins: outcrop examples and stratigraphic significance, Sedimentology, 61, 767–791, https://doi.org/10.1111/sed.12077, 2014.
Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Lettenmaier, D., Marengo, J., Mechoso, C. R., and Nogues-Paegle, J.: Toward a unified view of the American monsoon systems, J. Climate, 19, 4977–5000, https://doi.org/10.1175/JCLI3896.1, 2006.
Vezzoli, L., Acocella, V., Omarini, R., and Mazzuoli, R.: Miocene sedimentation, volcanism and deformation in the Eastern Cordillera (24°30′ S, NW Argentina): Tracking the evolution of the foreland basin of the Central Andes, Basin Res., 24, 637–663, https://doi.org/10.1111/j.1365-2117.2012.00547.x, 2012.
Vizy, E. K. and Cook, K. H.: Relationship between Amazon and high Andes rainfall, J. Geophys. Res.-Atmos., 112, D07107, https://doi.org/10.1029/2006JD007980, 2007.
von Blanckenburg, F., Hewawasam, T., and Kubik, P.: Cosmogenic nuclide evidence for low weathering and denudation in the wet, tropical highlands of Sri Lanka, J. Geophys. Res.-Earth, 109, https://doi.org/10.1029/2003jf000049, 2004.
Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Ito, E., Wang, Y., Kong, X., and Solheid, M.: Millennial-scale precipitation changes in southern Brazil over the past 90,000 years, Geophys. Res. Lett., 34, L23701, https://doi.org/10.1029/2007GL031149, 2007.
Wickert, A. D. and Schildgen, T. F.: Long-profile evolution of transport-limited gravel-bed rivers, Earth Surf. Dynam., 7, 17–43, https://doi.org/10.5194/esurf-7-17-2019, 2019.
Wittmann, H., Malusà, M. G., Resentini, A., Garzanti, E., and Niedermann, S.: The cosmogenic record of mountain erosion transmitted across a foreland basin: Source-to-sink analysis of in situ 10Be, 26Al and 21Ne in sediment of the Po river catchment, Earth Planet. Sc. Lett., 452, 258–271, https://doi.org/10.1016/j.epsl.2016.07.017, 2016.
Zech, J., Terrizzano, C. M., Garcia Morabito, E., Veit, H., and Zech, R.: Timing and extent of late Pleistocene glaciation in the arid Central Andes of Argentina and Chile (22°–41° S), CIG, 43, 697–718, https://doi.org/10.18172/cig.3235, 2017.
Zondervan, J. R., Stokes, M., Boulton, S. J., Telfer, M. W., and Mather, A. E.: Rock strength and structural controls on fluvial erodibility: Implications for drainage divide mobility in a collisional mountain belt, Earth Planet. Sc. Lett., 538, 116221, https://doi.org/10.1016/j.epsl.2020.116221, 2020.
Short summary
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina, record river evolution and global climate cycles over time. Landform dating reveals lower-frequency climate cycles (100 kyr) preserved downstream and higher-frequency cycles (21/40 kyr) upstream, supporting theoretical predications that longer rivers filter out higher-frequency climate signals. This finding improves our understanding of the spatial distribution of sedimentary paleoclimate records within landscapes.
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina, record river evolution and...