Articles | Volume 12, issue 3
https://doi.org/10.5194/esurf-12-657-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esurf-12-657-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-runout landslides with associated longitudinal ridges in Iceland as analogues of Martian landslide deposits
Giulia Magnarini
CORRESPONDING AUTHOR
Natural History Museum, London, United Kingdom
Anya Champagne
Department of Earth Science and Engineering, Imperial College, London, United Kingdom
Costanza Morino
Laboratoire Environnements, Dynamiques et Territoires de la Montagne, Université Savoie Mont Blanc, CNRS UMR 5204, Chambéry, France
Department of Land, Environnent, Agriculture and Forestry, Università degli Studi di Padova, Padova, Italy
Calvin Beck
Laboratoire Morphodynamique Continentale et Côtière, Normandie Université – UNICAEN – UNIROUEN, CNRS, Caen, UMR 6143 M2C, France
Meven Philippe
Laboratoire Environnements, Dynamiques et Territoires de la Montagne, Université Savoie Mont Blanc, CNRS UMR 5204, Chambéry, France
Laboratoire de Planétologie et Géosciences, Nantes Université, Univ Angers, Le Mans Université, CNRS, LPG UMR 6112, 44000 Nantes, France
Armelle Decaulne
Laboratoire Littoral – Environnement – Télédétection – Géomatique, Nantes Université, CNRS UMR 6554, Nantes, France
Susan J. Conway
Laboratoire de Planétologie et Géosciences, Nantes Université, Univ Angers, Le Mans Université, CNRS, LPG UMR 6112, 44000 Nantes, France
Related authors
No articles found.
Luca Carturan, Giulia Zuecco, Angela Andreotti, Jacopo Boaga, Costanza Morino, Mirko Pavoni, Roberto Seppi, Monica Tolotti, Thomas Zanoner, and Matteo Zumiani
The Cryosphere, 18, 5713–5733, https://doi.org/10.5194/tc-18-5713-2024, https://doi.org/10.5194/tc-18-5713-2024, 2024
Short summary
Short summary
Pseudo-relict rock glaciers look relict but contain patches of permafrost. They are poorly known in terms of permafrost content, spatial distribution and frequency. Here we use spring-water temperature for a preliminary estimate of the permafrost presence in rock glaciers of a 795 km2 catchment in the Italian Alps. The results show that ~50 % of rock glaciers classified as relict might be pseudo-relict and might contain ~20 % of the ice stored in the rock glaciers in the study area.
Calvin Beck and Lindsey Nicholson
EGUsphere, https://doi.org/10.5194/egusphere-2023-2766, https://doi.org/10.5194/egusphere-2023-2766, 2023
Short summary
Short summary
A glacier’s debris cover strongly modified its mass balance in contrast to a clean ice glacier. A key parameter for calculating sub-debris melt is the thermal diffusivity of the debris layer. Conway and Rasmussen (2000) present a method to estimate this value based on simple heat diffusion principles. Our analysis shows that the selected temporal and spatial sampling intervals effects the estimated value of thermal diffusivity, resulting in glacier melt being systematically underestimated.
Rishitosh K. Sinha, Dwijesh Ray, Tjalling De Haas, Susan J. Conway, and Axel Noblet
Earth Surf. Dynam., 11, 713–730, https://doi.org/10.5194/esurf-11-713-2023, https://doi.org/10.5194/esurf-11-713-2023, 2023
Short summary
Short summary
Our detailed investigation of Martian gullies formed in different substrates in 29 craters distributed between 30°–75° S latitude suggests that they can be differentiated from one another in terms of (1) morphology and length of alcoves and (2) mean gradient of the gully fans. The comparison between the Melton ratio, alcove length, and fan gradient of Martian and terrestrial gullies suggests that Martian gullies were likely formed by terrestrial debris-flow-like processes in the past.
J.-P. Muller, Y. Tao, A. R. D. Putri, and S. J. Conway
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 667–671, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-667-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-667-2021, 2021
Giulia Sofia, John K. Hillier, and Susan J. Conway
Earth Surf. Dynam., 4, 721–725, https://doi.org/10.5194/esurf-4-721-2016, https://doi.org/10.5194/esurf-4-721-2016, 2016
Short summary
Short summary
The interdisciplinarity of geomorphometry is its greatest strength and one of its major challenges. This special issue showcases exciting developments that are the building blocks for the next step-change in the field. In reading and compiling the contributions we hope that the scientific community will be inspired to seek out collaborations and share ideas across subject-boundaries, between technique-developers and users, enabling us as a community to gather knowledge from our digital landscape
J. K. Hillier, G. Sofia, and S. J. Conway
Earth Surf. Dynam., 3, 587–598, https://doi.org/10.5194/esurf-3-587-2015, https://doi.org/10.5194/esurf-3-587-2015, 2015
Short summary
Short summary
How good are measurements of shapes in the landscape? This is not well constrained. We suggest that "synthetic tests" using constructed digital landscapes called synthetic DEMs are a powerful and necessary tool to establish the reliability of these data (e.g. mapped sizes). Thus, the tests have a key, complementary role in determining if conceptual and physics-driven models of processes can be reconciled with morphological observations of reality. A typology of synthetic DEMs is proposed.
Related subject area
Physical: Planetary Geomorphology
An overview of sedimentary volcanism on Mars
Long-term erosion rates as a function of climate derived from the impact crater inventory
Deep-seated gravitational slope deformation scaling on Mars and Earth: same fate for different initial conditions and structural evolutions
Rainfall intensity bursts and the erosion of soils: an analysis highlighting the need for high temporal resolution rainfall data for research under current and future climates
Groundwater seepage landscapes from distant and local sources in experiments and on Mars
Petr Brož, Dorothy Oehler, Adriano Mazzini, Ernst Hauber, Goro Komatsu, Giuseppe Etiope, and Vojtěch Cuřín
Earth Surf. Dynam., 11, 633–661, https://doi.org/10.5194/esurf-11-633-2023, https://doi.org/10.5194/esurf-11-633-2023, 2023
Short summary
Short summary
The aim of this review is to summarise the current knowledge about mud-volcano-like structures on Mars, address critical aspects of the process of sedimentary volcanism, identify key open questions, and point to areas where further research is needed to understand this phenomenon and its importance in the Red Planet's geological evolution.
Stefan Hergarten and Thomas Kenkmann
Earth Surf. Dynam., 7, 459–473, https://doi.org/10.5194/esurf-7-459-2019, https://doi.org/10.5194/esurf-7-459-2019, 2019
Short summary
Short summary
Our study reveals that worldwide mean erosion rates on the million-year timescale are very similar to present-day erosion rates in contrast to the majority of the previously published results. Concerning the dependence of erosion on climate, we found that the long-term erosion efficacy of the tropical zone has been about 5 times higher than that of the cold zones, while the erosional efficacy of the present-day arid zone has been as high as that of the temperate zone.
Olga Kromuszczyńska, Daniel Mège, Krzysztof Dębniak, Joanna Gurgurewicz, Magdalena Makowska, and Antoine Lucas
Earth Surf. Dynam., 7, 361–376, https://doi.org/10.5194/esurf-7-361-2019, https://doi.org/10.5194/esurf-7-361-2019, 2019
Short summary
Short summary
Deep-seated gravitational spreading features are spectacular on Mars on the hillslopes of Valles Marineris, both in terms of landform freshness and size. This paper compares their dimensions and those in terrestrial analogue sites in the Tatra Mountains. Gravitational spreading is thought to be inactive in both locations. We find that the height-to-width ratio, ~0.24, is similar in spite of much larger strain in Valles Marineris. We explore the implications.
David L. Dunkerley
Earth Surf. Dynam., 7, 345–360, https://doi.org/10.5194/esurf-7-345-2019, https://doi.org/10.5194/esurf-7-345-2019, 2019
Short summary
Short summary
Soil erosion, especially in vulnerable conditions such as post-fire landscapes or tilled agricultural soils, is greatly affected by the occurrence of bursts of intense rainfall. These are often set within longer periods of less intense rain. This paper documents the nature of the intensity bursts at two Australian locations and shows that high-resolution rainfall records are required in order to make estimates of the intensity. Hourly rainfall data are not suitable for this task.
W. A. Marra, S. J. McLelland, D. R. Parsons, B. J. Murphy, E. Hauber, and M. G. Kleinhans
Earth Surf. Dynam., 3, 389–408, https://doi.org/10.5194/esurf-3-389-2015, https://doi.org/10.5194/esurf-3-389-2015, 2015
Short summary
Short summary
Groundwater seepage creates valleys with typical theater-shaped valley heads, which are found on Earth and on Mars. For a better interpretation of these systems, we conducted scale experiments on the formation such valleys. We find that entire landscapes, instead of just the shape of the valleys, provide insights into the source of groundwater. Landscapes filled with valleys indicate a local groundwater source in contrast to sparsely dissected landscapes formed by a distal source of groundwater.
Cited articles
Ballantyne, C. K.: A general model of paraglacial landscape response, Holocene, 12, 371–376, https://doi.org/10.1191/0959683602hl553fa, 2002.
Ballantyne, C. K. and Stone, J. O.: The Beinn Alligin rock avalanche, NW Scotland: cosmogenic 10Be dating, interpretation and significance, Holocene, 14, 448–453, https://doi.org/10.1191/0959683604hl720rr, 2004.
Balme, M. R., Bargery, A. S., Gallagher, C. J., and Gupta, S.: Martian Geomorphology: Introduction, in: Martian Geomorphology, edited by: Balme, M. R., Bargery, A. S., Gallagher, C. J., and Gupta, S., Geol. Soc. Lond. Spec. Publ., 356, 1–3, https://doi.org/10.1144/SP356.1, 2011.
Beddingfield, C. B., Beyer, R. A., Singer, K. N., McKinnon, W. B., Runyon, K., Grundy, W., Stern, S. A., Bray, V., Dhingra, R., Moore, J. M., Ennico, K., Olkin, C. B., Schenk, P., Spencer, J. R., Weaver, H. A., and Young, L. A.: Landslides on Charon, Icarus, 335, 113383, https://doi.org/10.1016/j.icarus.2019.07.017, 2020.
Bibring, J. P., Langevi, Y., Mustard, J. F., et al.: Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data, Science, 312, 400–404, https://doi.org/10.1126/science.1122659, 2006.
Boyce, J. M., Mouginis-Mark, P., and Robinson, M.: The Tsiolkovskiy crater landslide, the moon: An LROC view, Icarus, 337, 113464, https://doi.org/10.1016/j.icarus.2019.113464, 2020.
Brunetti, M. T., Guzzetti, F., Cardinali, M., Fiorucci, F., Santangelo, M., Mancinelli, P., Komatsu, G., and Borselli, L.: Analysis of a new geomorphological inventory of landslides in Valles Marineris, Mars, Earth Planet. Sc. Lett., 405, 156–168, https://doi.org/10.1016/j.epsl.2014.08.025, 2014.
Conway, S. J., Balme, M. R., Kreslavsky, M. A., Murray, J. B., and Towner, M. C.: The comparison of topographic long profiles of gullies on Earth to gullies on Mars: A signal of water on Mars, Icarus, 253, 189–204, https://doi.org/10.1016/j.icarus.2015.03.009, 2015.
Conway, S. J., de Haas, T., and Harrison, T. N.: Martian gullies: a comprehensive review of observations, mechanisms and insights from Earth analogues, Geol. Soc. Lond. Spec. Publ., 467, 7–66, https://doi.org/10.1144/SP467.14, 2019.
Coquin, J., Mercier, D., Bourgeois, O., Cossart, E., and Decaulne, A.: Gravitational spreading of mountain ridges coeval with Late Weichselian deglaciation: impact on glacial landscapes in Tröllaskagi, northern Iceland, Quaternary Sci. Rev., 107, 197–213, https://doi.org/10.1016/j.quascirev.2014.10.023, 2015.
Cossart, E., Mercier, D., Decaulne, A., Feuillet, T., Jónsson, H. P., and Sæmundsson, Þ.: Impacts of post-glacial rebound on landslide spatial distribution at a regional scale in northern Iceland (Skagafjörður), Earth Surf. Proc. Land., 39, 336–350, https://doi.org/10.1002/esp.3450, 2014.
Crosta, G. B., Frattini, P., Valbuzzi, E., and De Blasio, F. V.: Introducing a New Inventory of Large Martian Landslides, Earth Space Sci., 5, 89–119, https://doi.org/10.1002/2017EA000324, 2018.
Cruden, D. M. and Hu, X. Q.: Exhaustion and steady state models for predicting landslide hazards in the Canadian Rocky Mountains, Geomorphology, 8, 279–285, https://doi.org/10.1016/0169-555X(93)90024-V, 1993.
Davies, T. R. H. and McSaveney, M. J.: Mobility of long-runout rock avalanches, in: Landslides: Types, Mechanisms and Modeling, edited by: Stead, D. and Clague, J. J., Cambridge University Press, Cambridge, 50–58, https://doi.org/10.1017/CBO9780511740367.006, 2012.
De Blasio, F. V.: Landslides in Valles Marineris (Mars): A possible role of basal lubrication by sub-surface ice, Planet. Space Sci., 59, 1384–1392, https://doi.org/10.1016/j.pss.2011.04.015, 2011.
De Blasio, F. V.: Friction and dynamics of rock avalanches travelling on glaciers, Geomorphology, 213, 88–98, https://doi.org/10.1016/j.geomorph.2014.01.001, 2014.
Decaulne, A., Cossart, E., Mercier, D., Feuillet, T., Coquin, J., and Jónsson, H. P.: An early Holocene age for the Vatn landslide (Skagafjörður, central northern Iceland): Insights into the role of postglacial landsliding on slope development, Holocene, 26, 1304–1318, https://doi.org/10.1177/0959683616638432, 2016.
Dufresne, A. and Davies, T. R.: Longitudinal ridges in mass movement deposits, Geomorphology, 105, 171–181, https://doi.org/10.1016/j.geomorph.2008.09.009, 2009.
Dufresne, A., Bösmeier, A., and Prager, C.: Sedimentology of rock avalanche deposits – Case study and review, Earth-Sci. Rev., 163, 234–259, https://doi.org/10.1016/j.earscirev.2016.10.002, 2016.
Dufresne, A., Wolken, G. J., Hibert, C., Bessette-Kirton, E. K., Coe, J. A., Geertsema, M., and Ekström, G.: The 2016 Lamplugh rock avalanche, Alaska: deposit structures and emplacement dynamics, Landslides, 16, 2301–2319, https://doi.org/10.1007/s10346-019-01225-4, 2019.
de Haas, T., Hauber, E., Conway, S. J., van Steijn, H., Johnsson, A., and Kleinhans, M. G.: Earth-like aqueous debris-flow activity on Mars at high orbital obliquity in the last million years, Nat. Commun., 6, 7543, https://doi.org/10.1038/ncomms8543, 2015.
Fergason, L. R., Hare, T. M., and Laura, J.: HRSC and MOLA Blended Digital Elevation Model at 200 m v2, Astrogeology PDS Annex, US Geological Survey, http://bit.ly/HRSC_MOLA_Blend_v0 (last access: 2 May 2024), 2018.
Fernández-Fernández, J. M., Etzelmüller, B., Morino, C., and Sæmundsson, Þ.: Iceland, in: Periglacial Landscapes of Europe, edited by: Oliva, M., Nývlt, D., and Fernández-Fernández, J. M., Springer International Publishing, Cham, 427–473, https://doi.org/10.1007/978-3-031-14895-8_15, 2022.
Forterre, Y. and Pouliquen, O.: Longitudinal Vortices in Granular Flows, Phys. Rev. Lett., 86, 5886–5889, https://doi.org/10.1103/PhysRevLett.86.5886, 2001.
Gourronc, M., Bourgeois, O., Mège, D., Pochat, S., Bultel, B., Massé, M., Le Deit, L., Le Mouélic, S., and Mercier, D.: One million cubic kilometers of fossil ice in Valles Marineris: Relicts of a 3.5 Gy old glacial landsystem along the Martian equator, Geomorphology, 204, 235–255, https://doi.org/10.1016/j.geomorph.2013.08.009, 2014.
Guimpier, A., Conway, S. J., Mangeney, A., Lucas, A., Mangold, N., Peruzzetto, M., Pajola, M., Lucchetti, A., Munaretto, G., Sæmundsson, T., Johnsson, A., Le Deit, L., Grindrod, P., Davis, J., Thomas, N., and Cremonese, G.: Dynamics of recent landslides (<20 My) on Mars: Insights from high-resolution topography on Earth and Mars and numerical modelling, Planet. Space Sci., 206, 105303, https://doi.org/10.1016/j.pss.2021.105303, 2021.
Guimpier, A., Conway, S. J., Pajola, M., Lucchetti, A., Simioni, E., Re, C., Noblet, A., Mangold, N., Thomas, N., and Cremonese, G.: Pre-landslide topographic reconstruction in Baetis Chaos, mars using a CaSSIS Digital Elevation Model, Planet. Space Sci., 218, 105505, https://doi.org/10.1016/j.pss.2022.105505, 2022.
Hager, A. and Schedl, A. D.: Classification and Ages of Landslides Within Valles Marineris, in: 48th Lunar and Planetary Science Conference, 20–24 March 2017, The Woodlands, Texas, Abstract 2076, 2017.
Harrison, K. P. and Grimm, R. E.: Rheological constraints on martian landslides, Icarus, 163, 347–362, https://doi.org/10.1016/S0019-1035(03)00045-9, 2003.
Hartmann, W. K., Thorsteinsson, T., and Sigurdsson, F.: Martian hillside gullies and icelandic analogs, Icarus, 162, 259–277, https://doi.org/10.1016/S0019-1035(02)00065-9, 2003.
Head, J., Mustard, J., Kreslavsky, M., Milliken, R. E., and Marchant, D. R.: Recent ice ages on Mars, Nature 426, 797–802, https://doi.org/10.1038/nature02114, 2003.
Heim, A.: Der Bergsturz und Menschenleben, Fretz und Wasmuth Verlag, Zurich, 218 pp., 1932.
Hsü, K. J.: Albert Heim: Observations on Landslides and Relevance to Modern Interpretations, in: Developments in Geotechnical Engineering, vol. 14, Elsevier, 71–93, https://doi.org/10.1016/B978-0-444-41507-3.50009-X, 1978.
Jawin, E. R. and Head, J. W.: Patterns of late Amazonian deglaciation from the distribution of martian paraglacial features, Icarus, 355, 114117, https://doi.org/10.1016/j.icarus.2020.114117, 2021.
Jawin, E. R., Head, J. W., and Marchant, D. R.: Transient post-glacial processes on Mars: Geomorphologic evidence for a paraglacial period, Icarus, 309, 187–206, https://doi.org/10.1016/j.icarus.2018.01.026, 2018.
Johannesson, H. and Saemundsson, K.: Geological map of Iceland, 1:500 000, Bedrock geology, Icelandic Institute of Natural History, 1989.
Johnson, B.: Blackhawk Landslide, California, U.S.A., in: Developments in Geotechnical Engineering, vol. 14, Elsevier, 481–504, https://doi.org/10.1016/B978-0-444-41507-3.50022-2, 1978.
Johnson, B. C. and Campbell, C. S.: Drop Height and Volume Control the Mobility of Long-Runout Landslides on the Earth and Mars, Geophys. Res. Lett., 44, 12091–12097, https://doi.org/10.1002/2017GL076113, 2017.
Johnson, B. C. and Sori, M. M.: Landslide Morphology and Mobility on Ceres Controlled by Topography, J. Geophys. Res.-Planets, 125, e2020JE006640, https://doi.org/10.1029/2020JE006640, 2020.
Jónsson, Ó.: Skriðuföll og snjóflóð, Bókaútgafan Norðri, 1, 141 pp., 1957.
Kirk, R. L., Howington-Kraus, E., Rosiek, M. R., Anderson, J. A., Archinal, B. A., Becker, K. J., Cook, D. A., Galuszka, D. M., Geissler, P. E., Hare, T. M., Holmberg, I. M., Keszthelyi, L. P., Redding, B. L., Delamere, W. A., Gallagher, D., Chapel, J. D., Eliason, E. M., King, R., and McEwen, A. S.: Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites, J. Geophys. Res.-Planets, 113, E00A24, https://doi.org/10.1029/2007JE003000, 2008.
Kite, E. S. and Conway, S.: Geological evidence for multiple climate transitions on Early Mars. Nat. Geosci. 17, 10–19, https://doi.org/10.1038/s41561-023-01349-2, 2024.
Laskar, J., Correia, A. C. M., Gastineau, M., Joutel, F., Levrard, B., and Robutel, P.: Long term evolution and chaotic diffusion of the insolation quantities of Mars, Icarus, 170, 343–364, https://doi.org/10.1016/j.icarus.2004.04.005, 2004.
Legros, F.: The mobility of long-runout landslides, Eng. Geol., 63, 301–331, https://doi.org/10.1016/S0013-7952(01)00090-4, 2002.
Lucas, A., Mangeney, A., Mège, D., and Bouchut, F.: Influence of the scar geometry on landslide dynamics and deposits: Application to Martian landslides, J. Geophys. Res. Planets, 116, E10001, https://doi.org/10.1029/2011JE003803, 2011.
Lucas, A., Mangeney, A., and Ampuero, J. P.: Frictional velocity-weakening in landslides on Earth and on other planetary bodies, Nat. Commun., 5, 3417, https://doi.org/10.1038/ncomms4417, 2014.
Lucchitta, B. K.: A large landslide on Mars, GSA Bull., 89, 1601–1609, https://doi.org/10.1130/0016-7606(1978)89<1601:ALLOM>2.0.CO;2, 1978.
Lucchitta, B. K.: Landslides in Valles Marineris, Mars, J. Geophys. Res.-Solid, 84, 8097–8113, https://doi.org/10.1029/JB084iB14p08097, 1979.
Lucchitta, B. K.: Valles Marineris, Mars: Wet debris flows and ground ice, Icarus, 72, 411–429, https://doi.org/10.1016/0019-1035(87)90183-7, 1987.
Magnarini, G., Mitchell, T. M., Grindrod, P. M., Goren, L., and Schmitt, H. H.: Longitudinal ridges imparted by high-speed granular flow mechanisms in martian landslides, Nat. Commun., 10, 4711, https://doi.org/10.1038/s41467-019-12734-0, 2019.
Magnarini, G., Mitchell, T. M., Goren, L., Grindrod, P. M., and Browning, J.: Implications of longitudinal ridges for the mechanics of ice-free long runout landslides, Earth Planet. Sc. Lett., 574, 117177, https://doi.org/10.1016/j.epsl.2021.117177, 2021a.
Magnarini, G., Mitchell, T. M., Grindrod, P. M., Schmitt, H. H., and Petro, N. E.: Scaling Relationship Between the Wavelength of Longitudinal Ridges and the Thickness of Long Runout Landslides on the Moon, J. Geophys. Res.-Planets, 126, e2021JE006922, https://doi.org/10.1029/2021JE006922, 2021b.
Magnarini, G., Champagne, A., Morino, C., Beck, C., Philippe, M., and Conway, S. J.: Long Runout Landslides with Longitudinal Ridges in Iceland as Analogues of Martian Landforms [Dataset], Figshare [data set], https://doi.org/10.6084/m9.figshare.22333036.v1, 2023.
Makowska, M., Mège, D., Gueydan, F., and Chéry, J.: Mechanical conditions and modes of paraglacial deep-seated gravitational spreading in Valles Marineris, Mars, Geomorphology, 268, 246–252, https://doi.org/10.1016/j.geomorph.2016.06.011, 2016.
Malin, M.: MRO Context Camera Experiment Data Record Level 0 V1.0, MRO-M-CTX-2-EDR-L0-V1.0, NASA Planetary Data System, https://doi.org/10.17189/1520266, 2007.
Malin, M. C., Bell III, J. F., Cantor, B. A., Caplinger, M. A., Calvin, W. M., Clancy, R. T., Edgett, K. S., Edwards, L., Haberle, R. M., James, P. B., Lee, S. W., Ravine, M. A., Thomas, P. C., and Wolff, M. J.: Context Camera Investigation on board the Mars Reconnaissance Orbiter, J. Geophys. Res.-Planets, 112, E05S04, https://doi.org/10.1029/2006JE002808, 2007.
Mather, A. E., Hartley, A. J., and Griffiths, J. S.: The giant coastal landslides of Northern Chile: Tectonic and climate interactions on a classic convergent plate margin, Earth Planet. Sc. Lett., 388, 249–256, https://doi.org/10.1016/j.epsl.2013.10.019, 2014.
McEwen, A. S.: Mobility of large rock avalanches: Evidence from Valles Marineris, Mars, Geology, 17, 1111–1114, https://doi.org/10.1130/0091-7613(1989)017<1111:MOLRAE>2.3.CO;2, 1989.
McEwen, A. S., Eliason, E. M., Bergstrom, J. W., Bridges, N. T., Hansen, C. J., Delamere, W. A., Grant, J. A., Gulick, V. C., Herkenhoff, K. E., Keszthelyi, L., Kirk, R. L., Mellon, M. T., Squyres, S. W., Thomas, N., and Weitz, C. M.: Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE), J. Geophys. Res.-Planets, 112, E05S02, https://doi.org/10.1029/2005JE002605, 2007.
McSaveney, M. J.: Chapter 6 – Sherman Glacier Rock Avalanche, Alaska, U.S.A., in: Developments in Geotechnical Engineering, vol. 14, edited by: Voight, B., Elsevier, 197–258, https://doi.org/10.1016/B978-0-444-41507-3.50014-3, 1978.
Mège, D. and Bourgeois, O.: Equatorial glaciations on Mars revealed by gravitational collapse of Valles Marineris wallslopes, Earth Planet. Sc. Lett., 310, 182–191, https://doi.org/10.1016/j.epsl.2011.08.030, 2011.
Melosh, H. J.: Slopes and mass movement, in: Planetary Surface Processes. Cambridge Planetary Science, Cambridge University Press, 319–347, https://doi.org/10.1017/CBO9780511977848, 2011.
Mercier, D., Cossart, E., Decaulne, A., Feuillet, T., Jónsson, H. P., and Sæmundsson, Þ.: The Höfðahólar rock avalanche (sturzström): Chronological constraint of paraglacial landsliding on an Icelandic hillslope, Holocene, 23, 432–446, https://doi.org/10.1177/0959683612463104, 2013.
Mercier, D., Coquin, J., Feuillet, T., Decaulne, A., Cossart, E., Jónsson, H. P., and Sæmundsson, Þ.: Are Icelandic rock-slope failures paraglacial? Age evaluation of seventeen rock-slope failures in the Skagafjörður area, based on geomorphological stacking, radiocarbon dating and tephrochronology, Geomorphology, 296, 45–58, https://doi.org/10.1016/j.geomorph.2017.08.011, 2017.
Molaro, L., Discenza, M. E., Minnillo, M., Komatsu, G., and Miccadei, E.: Absolute dating and evolutionary model of large rock avalanches on Mars: Examples from the Hydraotes Chaos and Tiu Valles region, Icarus, 407, 115778, https://doi.org/10.1016/j.icarus.2023.115778, 2024.
Morino, C., Conway, S. J., Sæmundsson, Þ., Helgason, J. K., Hillier, J., Butcher, F. E. G., Balme, M. R., Jordan, C., and Argles, T.: Molards as an indicator of permafrost degradation and landslide processes, Earth Planet. Sc. Lett., 516, 136–147, https://doi.org/10.1016/j.epsl.2019.03.040, 2019.
Morino, C., Conway, S., Philippe, M., Peignaux, C., Svennevig, K., Lucas, A., Noblet, A., Roberti, G., Butcher, F., and Collins-May, J.: Permafrost molards as an analogue for ejecta-ice interactions at Hale Crater, Mars, Icarus, 391, 115363, https://doi.org/10.1016/j.icarus.2022.115363, 2023.
NASA PDS – Planetary Data System: Welcome to the PDS, https://pds.nasa.gov/ (last access: 31 January 2023), 2024.
Okubo, C. H.: Structural geology of Amazonian-aged layered sedimentary deposits in southwest Candor Chasma, Mars, Icarus, 207, 210–225, https://doi.org/10.1016/j.icarus.2009.11.012, 2010.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, Harvard Dataverse, https://doi.org/10.7910/DVN/OHHUKH, 2018.
Pudasaini, S. P. and Miller, S. A.: The hypermobility of huge landslides and avalanches, Eng. Geol., 157, 124–132, https://doi.org/10.1016/j.enggeo.2013.01.012, 2013.
Quantin, C., Allemand, P., Mangold, N., and Delacourt, C.: Ages of Valles Marineris (Mars) landslides and implications for canyon history, Icarus, 172, 555–572, https://doi.org/10.1016/j.icarus.2004.06.013, 2004.
Saemundsson, K.: Outlines of the geology of Iceland, Jökull, 29, 7–28, 1980.
Saemundsson, P., Morino, C., and Conway, S. J.: 5.22 – Mass-Movements in Cold and Polar Climates, in: Treatise on Geomorphology, 2nd Edn., edited by: Shroder, J. (Jack) F., Academic Press, Oxford, 350–370, https://doi.org/10.1016/B978-0-12-818234-5.00117-6, 2022.
Schmidt, B. E., Hughson, K. H. G., Chilton, H. T., Scully, J. E. C., Platz, T., Nathues, A., Sizemore, H., Bland, M. T., Byrne, S., Marchi, S., O'Brien, D. P., Schorghofer, N., Hiesinger, H., Jaumann, R., Pasckert, J. H., Lawrence, J. D., Buzckowski, D., Castillo-Rogez, J. C., Sykes, M. V., Schenk, P. M., DeSanctis, M.-C., Mitri, G., Formisano, M., Li, J.-Y., Reddy, V., LeCorre, L., Russell, C. T., and Raymond, C. A.: Geomorphological evidence for ground ice on dwarf planet Ceres, Nat. Geosci., 10, 338–343, https://doi.org/10.1038/ngeo2936, 2017.
Shi, A.-W., Wang, Y.-F., Cheng, Q.-G., Lin, Q.-W., Li, T.-H., and Wünnemann, B.: The largest rock avalanche in China at Iymek, Eastern Pamir, and its spectacular emplacement landscape, Geomorphology, 421, 108521, https://doi.org/10.1016/j.geomorph.2022.108521, 2022.
Shreve, R. L.: Sherman Landslide, Alaska, Science, 154, 1639–1643, https://doi.org/10.1126/science.154.3757.1639, 1966.
Shreve, R. L.: The Blackhawk Landslide, GSA Special papers 108, The Geological Society of America, Boulder, Colorado, 47 pp., https://doi.org/10.1130/SPE108, 1968.
Singer, K. N., McKinnon, W. B., Schenk, P. M., and Moore, J. M.: Massive ice avalanches on Iapetus mobilized by friction reduction during flash heating, Nat. Geosci., 5, 574–578, https://doi.org/10.1038/ngeo1526, 2012.
Smith, D. E., Zuber, M. T., Solomon, S. C., Phillips, R. J., Head, J. W., Garvin, J. B., Banerdt, W. B., Muhleman, D. O., Pettengill, G. H., Neumann, G. A., Lemoine, F. G., Abshire, J. B., Aharonson, O., David, C., Brown, Hauck, S. A., Ivanov, A. B., McGovern, P. J., Zwally, H. J., and Duxbury, T. C.: The Global Topography of Mars and Implications for Surface Evolution, Science, 284, 1495–1503, https://doi.org/10.1126/science.284.5419.1495, 1999.
Thordarson, T. and Höskuldsson, Á.: Iceland: Classic Geology in Europe 3, in: 3rd Edn., Dunedin Academic Press, 280 pp., ISBN 10:1780460929 ISBN 13:978-1780460925,2022.
Vardoulakis, I.: Catastrophic landslides due to frictional heating of the failure plane, Mech. Cohes.-Frict. Mater., 5, 443–467, https://doi.org/10.1002/1099-1484(200008)5:6<443::AID-CFM104>3.0.CO;2-W, 2000.
Vick, L. M., Mikkelsen, M., Corner, G. D., Kjellman, S. E., Trønnes, L., Hormes, A., Allaart, L., and Bergh, S. G.: Evolution and temporal constraints of a multiphase postglacial rock slope failure, Geomorphology, 398, 108069, https://doi.org/10.1016/j.geomorph.2021.108069, 2021.
Voight, B. and Faust, C.: Frictional heat and strength loss in some rapid landslides, Géotechnique, 32, 43–54, https://doi.org/10.1680/geot.1982.32.1.43, 1982.
Watkins, J. A., Ehlmann, B. L., and Yin, A.: Long-runout landslides and the long-lasting effects of early water activity on Mars, Geology, 43, 107–110, https://doi.org/10.1130/G36215.1, 2015.
Weidinger, J. T., Korup, O., Munack, H., Altenberger, U., Dunning, S. A., Tippelt, G., and Lottermoser, W.: Giant rockslides from the inside, Earth Planet. Sc. Lett., 389, 62–73, https://doi.org/10.1016/j.epsl.2013.12.017, 2014.
Whalley, W. B., Douglas, G. R., and Jonsson, A.: The Magnitude and Frequency of Large Rockslides in Iceland in the Postglacial, Geogr. Ann. A, 65, 99–110, https://doi.org/10.2307/520724, 1983.
Wyrwoll, K. H.: Causes of rock-slope failure in a cold area: Labrador-Ungava., in: Reviews in Engineering Geology: Vol. 3 – Landslides, Geological Society of America, 59–67, https://doi.org/10.1130/REG3-p57, 1977.
Zuber, M. T., Smith, D. E., Solomon, S. C., Muhleman, D. O., Head, J. W., Garvin, J. B., Abshire, J. B., and Bufton, J. L.: The Mars Observer laser altimeter investigation, J. Geophys. Res.-Planets, 97, 7781–7797, https://doi.org/10.1029/92JE00341, 1992.
Short summary
We show that Icelandic long-runout landslides with longitudinal ridges represent good analogues of Martian landforms. The large record of long-runout landslides with longitudinal ridges emplaced after the Last Glacial Maximum in Iceland offers a unique opportunity to study the possible relation between the development of these landforms and environmental conditions. This could have implications for reconstructing Martian paleoclimatic and paleoenvironmental conditions.
We show that Icelandic long-runout landslides with longitudinal ridges represent good analogues...
Special issue