Articles | Volume 12, issue 3
https://doi.org/10.5194/esurf-12-691-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-691-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geomorphic risk maps for river migration using probabilistic modeling – a framework
Brayden Noh
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
Omar Wani
CORRESPONDING AUTHOR
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
Department of Civil and Urban Engineering, New York University, Brooklyn, NY 11201, USA
Kieran B. J. Dunne
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, the Netherlands
Michael P. Lamb
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
Related authors
No articles found.
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
Earth Surf. Dynam., 12, 1267–1294, https://doi.org/10.5194/esurf-12-1267-2024, https://doi.org/10.5194/esurf-12-1267-2024, 2024
Short summary
Short summary
Fine sediment grains in freshwater can cohere into faster-settling particles called flocs, but floc settling velocity theory has not been fully validated. Combining three data sources in novel ways in the Wax Lake Delta, we verified a semi-empirical model relying on turbulence and geochemical factors. For a physics-based model, we showed that the representative grain diameter within flocs relies on floc structure and that heterogeneous flow paths inside flocs increase floc settling velocity.
Gary Parker, Chenge An, Michael P. Lamb, Marcelo H. Garcia, Elizabeth H. Dingle, and Jeremy G. Venditti
Earth Surf. Dynam., 12, 367–380, https://doi.org/10.5194/esurf-12-367-2024, https://doi.org/10.5194/esurf-12-367-2024, 2024
Short summary
Short summary
River morphology has traditionally been divided by the size 2 mm. We use dimensionless arguments to show that particles in the 1–5 mm range (i) are the finest range not easily suspended by alluvial flood flows, (ii) are transported preferentially over coarser gravel, and (iii), within limits, are also transported preferentially over sand. We show how fluid viscosity mediates the special status of sediment in this range.
Madison M. Douglas, Gen K. Li, Woodward W. Fischer, Joel C. Rowland, Preston C. Kemeny, A. Joshua West, Jon Schwenk, Anastasia P. Piliouras, Austin J. Chadwick, and Michael P. Lamb
Earth Surf. Dynam., 10, 421–435, https://doi.org/10.5194/esurf-10-421-2022, https://doi.org/10.5194/esurf-10-421-2022, 2022
Short summary
Short summary
Arctic rivers erode into permafrost and mobilize organic carbon, which can react to form greenhouse gasses or be re-buried in floodplain deposits. We collected samples on a permafrost floodplain in Alaska to determine if more carbon is eroded or deposited by river meandering. The floodplain contained a mixture of young carbon fixed by the biosphere and old, re-deposited carbon. Thus, sediment storage may allow Arctic river floodplains to retain aged organic carbon even when permafrost thaws.
Cited articles
Benda, L. and Dunne, T.: Stochastic forcing of sediment supply to channel networks from landsliding and debris flow, Water Resour. Res., 33, 2849–2863, 1997a. a
Benda, L. and Dunne, T.: Stochastic forcing of sediment routing and storage in channel networks, Water Resour. Res., 33, 2865–2880, 1997b. a
Benda, L. E., Miller, D. J., Dunne, T., Reeves, G. H., and Agee, J. K.: Dynamic landscape systems, River ecology and management: lessons from the Pacific coastal ecoregion, Springer, New York, 261–288, ISBN 978-0-387-95246-8, 1998. a
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006. a
Beven, K. and Lane, S.: On (in)validating environmental models. 1. Principles for formulating a Turing‐like Test for determining when a model is fit-for purpose, Hydrol. Process., 36, e14704, https://doi.org/10.1002/hyp.14704, 2022. a, b, c
Bogoni, M., Putti, M., and Lanzoni, S.: Modeling meander morphodynamics over self-formed heterogeneous floodplains, Water Resour. Res., 53, 5137–5157, https://doi.org/10.1002/2017wr020726, 2017. a, b
Borgomeo, E., Hall, J. W., Fung, F., Watts, G., Colquhoun, K., and Lambert, C.: Risk‐based water resources planning: Incorporating probabilistic nonstationary climate uncertainties, Water Resour. Res., 50, 6850–6873, https://doi.org/10.1002/2014wr015558, 2014. a
Büchele, B., Kreibich, H., Kron, A., Thieken, A., Ihringer, J., Oberle, P., Merz, B., and Nestmann, F.: Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks, Nat. Hazards Earth Syst. Sci., 6, 485–503, https://doi.org/10.5194/nhess-6-485-2006, 2006. a
Caers, J.: Modeling Uncertainty in the Earth Sciences, Wiley, ISBN 9781119995920, https://doi.org/10.1002/9781119995920, 2011. a
Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C., and Lazarus, E. D.: Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin, Nat. Geosci., 7, 899–903, 2014. a
Dietrich, W. E. and Smith, J. D.: Influence of the point bar on flow through curved channels, Water Resourc. Res., 19, 1173–1192, https://doi.org/10.1029/wr019i005p01173, 1983. a
Donovan, M., Belmont, P., and Sylvester, Z.: Evaluating the Relationship Between Meander‐Bend Curvature, Sediment Supply, and Migration Rates, J. Geophys. Res.-Earth, 126, e2020JF006058, https://doi.org/10.1029/2020jf006058, 2021. a
Dunne, T., Malmon, D. V., and Dunne, K. B.: Limits on the morphogenetic role of rain splash transport in hillslope evolution, J. Geophys. Res.-Earth, 121, 609–622, 2016. a
Emanuel, K., Ravela, S., Vivant, E., and Risi, C.: A Statistical Deterministic Approach to Hurricane Risk Assessment, B. Am. Meteorol. Soc., 87, 299–314, https://doi.org/10.1175/bams-87-3-299, 2006. a
Filip, S., Javeed, A., and Trefethen, L. N.: Smooth Random Functions, Random ODEs, and Gaussian Processes, SIAM Rev., 61, 185–205, https://doi.org/10.1137/17m1161853, 2019. a
Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J.:
emcee: The MCMC Hammer, Publ. Astron. Soc. Pacif., 125, 306–312, https://doi.org/10.1086/670067, 2013. a
Foreman-Mackey, D., Farr, W. M., Sinha, M., Archibald, A. M., Hogg, D. W., Sanders, J. S., Zuntz, J., Williams, P. K. G., Nelson, A. R. J., de Val-Borro, M., Erhardt, T., Pashchenko, I., and Pla, O. A.: emcee v3: A Python ensemble sampling toolkit for affine-invariant MCMC, arXiv [preprint], https://doi.org/10.48550/ARXIV.1911.07688, 2019. a
Furbish, D. J., Haff, P. K., Roseberry, J. C., and Schmeeckle, M. W.: A probabilistic description of the bed load sediment flux: 1. Theory, J. Geophys. Res.-Earth, 117, F03031, https://doi.org/10.1029/2012jf002352, 2012. a
Gaull, B. A., Michael‐Leiba, M. O., and Rynn, J. M. W.: Probabilistic earthquake risk maps of Australia, Aust. J. Earth Sci., 37, 169–187, https://doi.org/10.1080/08120099008727918, 1990. a
Goodman, J. and Weare, J.: Ensemble samplers with affine invariance, Commun. Appl. Math. Comput. Sci., 5, 65–80, https://doi.org/10.2140/camcos.2010.5.65, 2010. a
Güneralp, İ. and Rhoads, B. L.: Influence of floodplain erosional heterogeneity on planform complexity of meandering rivers, Geophys. Res. Lett., 38, L14401, https://doi.org/10.1029/2011GL048134, 2011. a
Güneralp, İ., Abad, J. D., Zolezzi, G., and Hooke, J.: Advances and challenges in meandering channels research, Geomorphology, 163–164, 1–9, https://doi.org/10.1016/j.geomorph.2012.04.011, 2012. a
Higdon, D., Kennedy, M., Cavendish, J. C., Cafeo, J. A., and Ryne, R. D.: Combining Field Data and Computer Simulations for Calibration and Prediction, SIAM J. Sci. Comput., 26, 448–466, https://doi.org/10.1137/s1064827503426693, 2004. a
Howard, A. D. and Knutson, T. R.: Sufficient conditions for river meandering: A simulation approach, Water Resour. Res., 20, 1659–1667, https://doi.org/10.1029/wr020i011p01659, 1984. a, b
Jarriel, T., Swartz, J., and Passalacqua, P.: Global rates and patterns of channel migration in river deltas, P. Natl. Acad. Sci. USA, 118, e2103178118, https://doi.org/10.1073/pnas.2103178118, 2021. a
Jerolmack, D. J.: Causes and effects of noise in landscape dynamics, Eos Trans. Am. Geophys. Union, 92, 385–386, https://doi.org/10.1029/2011eo440001, 2011. a
Kennedy, M. C. and O'Hagan, A.: Bayesian calibration of computer models, J. Roy. Stat. Soc. B, 63, 425–464, https://doi.org/10.1111/1467-9868.00294, 2001. a
Korup, O.: Bayesian geomorphology, Earth Surf. Proc. Land., 46, 151–172, https://doi.org/10.1002/esp.4995, 2021. a
Lagasse, P. F.: Handbook for Predicting Stream Meander Migration, National Cooperative Highway Research Program (NCHRP) Report 533, Transportation Research Board, Washington, D.C., 533 pp., https://doi.org/10.17226/23346, 2004. a
Langhorst, T. and Pavelsky, T.: Global observations of riverbank erosion and accretion from Landsat imagery, J. Geophys. Res.-Earth, 128, e2022JF006774, https://doi.org/10.1029/2022JF006774, 2023. a
Liu, Y., Freer, J., Beven, K., and Matgen, P.: Towards a limits of acceptability approach to the calibration of hydrological models: Extending observation error, J. Hydrol., 367, 93–103, https://doi.org/10.1016/j.jhydrol.2009.01.016, 2009. a
Martin, H. K. and Edmonds, D. A.: The push and pull of abandoned channels: how floodplain processes and healing affect avulsion dynamics and alluvial landscape evolution in foreland basins, Earth Surf. Dynam., 10, 555–579, https://doi.org/10.5194/esurf-10-555-2022, 2022. a
Neal, J., Keef, C., Bates, P., Beven, K., and Leedal, D.: Probabilistic flood risk mapping including spatial dependence, Hydrol. Process., 27, 1349–1363, https://doi.org/10.1002/hyp.9572, 2012. a
Noh, B.: Stochastic River Migration, GitHub [code and data set], https://github.com/braydennoh/StochasticRiverMigration (last access: 7 May 2024), 2024. a
Parker, G., Shimizu, Y., Wilkerson, G. V., Eke, E. C., Abad, J. D., Lauer, J. W., Paola, C., Dietrich, W. E., and Voller, V. R.: A new framework for modeling the migration of meandering rivers, Earth Surf. Proc. Land., 36, 70–86, https://doi.org/10.1002/esp.2113, 2010. a
Phillips, C. B., Masteller, C. C., Slater, L. J., Dunne, K. B. J., Francalanci, S., Lanzoni, S., Merritts, D. J., Lajeunesse, E., and Jerolmack, D. J.: Threshold constraints on the size, shape and stability of alluvial rivers, Nat. Rev. Earth Environ., 3, 406–419, https://doi.org/10.1038/s43017-022-00282-z, 2022. a
Posner, A. J. and Duan, J. G.: Simulating river meandering processes using stochastic bank erosion coefficient, Geomorphology, 163–164, 26–36, https://doi.org/10.1016/j.geomorph.2011.05.025, 2012. a, b
Rasmussen, C. E. and Williams, C. K. I.: Gaussian Processes for Machine Learning, The MIT Press, https://doi.org/10.7551/mitpress/3206.001.0001, 2005. a
Reichert, P.: Towards a comprehensive uncertainty assessment in environmental research and decision support, Water Sci. Technol., 81, 1588–1596, https://doi.org/10.2166/wst.2020.032, 2020. a
Reichert, P. and Schuwirth, N.: Linking statistical bias description to multiobjective model calibration, Water Resour. Res., 48, W09543, https://doi.org/10.1029/2011wr011391, 2012. a
Reichert, P., Langhans, S. D., Lienert, J., and Schuwirth, N.: The conceptual foundation of environmental decision support, J. Environ. Manage., 154, 316–332, https://doi.org/10.1016/j.jenvman.2015.01.053, 2015. a
Roberts, G. G. and Wani, O.: A theory of stochastic fluvial landscape evolution, P. Roy. Soc. A, 480, 20230456, https://doi.org/10.1098/rspa.2023.0456, 2024. a
Roseberry, J. C., Schmeeckle, M. W., and Furbish, D. J.: A probabilistic description of the bed load sediment flux: 2. Particle activity and motions, J. Geophys. Res.-Earth, 117, F03032, https://doi.org/10.1029/2012jf002353, 2012. a
Santini, W., Camenen, B., Le Coz, J., Vauchel, P., Guyot, J.-L., Lavado, W., Carranza, J., Paredes, M. A., Pérez Arévalo, J. J., Arévalo, N., Espinoza Villar, R., Julien, F., and Martinez, J.-M.: An index concentration method for suspended load monitoring in large rivers of the Amazonian foreland, Earth Surf. Dynam., 7, 515–536, https://doi.org/10.5194/esurf-7-515-2019, 2019. a
Scheidegger, A. E.: Theoretical Geomorphology, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-75659-7, 1991. a, b
Schwenk, J. and Foufoula-Georgiou, E.: Meander cutoffs nonlocally accelerate upstream and downstream migration and channel widening, Geophys. Res. Lett., 43, 12437–12445, https://doi.org/10.1002/2016GL071670, 2016. a
Slingo, J. and Palmer, T.: Uncertainty in weather and climate prediction, Philos. T. Roy. Soc. A, 369, 4751–4767, https://doi.org/10.1098/rsta.2011.0161, 2011. a
Sylvester, Z., Durkin, P., and Covault, J. A.: High curvatures drive river meandering, Geology, 47, 263–266, https://doi.org/10.1130/G45608.1, 2019. a, b, c
Van Kampen, N. (Ed.): Chapter IV – MARKOV PROCESSES, in: Stochastic Processes in Physics and Chemistry, 3rd Edn., North-Holland Personal Library, Elsevier, Amsterdam, 73–95, https://doi.org/10.1016/B978-044452965-7/50007-6, 2007. a
Wani, O., Beckers, J. V. L., Weerts, A. H., and Solomatine, D. P.: Residual uncertainty estimation using instance-based learning with applications to hydrologic forecasting, Hydrol. Earth Syst. Sci., 21, 4021–4036, https://doi.org/10.5194/hess-21-4021-2017, 2017a. a
Wani, O., Scheidegger, A., Carbajal, J. P., Rieckermann, J., and Blumensaat, F.: Parameter estimation of hydrologic models using a likelihood function for censored and binary observations, Water Res., 121, 290–301, https://doi.org/10.1016/j.watres.2017.05.038, 2017b. a
Wani, O., Scheidegger, A., Cecinati, F., Espadas, G., and Rieckermann, J.: Exploring a copula-based alternative to additive error models – for non-negative and autocorrelated time series in hydrology, J. Hydrol., 575, 1031–1040, https://doi.org/10.1016/j.jhydrol.2019.06.006, 2019. a
Wiel, M. J. V. D. and Darby, S. E.: A new model to analyse the impact of woody riparian vegetation on the geotechnical stability of riverbanks, Earth Surf. Proc. Land., 32, 2185–2198, https://doi.org/10.1002/esp.1522, 2007. a
Wu, Q., Ke, L., Wang, J., Pavelsky, T. M., Allen, G. H., Sheng, Y., Duan, X., Zhu, Y., Wu, J., Wang, L., Liu, K., Chen, T., Zhang, W., Fan, C., Yong, B., and Song, C.: Satellites reveal hotspots of global river extent change, Nat. Commun., 14, 1587, https://doi.org/10.1038/s41467-023-22158-7, 2023. a
Zargar, A., Sadiq, R., Naser, B., and Khan, F. I.: A review of drought indices, Environ. Rev., 19, 333–349, https://doi.org/10.1139/a11-013, 2011. a
Zhao, K., Coco, G., Gong, Z., Darby, S. E., Lanzoni, S., Xu, F., Zhang, K., and Townend, I.: A Review on Bank Retreat: Mechanisms, Observations, and Modeling, Rev. Geophys., 60, e2021RG000761, https://doi.org/10.1029/2021rg000761, 2022. a
Editor
River meandering is a long standing source of interest for scientists interested in how the Earths surface is shaped. Here, Noh et al., use a novel probablistic approach to create geomorphic risk maps where areas that have the potential for meandering can be assessed in an arguably more rigorous way than before.
River meandering is a long standing source of interest for scientists interested in how the...
Short summary
In this paper, we propose a framework for generating risk maps that provide the probabilities of erosion due to river migration. This framework uses concepts from probability theory to learn the river migration model's parameter values from satellite data while taking into account parameter uncertainty. Our analysis shows that such geomorphic risk estimation is more reliable than models that do not explicitly consider various sources of variability and uncertainty.
In this paper, we propose a framework for generating risk maps that provide the probabilities of...