Articles | Volume 12, issue 4
https://doi.org/10.5194/esurf-12-841-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-841-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exotic tree plantations in the Chilean Coastal Range: balancing the effects of discrete disturbances, connectivity, and a persistent drought on catchment erosion
Violeta Tolorza
CORRESPONDING AUTHOR
Vicerrectoría de Investigación y Postgrado (VRIP), Universidad de La Frontera, 4811230 Temuco, Chile
Christian H. Mohr
Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
Mauricio Zambrano-Bigiarini
Department of Civil Engineering, Universidad de La Frontera, 4811230 Temuco, Chile
Center for Climate and Resilience Research (CR2), Blanco Encalada 2002, Santiago, Chile
Benjamín Sotomayor
Dron Aerogeomática SpA, Spatial Data and Analysis in Aysén, Coyhaique, Chile
Dagoberto Poblete-Caballero
Faculty of Agronomic Sciences, Universidad de Chile, 11315 Santiago, Chile
Sebastien Carretier
Géosciences Environnement Toulouse, IRD, OMP, UPS, CNRS, Université de Toulouse, Toulouse, France
Mauricio Galleguillos
Center for Climate and Resilience Research (CR2), Blanco Encalada 2002, Santiago, Chile
Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Peñalolen, Chile
Oscar Seguel
Faculty of Agronomic Sciences, Universidad de Chile, 11315 Santiago, Chile
Related authors
Cristóbal Soto-Escobar, Mauricio Zambrano-Bigiarini, Violeta Tolorza, and René Garreaud
EGUsphere, https://doi.org/10.5194/egusphere-2025-621, https://doi.org/10.5194/egusphere-2025-621, 2025
Short summary
Short summary
This study aims to better understand how the spatial distribution, temporal trends and data length of hourly precipitation data influence the computation of stationary and non-stationary annual maximum precipitation intensities in a study area with diverse climate zones and topography. Our results reveal spatial differences and similarities in rainfall intensities derived from five hourly gridded precipitation datasets. Non-stationary intensities were slightly lower values than stationary ones.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
Biogeosciences, 21, 1583–1599, https://doi.org/10.5194/bg-21-1583-2024, https://doi.org/10.5194/bg-21-1583-2024, 2024
Short summary
Short summary
Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment.
René Garreaud, Juan Pablo Boisier, Camila Alvarez-Garreton, Duncan A. Christie, Tomás Carrasco-Escaff, Iván Vergara, Roberto O. Chávez, Paulina Aldunce, Pablo Camus, Manuel Suazo-Álvarez, Mariano Masiokas, Gabriel Castro, Ariel Muñoz, Mauricio Zambrano-Bigiarini, Rodrigo Fuster, and Lintsiee Godoy
Hydrol. Earth Syst. Sci., 29, 5347–5369, https://doi.org/10.5194/hess-29-5347-2025, https://doi.org/10.5194/hess-29-5347-2025, 2025
Short summary
Short summary
This study focuses on hyperdroughts (HDs) in central Chile, defined as years with a regional rainfall deficit exceeding 75 %. Only five HDs occurred in the last century (1924, 1968, 1998, 2019, 2021), but they caused disproportionate environmental and social impacts. In some systems, the effects were larger than expected from those considering moderate droughts and dependent on the antecedent conditions. HDs have analogs from the remote past, and they are expected to increase in the near future.
Juan Pablo Boisier, Camila Alvarez-Garreton, Rodrigo Marinao, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 29, 5185–5212, https://doi.org/10.5194/hess-29-5185-2025, https://doi.org/10.5194/hess-29-5185-2025, 2025
Short summary
Short summary
Our study assesses water stress in Chile from the mid-20th century to the end of the 21st century using novel datasets on water availability, land use, and water demand. We compute a water stress index for all basins in the country and show that, in addition to declining precipitation, rising water demand drives a steady increase in stress. As a drier future is projected for central Chile, the water stress index provides a useful tool for guiding water governance and adaptation strategies.
Daniel Nuñez-Ibarra, Mauricio Zambrano-Bigiarini, and Mauricio Galleguillos
EGUsphere, https://doi.org/10.5194/egusphere-2025-2606, https://doi.org/10.5194/egusphere-2025-2606, 2025
Short summary
Short summary
Soil moisture plays a key role in how land and climate interact, yet it remains difficult to measure in remote or natural areas. This study compared four state-of-the-art soil moisture datasets against ground data from ten sites in Chile. Results show that some products perform better in humid areas, while others do better in dry regions. The work highlights which datasets are most reliable and suggests new ways to assess how well they track changes after rainfall events.
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025, https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Short summary
Hydrological droughts affect ecosystems and socioeconomic activities worldwide. Despite the fact that they are commonly described with the Standardized Streamflow Index (SSI), there is limited understanding of what they truly reflect in terms of water cycle processes. Here, we used state-of-the-art hydrological models in Andean basins to examine drivers of SSI fluctuations. The results highlight the importance of careful selection of indices and timescales for accurate drought characterization and monitoring.
Cristóbal Soto-Escobar, Mauricio Zambrano-Bigiarini, Violeta Tolorza, and René Garreaud
EGUsphere, https://doi.org/10.5194/egusphere-2025-621, https://doi.org/10.5194/egusphere-2025-621, 2025
Short summary
Short summary
This study aims to better understand how the spatial distribution, temporal trends and data length of hourly precipitation data influence the computation of stationary and non-stationary annual maximum precipitation intensities in a study area with diverse climate zones and topography. Our results reveal spatial differences and similarities in rainfall intensities derived from five hourly gridded precipitation datasets. Non-stationary intensities were slightly lower values than stationary ones.
Rémi Bossis, Vincent Regard, Sébastien Carretier, and Sandrine Choy
Earth Surf. Dynam., 13, 71–79, https://doi.org/10.5194/esurf-13-71-2025, https://doi.org/10.5194/esurf-13-71-2025, 2025
Short summary
Short summary
The erosion of rocky coasts occurs episodically through wave action and landslides, constituting a major natural hazard. Documenting the factors that control the coastal retreat rate over millennia is fundamental to evidencing any change in time. However, the known rates to date are essentially representative of the last few decades. Here, we present a new method using the concentration of an isotope, 10Be, in sediment eroded from the cliff to quantify its retreat rate averaged over millennia.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Javier González, Roberto Rondanelli, Eugenia Gayó, and Mauricio Zambrano-Bigiarini
Hydrol. Earth Syst. Sci., 28, 1605–1616, https://doi.org/10.5194/hess-28-1605-2024, https://doi.org/10.5194/hess-28-1605-2024, 2024
Short summary
Short summary
This opinion paper reflects on the risks of overusing groundwater savings to supply permanent water use requirements. Using novel data recently developed for Chile, we reveal how groundwater is being overused, causing ecological and socioeconomic impacts and concealing a Day Zero
scenario. Our argument underscores the need for reformed water allocation rules and sustainable management, shifting from a perception of groundwater as an unlimited source to a finite and vital one.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
Biogeosciences, 21, 1583–1599, https://doi.org/10.5194/bg-21-1583-2024, https://doi.org/10.5194/bg-21-1583-2024, 2024
Short summary
Short summary
Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024, https://doi.org/10.5194/hess-28-1415-2024, 2024
Short summary
Short summary
Various drought indices exist, but there is no consensus on which index to use to assess streamflow droughts. This study addresses meteorological, soil moisture, and snow indices along with their temporal scales to assess streamflow drought across hydrologically diverse catchments. Using data from 100 Chilean catchments, findings suggest that there is not a single drought index that can be used for all catchments and that snow-influenced areas require drought indices with larger temporal scales.
Jorge F. Perez-Quezada, David Trejo, Javier Lopatin, David Aguilera, Bruce Osborne, Mauricio Galleguillos, Luca Zattera, Juan L. Celis-Diez, and Juan J. Armesto
Biogeosciences, 21, 1371–1389, https://doi.org/10.5194/bg-21-1371-2024, https://doi.org/10.5194/bg-21-1371-2024, 2024
Short summary
Short summary
For 8 years we sampled a temperate rainforest and a peatland in Chile to estimate their efficiency to capture carbon per unit of water lost. The efficiency is more related to the water lost than to the carbon captured and is mainly driven by evaporation instead of transpiration. This is the first report from southern South America and highlights that ecosystems might behave differently in this area, likely explained by the high annual precipitation (~ 2100 mm) and light-limited conditions.
Vincent Regard, Rafael Almar, Marcan Graffin, Sébastien Carretier, Edward Anthony, Roshanka Ranasinghe, and Pierre Maffre
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-165, https://doi.org/10.5194/nhess-2023-165, 2023
Publication in NHESS not foreseen
Short summary
Short summary
The erosion of sandy beaches affects human activities and ecosystems. Research has mainly focused on sea level and wave changes, and while localized sediment research is abundant, the global effect of reduced fluvial sediment supply remains unexplored. This study presents a global sediment model that demonstrates the significant impact of river dams on beach erosion worldwide. Sediment can travel long distances via wave-induced transport, often away from river outlets.
Sébastien Carretier, Vincent Regard, Youssouf Abdelhafiz, and Bastien Plazolles
Geosci. Model Dev., 16, 6741–6755, https://doi.org/10.5194/gmd-16-6741-2023, https://doi.org/10.5194/gmd-16-6741-2023, 2023
Short summary
Short summary
We present the development of a code to simulate simultaneously the dynamics of landscapes over geological time and the evolution of the concentration of cosmogenic isotopes in grains throughout their transport from the slopes to the river outlets. This new model makes it possible to study the relationship between the detrital signal of cosmogenic isotope concentration measured in sediment and the erosion--deposition processes in watersheds.
Rémi Bossis, Vincent Regard, and Sébastien Carretier
Earth Surf. Dynam., 11, 529–545, https://doi.org/10.5194/esurf-11-529-2023, https://doi.org/10.5194/esurf-11-529-2023, 2023
Short summary
Short summary
This study presents a method to calculate the volume of rock eroded by the sea on volcanic islands, by reconstructing their pre-erosion shape and size. The method has been applied on Corvo Island (Azores). We show that before the island was eroded, it was roughly 8 km wide and 1 km high. The island has lost more than 6 km3 of rock and 80 % of its surface. We also show that the erosion of sea cliffs is mainly due to the moderate and most frequent waves.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Nicolás Riveras-Muñoz, Steffen Seitz, Kristina Witzgall, Victoria Rodríguez, Peter Kühn, Carsten W. Mueller, Rómulo Oses, Oscar Seguel, Dirk Wagner, and Thomas Scholten
SOIL, 8, 717–731, https://doi.org/10.5194/soil-8-717-2022, https://doi.org/10.5194/soil-8-717-2022, 2022
Short summary
Short summary
Biological soil crusts (biocrusts) stabilize the soil surface mainly in arid regions but are also present in Mediterranean and humid climates. We studied this stabilizing effect through wet and dry sieving along a large climatic gradient in Chile and found that the stabilization of soil aggregates persists in all climates, but their role is masked and reserved for a limited number of size fractions under humid conditions by higher vegetation and organic matter contents in the topsoil.
Alejandro Miranda, Rayén Mentler, Ítalo Moletto-Lobos, Gabriela Alfaro, Leonardo Aliaga, Dana Balbontín, Maximiliano Barraza, Susanne Baumbach, Patricio Calderón, Fernando Cárdenas, Iván Castillo, Gonzalo Contreras, Felipe de la Barra, Mauricio Galleguillos, Mauro E. González, Carlos Hormazábal, Antonio Lara, Ian Mancilla, Francisca Muñoz, Cristian Oyarce, Francisca Pantoja, Rocío Ramírez, and Vicente Urrutia
Earth Syst. Sci. Data, 14, 3599–3613, https://doi.org/10.5194/essd-14-3599-2022, https://doi.org/10.5194/essd-14-3599-2022, 2022
Short summary
Short summary
Achieving a local understanding of fire regimes requires high-resolution, systematic and dynamic data. High-quality information can help to transform evidence into decision-making. Taking advantage of big-data and remote sensing technics we developed a flexible workflow to reconstruct burned area and fire severity data for more than 8000 individual fires in Chile. The framework developed for the database can be applied anywhere in the world with minimal adaptation.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Pablo A. Mendoza, Ian McNamara, Hylke E. Beck, Joschka Thurner, Alexandra Nauditt, Lars Ribbe, and Nguyen Xuan Thinh
Hydrol. Earth Syst. Sci., 25, 5805–5837, https://doi.org/10.5194/hess-25-5805-2021, https://doi.org/10.5194/hess-25-5805-2021, 2021
Short summary
Short summary
Most rivers worldwide are ungauged, which hinders the sustainable management of water resources. Regionalisation methods use information from gauged rivers to estimate streamflow over ungauged ones. Through hydrological modelling, we assessed how the selection of precipitation products affects the performance of three regionalisation methods. We found that a precipitation product that provides the best results in hydrological modelling does not necessarily perform the best for regionalisation.
Cited articles
Alaniz, A. J., Abarzúa, A. M., Martel-Cea, A., Jarpa, L., Hernández, M., Aquino-López, M. A., and Smith-Ramírez, C.: Linking sedimentological and spatial analysis to assess the impact of the forestry industry on soil loss: The case of Lanalhue Basin, Chile, CATENA, 207, 105660, https://doi.org/10.1016/j.catena.2021.105660, 2021. a
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018. a
Andermann, C., Crave, A., Gloaguen, R., Davy, P., and Bonnet, S.: Connecting source and transport: Suspended sediments in the Nepal Himalayas, Earth Planet. Sc. Lett., 351–352, 158–170, https://doi.org/10.1016/j.epsl.2012.06.059, 2012. a
Armesto, J. J., Manuschevich, D., Mora, A., Smith-Ramirez, C., Rozzi, R., Abarzúa, A. M., and Marquet, P. a.: From the Holocene to the Anthropocene: A historical framework for land cover change in southwestern South America in the past 15,000 years, Land Use Policy, 27, 148–160, https://doi.org/10.1016/j.landusepol.2009.07.006, 2010. a
Banfield, C. C., Braun, A. C., Barra, R., Castillo, A., and Vogt, J.: Erosion proxies in an exotic tree plantation question the appropriate land use in Central Chile, CATENA, 161, 77–84, https://doi.org/10.1016/j.catena.2017.10.017, 2018. a, b
Barros, S.: Evolución de las plantaciones forestales en Chile. Forestación y reforestación, Ciencia e Investigación Forestal, 24, 89–115, https://bibliotecadigital.infor.cl/handle/20.500.12220/28235 (last access: 28 June 2024), 2018. a
Bernhard, N., Moskwa, L.-M., Schmidt, K., Oeser, R. A., Aburto, F., Bader, M. Y., Baumann, K., von Blanckenburg, F., Boy, J., van den Brink, L., Brucker, E., Büdel, B., Canessa, R., Dippold, M. A., Ehlers, T. A., Fuentes, J. P., Godoy, R., Jung, P., Karsten, U., Köster, M., Kuzyakov, Y., Leinweber, P., Neidhardt, H., Matus, F., Mueller, C. W., Oelmann, Y., Oses, R., Osses, P., Paulino, L., Samolov, E., Schaller, M., Schmid, M., Spielvogel, S., Spohn, M., Stock, S., Stroncik, N., Tielbörger, K., Übernickel, K., Scholten, T., Seguel, O., Wagner, D., and Kühn, P.: Pedogenic and microbial interrelations to regional climate and local topography: New insights from a climate gradient (arid to humid) along the Coastal Cordillera of Chile, CATENA, 170, 335–355, https://doi.org/10.1016/j.catena.2018.06.018, 2018. a
Bianchi-Gundian, V.: Erosión. Cáncer del suelo, Imprenta Universitaria, Santiago de Chile, 1947. a
Bladon, K. D., Emelko, M. B., Silins, U., and Stone, M.: Wildfire and the Future of Water Supply, Environ. Sci. Technol., 48, 8936–8943, https://doi.org/10.1021/es500130g, 2014. a
Boardman, J., Vandaele, K., Evans, R., and Foster, I. D.: Off-site impacts of soil erosion and runoff: Why connectivity is more important than erosion rates, Soil Use Manage., 35, 245–256, https://doi.org/10.1111/sum.12496, 2019. a
Boisier, J. P., Alvarez-Garreton, C., Cordero, R. R., Damiani, A., Gallardo, L., Garreaud, R. D., Lambert, F., Ramallo, C., Rojas, M., and Rondanelli, R.: Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations, Elementa, 6, 74, https://doi.org/10.1525/elementa.328, 2018. a
Bonilla, C. A. and Johnson, O. I.: Soil erodibility mapping and its correlation with soil properties in Central Chile, Geoderma, 189–190, 116–123, https://doi.org/10.1016/j.geoderma.2012.05.005, 2012. a
Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C., Wuepper, D., Montanarella, L., and Ballabio, C.: Land use and climate change impacts on global soil erosion by water (2015–2070), P. Natl. Acad. Sci. USA, 117, 21994–22001, https://doi.org/10.1073/pnas.2001403117, 2020. a
Bowman, D. M. J. S., Moreira-Muñoz, A., Kolden, C. A., Chávez, R. O., Muñoz, A. A., Salinas, F., González-Reyes, A., Rocco, R., de la Barrera, F., Williamson, G. J., Borchers, N., Cifuentes, L. A., Abatzoglou, J. T., and Johnston, F. H.: Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires, Ambio, 48, 350–362, https://doi.org/10.1007/s13280-018-1084-1, 2019. a
Braucher, R., Merchel, S., Borgomano, J., and Bourlès, D.: Production of cosmogenic radionuclides at great depth: A multi element approach, Earth Planet. Sc. Lett., 309, 1–9, https://doi.org/10.1016/j.epsl.2011.06.036, 2011. a
Brodersen, K. H., Ong, C. S., Stephan, K. E., and Buhmann, J. M.: The Balanced Accuracy and Its Posterior Distribution, in: 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010, pp. 3121–3124, IEEE, https://doi.org/10.1109/ICPR.2010.764, 2010. a
Brown, G. W. and Krygier, J. T.: Clear-Cut Logging and Sediment Production in the Oregon Coast Range, Water Resour. Res., 7, 1189–1198, https://doi.org/10.1029/WR007i005p01189, 1971. a, b
Cabezas, J. and Fassnacht, F. E.: Reconstructing the Vegetation Disturbance History of a Biodiversity Hotspot in Central Chile Using Landsat, Bfast and Landtrendr, in: IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018, pp. 7636–7639, IEEE, https://doi.org/10.1109/IGARSS.2018.8518863, 2018. a
Campbell, M. K., Bierman, P. R., Schmidt, A. H., Sibello Hernández, R., García-Moya, A., Corbett, L. B., Hidy, A. J., Cartas Águila, H., Guillén Arruebarrena, A., Balco, G., Dethier, D., and Caffee, M.: Cosmogenic nuclide and solute flux data from central Cuban rivers emphasize the importance of both physical and chemical mass loss from tropical landscapes, Geochronology, 4, 435–453, https://doi.org/10.5194/gchron-4-435-2022, 2022. a
Carretier, S., Regard, V., Vassallo, R., Aguilar, G., Martinod, J., Riquelme, R., Pepin, E., Charrier, R., Hérail, G., Farías, M., Guyot, J. L., Vargas, G., and Lagane, C.: Slope and climate variability control of erosion in the Andes of central Chile, Geology, 41, 195–198, https://doi.org/10.1130/G33735.1, 2013. a
Carretier, S., Tolorza, V., Regard, V., Aguilar, G., Bermúdez, M., Martinod, J., Guyot, J.-L., Hérail, G., and Riquelme, R.: Review of erosion dynamics along the major N-S climatic gradient in Chile and perspectives, Geomorphology, 300, 45–68, https://doi.org/10.1016/j.geomorph.2017.10.016, 2018. a, b, c, d, e, f, g, h, i
Cavalli, M., Trevisani, S., Comiti, F., and Marchi, L.: Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments, Geomorphology, 188, 31–41, https://doi.org/10.1016/j.geomorph.2012.05.007, 2013. a, b
Chilean Law 19.300: Decreto 40. Reglamento del Sistema de Evaluación de Impacto Ambiental, Biblioteca del Congreso Nacional de Chile, http://bcn.cl/2f8a8 (last access: 28 June 2024), 2013. a
Chuvieco, E.: Teledeteccion Ambiental: la observacion de la tierra desde el espacio, 3a edicion, Ariel Ciencia, Barcelona, ISBN 978-84-344-8073-3, 2008. a
Cifuentes-Croquevielle, C., Stanton, D. E., and Armesto, J. J.: Soil invertebrate diversity loss and functional changes in temperate forest soils replaced by exotic pine plantations, Sci. Rep.-UK, 10, 7762, https://doi.org/10.1038/s41598-020-64453-y, 2020. a, b
CIREN: Cuenca Río Purapel (Estados erosivos actuales), Centro de Información de Recursos Naturales, https://inventarioerosion.ciren.cl/layers/geonode_data:geonode:R07_083_GRADOS_EROSION (last access: 28 June 2024), 2021. a
Cisternas, M., Araneda, A., Martinez, P., and Perez, S.: Effects of historical land use on sediment yield from a lacustrine watershed in central Chile, Earth Surf. Proc. Land., 26, 63–76, https://doi.org/10.1002/1096-9837(200101)26:1<63::AID-ESP157>3.0.CO;2-J, 2001. a
Cleveland, W. S.: LOWESS: A Program for Smoothing Scatterplots by Robust Locally Weighted Regression, Am. Stati., 35, 54, https://doi.org/10.2307/2683591, 1981. a
Cortés, L., Hernández, H. J., and Silva, P.: Historic Land Cover Change assesment of Chilean Mediterranean Coast: Did forest plantations really caused fragmentation?, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3-2022, 383–388, https://doi.org/10.5194/isprs-annals-V-3-2022-383-2022, 2022. a
Covault, J. A., Craddock, W. H., Romans, B. W., Fildani, A., and Gosai, M.: Spatial and Temporal Variations in Landscape Evolution: Historic and Longer-Term Sediment Flux through Global Catchments, J. Geol., 121, 35–56, https://doi.org/10.1086/668680, 2013. a, b, c
Crovo, O., Aburto, F., Albornoz, M. F., and Southard, R.: Soil type modulates the response of C, N, P stocks and stoichiometry after native forest substitution by exotic plantations, CATENA, 197, 104997, https://doi.org/10.1016/j.catena.2020.104997, 2021. a
DellaSala, D. A.: “Real” vs. “Fake” Forests: Why Tree Plantations Are Not Forests, in: Encyclopedia of the World's Biomes, vol. 3–5, Elsevier, https://doi.org/10.1016/B978-0-12-409548-9.11684-7, pp. 47–55, 2020. a
DGA: Actualización del balance hídrico nacional, SIT N°417 Ministerio de Obras Públicas, Tech. rep., Universidad de Chile, Pontificia Universidad Católica de Chile, Ministerio de Obras Públicas, Dirección General de Aguas, División de Estudios y Planificación, Santiago, Chile, https://uchile.cl/dam/jcr:c9895061-40f4-4f23-8cf7-64737495bbad/balancehidricodga2017sit417resumenejecutivovf.pdf (last access: 28 June 2024), 2017. a
Ellis, E. C. and Ramankutty, N.: Putting people in the map: anthropogenic biomes of the world, Front. Ecol. Environ., 6, 439–447, https://doi.org/10.1890/070062, 2008. a
Ferro, V. and Minacapilli, M.: Sediment delivery processes at basin scale, Hydrolog. Sci. J., 40, 703–717, https://doi.org/10.1080/02626669509491460, 1995. a
Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley, R. D., Beckmann, T., Schmidt, G. L., Dwyer, J. L., Joseph Hughes, M., and Laue, B.: Cloud detection algorithm comparison and validation for operational Landsat data products, Remote Sens. Environ., 194, 379–390, https://doi.org/10.1016/j.rse.2017.03.026, 2017. a
Fuentealba, M., Latorre, C., Frugone-Álvarez, M., Sarricolea, P., Giralt, S., Contreras-Lopez, M., Prego, R., Bernárdez, P., and Valero-Garcés, B.: A combined approach to establishing the timing and magnitude of anthropogenic nutrient alteration in a mediterranean coastal lake-watershed system, Sci. Rep.-UK, 10, 5864, https://doi.org/10.1038/s41598-020-62627-2, 2020. a
Fuentealba, M., Latorre, C., Frugone-Álvarez, M., Sarricolea, P., Godoy-Aguirre, C., Armesto, J., Villacís, L. A., Laura Carrevedo, M., Meseguer-Ruiz, O., and Valero-Garcés, B.: Crossing a critical threshold: Accelerated and widespread land use changes drive recent carbon and nitrogen dynamics in Vichuquén Lake (35°S) in central Chile, Sci. Total Environ., 791, https://doi.org/10.1016/j.scitotenv.2021.148209, 2021. a
Gabet, E. J., Mudd, S. M., Wood, R. W., Grieve, S. W. D., Binnie, S. A., and Dunai, T. J.: Hilltop Curvature Increases With the Square Root of Erosion Rate, J. Geophys. Res.-Earth, 126, 1–16, https://doi.org/10.1029/2020jf005858, 2021. a
Galleguillos, M., Gimeno, F., Puelma, C., Zambrano-Bigiarini, M., Lara, A., and Rojas, M.: Disentangling the effect of future land use strategies and climate change on streamflow in a Mediterranean catchment dominated by tree plantations, J. Hydrol., 595, 126047, https://doi.org/10.1016/j.jhydrol.2021.126047, 2021. a
Garreaud, R. D., Boisier, J. P., Rondanelli, R., Montecinos, A., Sepúlveda, H. H., and Veloso-Aguila, D.: The Central Chile Mega Drought (2010–2018): A climate dynamics perspective, Int. J. Climatol., 40, 421–439, https://doi.org/10.1002/joc.6219, 2020. a, b
Gerding, V.: Manejo de las plantaciones de Pinus radiata D. Don en Chile, Bosque, 12, 3–10, 1991. a
Gimeno, F., Galleguillos, M., Manuschevich, D., and Zambrano-Bigiarini, M.: A coupled modeling approach to assess the effect of forest policies in water provision: A biophysical evaluation of a drought-prone rural catchment in south-central Chile, Sci. Total Environ., 830, 154608, https://doi.org/10.1016/j.scitotenv.2022.154608, 2022. a
Gómez-González, S., Paula, S., Cavieres, L. A., and Pausas, J. G.: Postfire responses of the woody flora of Central Chile: Insights from a germination experiment, PLOS ONE, 12, 1–12, https://doi.org/10.1371/journal.pone.0180661, 2017. a
Gómez-González, S., Ojeda, F., and Fernandes, P. M.: Portugal and Chile: Longing for sustainable forestry while rising from the ashes, Environ. Sci. Policy, 81, 104–107, https://doi.org/10.1016/j.envsci.2017.11.006, 2018. a
Granger, D. E. and Schaller, M.: Cosmogenic Nuclides and Erosion at the Watershed Scale, Elements, 10, 369–373, https://doi.org/10.2113/gselements.10.5.369, 2014. a
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R. G.: High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 342, 850–853, https://doi.org/10.1126/science.1244693, 2013. a
Heilmayr, R., Echeverría, C., Fuentes, R., and Lambin, E. F.: A plantation-dominated forest transition in Chile, Appl. Geogr., 75, 71–82, https://doi.org/10.1016/j.apgeog.2016.07.014, 2016. a, b
Helsel, D. R., Hirsch, R. M., Ryberg, K. R., Archfield, S. A., and Gilroy, E. J.: Statistical methods in water resources, Tech. rep., USGS, Reston, VA, https://doi.org/10.3133/tm4A3, 2020. a
Hermosilla-Palma, K., Pliscoff, P., and Folchi, M.: Sixty years of land-use and land-cover change dynamics in a global biodiversity hotspot under threat from global change, Journal of Land Use Science, 16, 467–478, https://doi.org/10.1080/1747423X.2021.2011970, 2021. a, b, c, d
Hewawasam, T., von Blanckenburg, F., Schaller, M., and Kubik, P.: Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides, Geology, 31, 597–600, https://doi.org/10.1130/0091-7613(2003)031<0597:IOHONE>2.0.CO;2, 2003. a, b
Huang, S., Dong, Q., Zhang, X., and Deng, W.: Catchment natural driving factors and prediction of baseflow index for Continental United States based on Random Forest technique, Stoch. Env. Res. Risk A., 35, 2567–2581, https://doi.org/10.1007/s00477-021-02057-2, 2021. a
Huber, A., Iroumé, A., Mohr, C., and Frêne, C.: Effect of Pinus radiata and Eucalyptus globulus plantations on water resource in the Coastal Range of Biobio region, Chile, Bosque (Valdivia), 31, 219–230, https://doi.org/10.4067/S0717-92002010000300006, 2010. a
Imaizumi, F., Sidle, R. C., and Kamei, R.: Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan, Earth Surf. Proc. Land., 33, 827–840, https://doi.org/10.1002/esp.1574, 2008. a
INFOR: Informe Técnico 165: Eucalyptus nitens en Chile: primera monografía., Tech. rep., INFOR, Valdivia, https://bibliotecadigital.infor.cl/handle/20.500.12220/7741?show=full (last access: 28 June 2024), 2004. a
IPCC: Regional Fact Sheet – Central and South America in: Sixth Assessment Report. Working Group I – The Physical Science Basis, IPCC, https://www.ipcc.ch/assessment-report/ar6/ (last access: 28 June 2024), p. 2, 2021. a
IREN: Evaluación de la erosión Cordillera de la Costa entre Valparaíso y Cautín, Tech. rep., Instituto de Investigación de Recursos Naturales, Instituto de Investigación de Recursos Naturales, Santiago, Chile, https://bibliotecadigital.ciren.cl/items/bf61fe8f-659a-4147-9265-c58373567431 (last access: 28 June 2024), 1965. a
Iroumé, A., Mayen, O., and Huber, A.: Runoff and peak flow responses to timber harvest and forest age in southern Chile, Hydrol. Process., 20, 37–50, https://doi.org/10.1002/hyp.5897, 2006. a
Iroumé, A., Jones, J., and Bathurst, J. C.: Forest operations, tree species composition and decline in rainfall explain runoff changes in the Nacimiento experimental catchments, south central Chile, Hydrol. Process., 35, 1–21, https://doi.org/10.1002/hyp.14257, 2021. a, b
Key, C. H. and Benson, N. C.: Landscape Assessment (LA) sampling and analysis methods, in: FIREMON: Fire effects monitoring and inventory system, edited by: Lutes, D. C., Keane, R. E., Caratti, J. F., Key, C. H., Benson, N. C., Sutherland, S., and Gangi, L. J., Gen. Tech. Rep. RMRS-GTR-164-CD, pp. LA1–LA51, US Department of Agriculture, Forest Service, Rocky Mountain Research Station, https://www.fs.usda.gov/treesearch/pubs/24066 (last access: 28 June 2024), 2006. a, b
Kirchner, J. W., Finkel, R. C., Riebe, C. S., Granger, D. E., Clayton, J. L., King, J. G., and Megahan, W. F.: Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales, Geology, 29, 591, https://doi.org/10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2, 2001. a
Krone, L. V., Hampl, F. J., Schwerdhelm, C., Bryce, C., Ganzert, L., Kitte, A., Übernickel, K., Dielforder, A., Aldaz, S., Oses-Pedraza, R., Perez, J. P. H., Sanchez-Alfaro, P., Wagner, D., Weckmann, U., and von Blanckenburg, F.: Deep weathering in the semi-arid Coastal Cordillera, Chile, Sci. Rep.-UK, 11, 13057, https://doi.org/10.1038/s41598-021-90267-7, 2021. a
Ladson, A., Brown, R., Neal, B., and Nathan, R.: A standard approach to baseflow separation using the Lyne and Hollick filter, Australian Journal of Water Resources, 17, 25–34, https://doi.org/10.7158/W12-028.2013.17.1, 2013. a
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, https://doi.org/10.1016/0012-821X(91)90220-C, 1991. a
Lara, A., Jones, J., Little, C., and Vergara, N.: Streamflow response to native forest restoration in former Eucalyptus plantations in south central Chile, Hydrol. Process., 35, e14270, https://doi.org/10.1002/hyp.14270, 2021. a
Li, M., Li, S., Liu, Q., Kang, Y., Liang, L., Yuan, X., Zhang, J., Wang, X., and Li, C.: Assessment of hydrological response to multiyear drought: Insights from lag characteristics and shift magnitude, Hydrol. Process., 36, e14636, https://doi.org/10.1002/hyp.14636, 2022. a
Lu, H., Moran, C., and Prosser, I. P.: Modelling sediment delivery ratio over the Murray Darling Basin, Environ. Modell. Softw., 21, 1297–1308, https://doi.org/10.1016/j.envsoft.2005.04.021, 2006. a, b
Malmer, A. and Grip, H.: Soil disturbance and loss of infiltrability caused by mechanized and manual extraction of tropical rainforest in Sabah, Malaysia, Forest Ecol. Manag., 38, 1–12, https://doi.org/10.1016/0378-1127(90)90081-L, 1990. a
Manuschevich, D.: Land use as a socio-ecological system: Developing a transdisciplinary approach to studies of land use change in South-Central Chile, in: Ecological Economic and Socio Ecological Strategies for Forest Conservation: A Transdisciplinary Approach Focused on Chile and Brazil, edited by: Fuders, F. and Donoso, P. J., Springer International Publishing, https://doi.org/10.1007/978-3-030-35379-7_5, pp. 79–97, 2020. a
Martin, L., Blard, P.-H., Balco, G., Lavé, J., Delunel, R., Lifton, N., and Laurent, V.: The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages, Quat. Geochronol., 38, 25–49, https://doi.org/10.1016/j.quageo.2016.11.006, 2017. a
Martini, L., Cavalli, M., and Picco, L.: Predicting sediment connectivity in a mountain basin: A quantitative analysis of the index of connectivity, Earth Surf. Proc. Land., 47, 1500–1513, https://doi.org/10.1002/esp.5331, 2022. a, b
Martins, M. A., Machado, A. I., Serpa, D., Prats, S. A., Faria, S. R., Varela, M. E., González-Pelayo, O., and Keizer, J. J.: Runoff and inter-rill erosion in a Maritime Pine and a Eucalypt plantation following wildfire and terracing in north-central Portugal, J. Hydrol. Hydromech., 61, 261–268, https://doi.org/10.2478/johh-2013-0033, 2013. a
Méndez-Freire, V., Villaseñor, T., and Mellado, C.: Spatial and temporal changes in suspended sediment fluxes in central Chile induced by the mega drought: The case of the Itata River Basin (36°–37°S), J. S. Am. Earth Sci., 118, 103930, https://doi.org/10.1016/j.jsames.2022.103930, 2022. a
Mohr, C.: Hydrological and erosion responses to man-made and natural disturbances – Insights from forested catchments in South-central Chile, PhD thesis, University of Potsdam, https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/6782/file/mohr_diss.pdf (last access: 18 January 2022), 2013. a
Mohr, C. H., Montgomery, D. R., Huber, A., Bronstert, A., and Iroumé, A.: Streamflow response in small upland catchments in the Chilean coastal range to the Mw 8.8 Maule earthquake on 27 February 2010, J. Geophys. Res., 117, F02032, https://doi.org/10.1029/2011JF002138, 2012. a
Mohr, C. H., Coppus, R., Iroumé, A., Huber, A., and Bronstert, A.: Runoff generation and soil erosion processes after clear cutting, J. Geophys. Res.-Earth, 118, 814–831, https://doi.org/10.1002/jgrf.20047, 2013. a, b
Mohr, C. H., Zimmermann, A., Korup, O., Iroumé, A., Francke, T., and Bronstert, A.: Seasonal logging, process response, and geomorphic work, Earth Surf. Dynam., 2, 117–125, https://doi.org/10.5194/esurf-2-117-2014, 2014. a
Montgomery, D. R., Schmidt, K. M., Greenberg, H. M., and Dietrich, W. E.: Forest clearing and regional landsliding, Geology, 28, 311–314, https://doi.org/10.1130/0091-7613(2000)28<311:FCARL>2.0.CO;2, 2000. a
Moody, J. A. and Martin, D. A.: Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States, Int. J. Wildland Fire, 18, 96, https://doi.org/10.1071/WF07162, 2009. a
Murphy, B. P., Czuba, J. A., and Belmont, P.: Post-wildfire sediment cascades: A modeling framework linking debris flow generation and network-scale sediment routing, Earth Surf. Proc. Land., 44, 2126–2140, https://doi.org/10.1002/esp.4635, 2019. a
Pepin, E., Carretier, S., Guyot, J. L., and Escobar, F.: Specific suspended sediment yields of the Andean rivers of Chile and their relationship to climate, slope and vegetation, Hydrolog. Sci. J., 55, 1190–1205, https://doi.org/10.1080/02626667.2010.512868, 2010. a, b, c, d
Pizarro, R., García-Chevesich, P., Pino, J., Ibáñez, A., Pérez, F., Flores, J. P., Sharp, J. O., Ingram, B., Mendoza, R., Neary, D. G., Sangüesa, C., and Vallejos, C.: Stabilization of stage–discharge curves following the establishment of forest plantations: Implications for sediment production, River Res. Appl., 36, 1828–1837, https://doi.org/10.1002/rra.3718, 2020. a, b
Pizarro, R., García-Chevesich, P., Ingram, B., Sangüesa, C., Pino, J., Ibáñez, A., Mendoza, R., Vallejos, C., Pérez, F., Flores, J. P., Vera, M., Balocchi, F., Bustamante-Ortega, R., and Martínez, G.: Establishment of Monterrey Pine (Pinus radiata) Plantations and Their Effects on Seasonal Sediment Yield in Central Chile, Sustainability, 15, 6052, https://doi.org/10.3390/su15076052, 2023. a, b
Poblete-Caballero, D. and Tolorza, V.: Seasonal disturbances detected with BFAST within the Purapel catchment, Chilean Coastal Range, El Maule region, Copernicus Publications [video] https://doi.org/10.5446/62704, 2023. a, b
Poblete-Caballero, D., Tolorza, V., and Cabezas, J.: Disturbances in vegetation detected with BFAST in the Purapel fluvial catchment (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6958544, 2022. a, b
Ratta, R. and Lal, R.: Soil quality and soil erosion, CRC Press, Boca Raton, Florida, ISBN 1-57444-100-0, 352 pp., 1998. a
Reneau, S. L., Katzman, D., Kuyumjian, G. A., Lavine, A., and Malmon, D. V.: Sediment delivery after a wildfire, Geology, 35, 151–154, https://doi.org/10.1130/G23288A.1, 2007. a, b
Roering, J. J., Perron, J. T., and Kirchner, J. W.: Functional relationships between denudation and hillslope form and relief, Earth Planet. Sc. Lett., 264, 245–258, https://doi.org/10.1016/j.epsl.2007.09.035, 2007. a
Schaller, M. and Ehlers, T. A.: Comparison of soil production, chemical weathering, and physical erosion rates along a climate and ecological gradient (Chile) to global observations, Earth Surf. Dynam., 10, 131–150, https://doi.org/10.5194/esurf-10-131-2022, 2022. a, b
Schmidt, A. H., Neilson, T. B., Bierman, P. R., Rood, D. H., Ouimet, W. B., and Sosa Gonzalez, V.: Influence of topography and human activity on apparent in situ 10Be-derived erosion rates in Yunnan, SW China, Earth Surf. Dynam., 4, 819–830, https://doi.org/10.5194/esurf-4-819-2016, 2016. a
Schuller, P., Walling, D. E., Iroumé, A., Quilodrán, C., Castillo, A., and Navas, A.: Using 137Cs and 210Pbex and other sediment source fingerprints to document suspended sediment sources in small forested catchments in south-central Chile, J. Environ. Radioactiv., 124, 147–159, https://doi.org/10.1016/j.jenvrad.2013.05.002, 2013. a, b, c, d, e
Schuller, P., Walling, D. E., Iroumé, A., Quilodrán, C., and Castillo, A.: Quantifying the temporal variation of the contribution of fine sediment sources to sediment yields from Chilean forested catchments during harvesting operations, Bosque (Valdivia), 42, 231–244, https://doi.org/10.4067/S0717-92002021000200231, 2021. a, b
Sidle, R. C. and Ziegler, A. D.: The dilemma of mountain roads, Nat. Geosci., 5, 437–438, https://doi.org/10.1038/ngeo1512, 2012. a
Skovlund, E. and Fenstad, G. U.: Should we always choose a nonparametric test when comparing two apparently nonnormal distributions?, J. Clin. Epidemiol., 54, 86–92, https://doi.org/10.1016/S0895-4356(00)00264-X, 2001. a
Solar, W.: Manual de terreno y centros de filtrado. Dirección General de Aguas, Departamento de Hidrología, MOP, https://bibliotecadigital.ciren.cl/server/api/core/bitstreams/6fc21ae0-ac2b-4f77-a073-363471485924/content (last access: 1 July 2024), 1999. a
Soto, L., Galleguillos, M., Seguel, O., Sotomayor, B., and Lara, A.: Assessment of soil physical properties' statuses under different land covers within a landscape dominated by exotic industrial tree plantations in south-central Chile, J. Soil Water Conserv., 74, 12–23, https://doi.org/10.2489/jswc.74.1.12, 2019. a, b, c, d
Sotomayor, B., Tolorza, V., Poblete-Caballero, D., Leal, C., and Galleguillos, M.: Land cover in the Purapel fluvial catchment (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6974312, 2022. a, b
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys. Res., 105, 23753, https://doi.org/10.1029/2000JB900181, 2000. a
Summerfield, M. a. and Hulton, N. J.: Natural controls of fluvial denudation rates in major world drainage basins, J. Geophys. Res., 99, 13871–13883, https://doi.org/10.1029/94JB00715, 1994. a
Syvitski, J., Ángel, J. R., Saito, Y., Overeem, I., Vörösmarty, C. J., Wang, H., and Olago, D.: Earth's sediment cycle during the Anthropocene, Nature Reviews Earth & Environment, 3, 179–196, https://doi.org/10.1038/s43017-021-00253-w, 2022. a
Terweh, S., Hassan, M. A., Mao, L., Schrott, L., and Hoffmann, T. O.: Bio-climate affects hillslope and fluvial sediment grain size along the Chilean Coastal Cordillera, Geomorphology, 384, 107700, https://doi.org/10.1016/j.geomorph.2021.107700, 2021. a
Teutschbein, C., Grabs, T., Karlsen, R. H., Laudon, H., and Bishop, K.: Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region, Water Resour. Res., 51, 9425–9446, https://doi.org/10.1002/2015WR017337, 2015. a
Tolorza, V.: Google Earth Engine timelapse 1984–2020 in the Chilean Coastal Range, El Maule region, Copernicus Publications [video], https://doi.org/10.5446/62703, 2023. a, b
Tolorza, V., Carretier, S., Andermann, C., Ortega-Culaciati, F., Pinto, L., and Mardones, M.: Contrasting mountain and piedmont dynamics of sediment discharge associated with groundwater storage variation in the Biobío river, J. Geophys. Res.-Earth, 119, 2730–2753, https://doi.org/10.1002/2014JF003105, 2014. a
Tolorza, V., Mohr, C. H., Carretier, S., Serey, A., Sepúlveda, S. A., Tapia, J., and Pinto, L.: Suspended Sediments in Chilean Rivers Reveal Low Postseismic Erosion After the Maule Earthquake (Mw 8.8) During a Severe Drought, J. Geophys. Res.-Earth, 124, 2018JF004766, https://doi.org/10.1029/2018JF004766, 2019. a
Tolorza, V., Poblete-Caballero, D., Banda, D., Little, C., Leal, C., and Galleguillos, M.: An operational method for mapping the composition of post-fire litter, Remote Sens. Lett., 13, 511–521, https://doi.org/10.1080/2150704X.2022.2040752, 2022a. a, b, c, d
Tolorza, V., Poblete-Caballero, D., and Sepúlveda-Martin, C.: Forestry roads in the Purapel fluvial catchment and related changes in sediment connectivity (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7328071, 2022b. a, b
Vanacker, V., von Blanckenburg, F., Govers, G., Molina, A., Poesen, J., Deckers, J., and Kubik, P.: Restoring dense vegetation can slow mountain erosion to near natural benchmark levels, Geology, 35, 303, https://doi.org/10.1130/G23109A.1, 2007. a, b
Vanacker, V., Guns, M., Clapuyt, F., Balthazar, V., Tenorio, G., and Molina, A.: Distribución espacio-temporal de los deslizamientos y erosión hídrica en una cuenca Andina tropical, Pirineos, 175, 051, https://doi.org/10.3989/pirineos.2020.175001, 2020. a
Vanacker, V., Molina, A., Rosas, M. A., Bonnesoeur, V., Román-Dañobeytia, F., Ochoa-Tocachi, B. F., and Buytaert, W.: The effect of natural infrastructure on water erosion mitigation in the Andes, SOIL, 8, 133–147, https://doi.org/10.5194/soil-8-133-2022, 2022. a
Vázquez, M., Ramírez, S., Morata, D., Reich, M., Braun, J. J., and Carretier, S.: Regolith production and chemical weathering of granitic rocks in central Chile, Chem. Geol., 446, 87–98, https://doi.org/10.1016/j.chemgeo.2016.09.023, 2016. a
Verbesselt, J., Hyndman, R., Newnham, G., and Culvenor, D.: Detecting trend and seasonal changes in satellite image time series, Remote Sens. Environ., 114, 106–115, https://doi.org/10.1016/j.rse.2009.08.014, 2010. a
von Blanckenburg, F.: The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment, Earth Planet. Sc. Lett., 237, 462–479, https://doi.org/10.1016/j.epsl.2005.06.030, 2005. a
von Blanckenburg, F. and Willenbring, J. K.: Cosmogenic Nuclides: Dates and Rates of Earth-Surface Change, Elements, 10, 341–346, https://doi.org/10.2113/gselements.10.5.341, 2014. a
Wainwright, J., Turnbull, L., Ibrahim, T. G., Lexartza-Artza, I., Thornton, S. F., and Brazier, R. E.: Linking environmental régimes, space and time: Interpretations of structural and functional connectivity, Geomorphology, 126, 387–404, https://doi.org/10.1016/j.geomorph.2010.07.027, 2011. a, b
Walling, D.: The sediment delivery problem, J. Hydrol., 65, 209–237, https://doi.org/10.1016/0022-1694(83)90217-2, 1983. a, b
Wohl, E., Brierley, G., Cadol, D., Coulthard, T. J., Covino, T., Fryirs, K. A., Grant, G., Hilton, R. G., Lane, S. N., Magilligan, F. J., Meitzen, K. M., Passalacqua, P., Poeppl, R. E., Rathburn, S. L., and Sklar, L. S.: Connectivity as an emergent property of geomorphic systems, Earth Surf. Proc. Land., 44, 4–26, https://doi.org/10.1002/esp.4434, 2019. a
Zhang, J., Zhang, Y., Song, J., and Cheng, L.: Evaluating relative merits of four baseflow separation methods in Eastern Australia, J. Hydrol., 549, 252–263, https://doi.org/10.1016/j.jhydrol.2017.04.004, 2017. a
Zhao, Y., Feng, D., Yu, L., Wang, X., Chen, Y., Bai, Y., Hernández, H. J., Galleguillos, M., Estades, C., Biging, G. S., Radke, J. D., and Gong, P.: Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data, Remote Sens. Environ., 183, 170–185, https://doi.org/10.1016/j.rse.2016.05.016, 2016. a, b
Short summary
We calculated disturbances and landscape-lowering rates across various timescales in a ~ 406 km2 catchment in the Chilean Coastal Range. Intensive management of exotic tree plantations involves short rotational cycles (planting and harvesting by replanting clear-cuts) lasting 9–25 years, dense forestry road networks (increasing connectivity), and a recent increase in wildfires. Concurrently, persistent drought conditions and the high water demand of fast-growing trees reduce water availability.
We calculated disturbances and landscape-lowering rates across various timescales in a ~ 406 km2...