Articles | Volume 13, issue 6
https://doi.org/10.5194/esurf-13-1263-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-1263-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstructing landscapes: an adjoint model of the stream power and diffusion erosion equation
Carole Petit
CORRESPONDING AUTHOR
Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, IRD, Géoazur, 250 rue Albert Einstein, Sophia Antipolis, 06560 Valbonne, France
Anthony Jourdon
Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, IRD, Géoazur, 250 rue Albert Einstein, Sophia Antipolis, 06560 Valbonne, France
Sorbonne Université, CNRS, Institut des Sciences de la Terre de Paris, ISTeP, 75005 Paris, France
Nicolas Coltice
Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, IRD, Géoazur, 250 rue Albert Einstein, Sophia Antipolis, 06560 Valbonne, France
Related authors
Carole Petit, Tristan Salles, Vincent Godard, Yann Rolland, and Laurence Audin
Earth Surf. Dynam., 11, 183–201, https://doi.org/10.5194/esurf-11-183-2023, https://doi.org/10.5194/esurf-11-183-2023, 2023
Short summary
Short summary
We present new tools in the landscape evolution model Badlands to simulate 10Be production, erosion and transport. These tools are applied to a source-to-sink system in the SW French Alps, where the model is calibrated. We propose a model that fits river incision rates and 10Be concentrations in sediments, and we show that 10Be in deep marine sediments is a signal with multiple contributions that cannot be easily interpreted in terms of climate forcing.
Jean Furstoss, Carole Petit, Clément Ganino, Marc Bernacki, and Daniel Pino-Muñoz
Solid Earth, 12, 2369–2385, https://doi.org/10.5194/se-12-2369-2021, https://doi.org/10.5194/se-12-2369-2021, 2021
Short summary
Short summary
In the first part of this article, we present a new methodology that we have developed to model the deformation and the microstructural evolutions of olivine rocks, which make up the main part of the Earth upper mantle. In a second part, using this methodology we show that microstructural features such as small grain sizes and preferential grain orientations can localize strain at the same intensity and can act together to produce an even stronger strain localization.
Carole Petit, Tristan Salles, Vincent Godard, Yann Rolland, and Laurence Audin
Earth Surf. Dynam., 11, 183–201, https://doi.org/10.5194/esurf-11-183-2023, https://doi.org/10.5194/esurf-11-183-2023, 2023
Short summary
Short summary
We present new tools in the landscape evolution model Badlands to simulate 10Be production, erosion and transport. These tools are applied to a source-to-sink system in the SW French Alps, where the model is calibrated. We propose a model that fits river incision rates and 10Be concentrations in sediments, and we show that 10Be in deep marine sediments is a signal with multiple contributions that cannot be easily interpreted in terms of climate forcing.
Jean Furstoss, Carole Petit, Clément Ganino, Marc Bernacki, and Daniel Pino-Muñoz
Solid Earth, 12, 2369–2385, https://doi.org/10.5194/se-12-2369-2021, https://doi.org/10.5194/se-12-2369-2021, 2021
Short summary
Short summary
In the first part of this article, we present a new methodology that we have developed to model the deformation and the microstructural evolutions of olivine rocks, which make up the main part of the Earth upper mantle. In a second part, using this methodology we show that microstructural features such as small grain sizes and preferential grain orientations can localize strain at the same intensity and can act together to produce an even stronger strain localization.
Cited articles
Armitage, J., Dunkley Jones, T., Duller, R., Whittaker, A., and Allen, P.: Temporal buffering of climate-driven sediments flux cycles by transient catchment response, Earth and Planetary Science Letters, 369–370, 200–210, https://doi.org/10.1016/j.epsl.2013.03.020, 2013. a
Armitage, J. J., Whittaker, A. C., Zakari, M., and Campforts, B.: Numerical modelling of landscape and sediment flux response to precipitation rate change, Earth Surf. Dynam., 6, 77–99, https://doi.org/10.5194/esurf-6-77-2018, 2018. a
Armstrong, A. C.: Slopes, boundary conditions, and the development of convexo-concave forms—some numerical experiments, Earth Surface Processes and Landforms, 12, 17–30, https://doi.org/10.1002/esp.3290120104, 1987. a
Armstrong, P., Ehlers, T., Chapman, D., Farley, K., and Kamp, P.: Exhumation of the central Wasatch Mountains, Utah: 1. Patterns and timing of exhumation deduced from low-temperature thermochronology data, Journal of Geophysical Research: Solid Earth, 108, https://doi.org/10.1029/2001JB001708, 2003. a
Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Efficient Management of Parallelism in Object Oriented Numerical Software Libraries, in: Modern Software Tools in Scientific Computing, edited by Arge, E., Bruaset, A. M., and Langtangen, H. P., pp. 163–202, Birkhauser Press, 1997. a
Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constantinescu, E., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W. D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G., Kong, F., Kruger, S., May, D. A., McInnes, L. C., Mills, R. T., Mitchell, L., Munson, T., Roman, J. E., Rupp, K., Sanan, P., Sarich, J., Smith, B. F., Suh, H., Zampini, S., Zhang, H., Zhang, H., and Zhang, J.: PETSc/TAO Users Manual, Tech. Rep. ANL-21/39 – Revision 3.24, Argonne National Laboratory, https://doi.org/10.2172/2565610, 2025. a
Barcelos, C.: Edge-preserving regularization in image restoration, Boletim (SBMAC), 7, 31–43, 2002. a
Barnhart, K. R., Hutton, E. W. H., Tucker, G. E., Gasparini, N. M., Istanbulluoglu, E., Hobley, D. E. J., Lyons, N. J., Mouchene, M., Nudurupati, S. S., Adams, J. M., and Bandaragoda, C.: Short communication: Landlab v2.0: a software package for Earth surface dynamics, Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, 2020a. a
Barnhart, K. R., Tucker, G. E., Doty, S. G., Shobe, C. M., Glade, R. C., Rossi, M. W., and Hill, M. C.: Inverting Topography for Landscape Evolution Model Process Representation: 1. Conceptualization and Sensitivity Analysis, Journal of Geophysical Research: Earth Surface, 125, e2018JF004961, https://doi.org/10.1029/2018JF004961, 2020b. a, b
Barnhart, K. R., Tucker, G. E., Doty, S. G., Shobe, C. M., Glade, R. C., Rossi, M. W., and Hill, M. C.: Inverting Topography for Landscape Evolution Model Process Representation: 2. Calibration and Validation, Journal of Geophysical Research: Earth Surface, 125, e2018JF004963, https://doi.org/10.1029/2018JF004963, 2020c. a
Braun, J.: Pecube: a new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography, Computers and Geosciences, 29, 787–794, https://doi.org/10.1016/S0098-3004(03)00052-9, 2003. a
Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution, Geomorphology, 180–181, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013. a, b, c
Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Glotzbach, C., Pedersen, V., Perry, C., Simon-Labric, T., and Prigent, C.: Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE, Tectonophysics, 524–525, 1–28, https://doi.org/10.1016/j.tecto.2011.12.035, 2012. a
Carretier, S., Martinod, P., Reich, M., and Godderis, Y.: Modelling sediment clasts transport during landscape evolution, Earth Surf. Dynam., 4, 237–251, https://doi.org/10.5194/esurf-4-237-2016, 2016. a, b
Celia, M. A., Russell, T. F., Herrera, I., and Ewing, R. E.: An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Advances in Water Resources, 13, 187–206, https://doi.org/10.1016/0309-1708(90)90041-2, 1990. a
Chandra, R., Azam, D., Müller, R. D., Salles, T., and Cripps, S.: Bayeslands: A Bayesian inference approach for parameter uncertainty quantification in Badlands, Computers and Geosciences, 131, 89–101, https://doi.org/10.1016/j.cageo.2019.06.012, 2019. a
Clare, M. C., Kramer, S. C., Cotter, C. J., and Piggott, M. D.: Calibration, inversion and sensitivity analysis for hydro-morphodynamic models through the application of adjoint methods, Computers and Geosciences, 163, 105104, https://doi.org/10.1016/j.cageo.2022.105104, 2022. a
Croissant, T. and Braun, J.: Constraining the stream power law: a novel approach combining a landscape evolution model and an inversion method, Earth Surf. Dynam., 2, 155–166, https://doi.org/10.5194/esurf-2-155-2014, 2014. a
Davy, P. and Lague, D.: Fluvial erosion/transport equation of landscape evolution models revisited, Journal of Geophysical Research: Earth Surface, 114, https://doi.org/10.1029/2008JF001146, 2009. a
Delrieu, G., Nicol, J., Yates, E., Kirstetter, P.-E., Creutin, J.-D., Anquetin, S., Obled, C., Saulnier, G.-M., Ducrocq, V., Gaume, E., Payrastre, O., Andrieu, H., Ayral, P.-A., Bouvier, C., Neppel, L., Livet, M., Lang, M., du Châtelet, J. P., Walpersdorf, A., and Wobrock, W.: The Catastrophic Flash-Flood Event of 8–9 September 2002 in the Gard Region, France: A First Case Study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory, Journal of Hydrometeorology, 6, 34–52, https://doi.org/10.1175/JHM-400.1, 2005. a
Ehlers, T. A., Willett, S. D., Armstrong, P. A., and Chapman, D. S.: Exhumation of the central Wasatch Mountains, Utah: 2. Thermokinematic model of exhumation, erosion, and thermochronometer interpretation, Journal of Geophysical Research: Solid Earth, 108, https://doi.org/10.1029/2001JB001723, 2003. a, b, c
Fauquette, S., Suc, J.-P., Popescu, S.-M., Guillocheau, F., Violette, S., Jost, A., Robin, C., Briais, J., and Baby, G.: Pliocene uplift of the Massif Central (France) constrained by the palaeoelevation quantified from the pollen record of sediments preserved along the Cantal Stratovolcano (Murat area), Journal of the Geological Society, 177, 923–938, https://doi.org/10.1144/jgs2020-010, 2020. a, b, c
Friedrich, A. M., Wernicke, B. P., Niemi, N. A., Bennett, R. A., and Davis, J. L.: Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years, Journal of Geophysical Research: Solid Earth, 108, https://doi.org/10.1029/2001JB000682, 2003. a, b
Givoli, D.: A tutorial on the adjoint method for inverse problems, Computer Methods in Applied Mechanics and Engineering, 380, 113810, https://doi.org/10.1016/j.cma.2021.113810, 2021. a
Glotzbach, C.: Deriving rock uplift histories from data-driven inversion of river profiles, Geology, 43, 467–470, https://doi.org/10.1130/G36702.1, 2015. a
Godard, V., Tucker, G. E., Burch Fisher, G., Burbank, D. W., and Bookhagen, B.: Frequency-dependent landscape response to climatic forcing, Geophysical Research Letters, 40, 859–863, https://doi.org/10.1002/grl.50253, 2013. a
Goren, L.: A theoretical model for fluvial channel response time during time-dependent climatic and tectonic forcing and its inverse applications, Geophysical Research Letters, 43, 10753–10763, https://doi.org/10.1002/2016GL070451, 2016. a, b
Hack, J. T.: Studies of longitudinal stream profiles in Virginia and Maryland, vol. 294, US Government Printing Office, https://doi.org/10.3133/pp294B, 1957. a
Ham, D. A., Kelly, P. H. J., Mitchell, L., Cotter, C. J., Kirby, R. C., Sagiyama, K., Bouziani, N., Vorderwuelbecke, S., Gregory, T. J., Betteridge, J., Shapero, D. R., Nixon-Hill, R. W., Ward, C. J., Farrell, P. E., Brubeck, P. D., Marsden, I., Gibson, T. H., Homolya, M., Sun, T., McRae, A. T. T., Luporini, F., Gregory, A., Lange, M., Funke, S. W., Rathgeber, F., Bercea, G.-T., and Markall, G. R.: Firedrake User Manual, Imperial College London and University of Oxford and Baylor University and University of Washington, 1st edn., https://doi.org/10.25561/104839, 2023. a
Hergarten, S.: Rivers as linear elements in landform evolution models, Earth Surf. Dynam., 8, 367–377, https://doi.org/10.5194/esurf-8-367-2020, 2020. a
Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics, Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, 2017. a
Howard, A. D., Dietrich, W. E., and Seidl, M. A.: Modeling fluvial erosion on regional to continental scales, Journal of Geophysical Research: Solid Earth, 99, 13971–13986, https://doi.org/10.1029/94JB00744, 1994. a
Hu, G. and Kozlowski, T.: Development and assessment of adjoint sensitivity analysis method for transient two-phase flow simulations, Annals of Nuclear Energy, 147, 107731, https://doi.org/10.1016/j.anucene.2020.107731, 2020. a
Hutton, E., Barnhart, K., Hobley, D., Tucker, G., Nudurupati, S., Adams, J., Gasparini, N., Shobe, C., Strauch, R., Knuth, J., Mouchene, M., Lyons, N., Litwin, D., Glade, R., Giuseppecipolla95, Manaster, A., Abby, L., Thyng, K., and Rengers, F.: landlab/landlab: Mrs. Weasley (v2.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.595872, 2020. a
Mayo, A. L., Bruthans, J., Tingey, D., Kadlec, J., and Nelson, S.: Insights into Wasatch fault vertical slip rates using the age of sediments in Timpanogos Cave, Utah, Quaternary Research, 72, 275–283, https://doi.org/10.1016/j.yqres.2009.04.006, 2009. a, b, c, d
NASA: Shuttle Radar Topography Mission (SRTM) Global, Distributed by OpenTopography, https://doi.org/10.5069/G9445JDF, 2013. a
Olivetti, V., Godard, V., and Bellier, O.: Cenozoic rejuvenation events of Massif Central topography (France): Insights from cosmogenic denudation rates and river profiles, Earth and Planetary Science Letters, 444, 179–191, https://doi.org/10.1016/j.epsl.2016.03.049, 2016. a, b, c, d
Olivetti, V., Balestrieri, M. L., Godard, V., Bellier, O., Gautheron, C., Valla, P. G., Zattin, M., Faccenna, C., Pinna-Jamme, R., and Manchuel, K.: Cretaceous and late Cenozoic uplift of a Variscan Massif: The case of the French Massif Central studied through low-temperature thermochronometry, Lithosphere, 12, 133–149, https://doi.org/10.1130/L1142.1, 2020. a
Parkinson, S. D., Funke, S. W., Hill, J., Piggott, M. D., and Allison, P. A.: Application of the adjoint approach to optimise the initial conditions of a turbidity current with the AdjointTurbidity 1.0 model, Geosci. Model Dev., 10, 1051–1068, https://doi.org/10.5194/gmd-10-1051-2017, 2017. a
Pedersen, V. K., Braun, J., and Huismans, R. S.: Eocene to mid-Pliocene landscape evolution in Scandinavia inferred from offshore sediment volumes and pre-glacial topography using inverse modelling, Geomorphology, 303, 467–485, https://doi.org/10.1016/j.geomorph.2017.11.025, 2018. a, b
Perron, J. T., Dietrich, W. E., and Kirchner, J. W.: Controls on the spacing of first-order valleys, Journal of Geophysical Research: Earth Surface, 113, https://doi.org/10.1029/2007JF000977, 2008. a, b
Petit, C., Goren, L., Rolland, Y., Bourlès, D., Braucher, R., Saillard, M., and Cassol, D.: Recent, climate-driven river incision rate fluctuations in the Mercantour crystalline massif, southern French Alps, Quaternary Science Reviews, 165, 73–87, https://doi.org/10.1016/j.quascirev.2017.04.015, 2017. a
Roberts, G. and White, N.: Estimating uplift rate histories from river profiles using African examples, Journal of Geophysical Research: Solid Earth, 115, https://doi.org/10.1029/2009JB006692, 2010. a, b
Roberts, G., White, N., Martin-Brandis, G., and Crosby, A.: An uplift history of the Colorado Plateau and its surroundings from inverse modeling of longitudinal river profiles, Tectonics, 31, https://doi.org/10.1029/2012TC003107, 2012. a, b
Royden, L. and Perron, J.: Solutions of the stream power equation and application to the evolution of river longitudinal profiles, Journal of Geophysical Research: Earth Surface, 118, 497–518, https://doi.org/10.1002/jgrf.20031, 2013. a
Rudge, J., Roberts, G., White, N., and Richardson, C.: Uplift histories of Africa and Australia from linear inverse modeling of drainage inventories, Journal of Geophysical Research: Earth Surface, 120, 894–914, https://doi.org/10.1002/2014JF003297, 2015. a
Salles, T.: Badlands : A parallel basin and landscape dynamics model, SoftwareX, 5, 195–202, https://doi.org/10.1016/j.softx.2016.08.005, 2016. a
Salles, T. and Hardiman, L.: Badlands: An open-source, flexible and parallel framework to study landscape dynamics, Computers and Geosciences, 91, 77–89, https://doi.org/10.1016/j.cageo.2016.03.011, 2016. a
Séranne, M., Coueffé, R., Husson, E., Baral, C., and Villard, J.: The transition from Pyrenean shortening to Gulf of Lion rifting in Languedoc (South France) – A tectonic-sedimentation analysis, Bulletin de la Société Géologique de France, 192, https://doi.org/10.1051/bsgf/2021017, 2021. a
Simpson, G. and Schlunegger, F.: Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport, Journal of Geophysical Research: Solid Earth, 108, https://doi.org/10.1029/2002JB002162, 2003. a, b
Skinner, C. J., Coulthard, T. J., Schwanghart, W., Van De Wiel, M. J., and Hancock, G.: Global sensitivity analysis of parameter uncertainty in landscape evolution models, Geosci. Model Dev., 11, 4873–4888, https://doi.org/10.5194/gmd-11-4873-2018, 2018. a
Smith, A. G. G., Fox, M., Moore, J. R., Miller, S. R., Goren, L., Morriss, M. C., and Carter, A.: One Million Years of Climate-Driven Rock Uplift Rate Variation on the Wasatch Fault Revealed by Fluvial Topography, American Journal of Science, 324, 1, https://doi.org/10.2475/001c.92194, 2024. a, b, c, d, e
Stock, G. M., Frankel, K. L., Ehlers, T. A., Schaller, M., Briggs, S. M., and Finkel, R. C.: Spatial and temporal variations in denudation of the Wasatch Mountains, Utah, USA, Lithosphere, 1, 34–40, https://doi.org/10.1130/L15.1, 2009. a, b, c
Strong, D. and Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization, Inverse Problems, 19, S165, https://doi.org/10.1088/0266-5611/19/6/059, 2003. a
Tao, S., Li, Y., and Mugume, I.: Model terrain correction using variational adjoint method with Tikhonov-total variation regularization, Journal of Physics: Conference Series, 1176, 022034, https://doi.org/10.1088/1742-6596/1176/2/022034, 2019. a
Tarboton, D.: A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research, 33, 309–319, https://doi.org/10.1029/96WR03137, 1997. a
Tucker, G., Lancaster, S., Gasparini, N., and Bras, R.: The Channel-Hillslope Integrated Landscape Development Model (CHILD), Springer US, Boston, MA, 349–388, https://doi.org/10.1007/978-1-4615-0575-4_12, 2001. a, b
Tucker, G. E. and Hancock, G. R.: Modelling landscape evolution, Earth Surface Processes and Landforms, 32, 28–50, https://doi.org/10.1002/esp.1952, 2010. a
Tucker, G. E. and Slingerland, R. L.: Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modeling study, Journal of Geophysical Research: Solid Earth, 99, 12229–12243, https://doi.org/10.1029/94JB00320, 1994. a
Willett, S. D. and Brandon, M. T.: On steady states in mountain belts, Geology, 30, 175–178, https://doi.org/10.1130/0091-7613(2002)030<0175:OSSIMB>2.0.CO;2, 2002. a
Yuan, X., Braun, J., Guerit, L., Simon, B., Bovy, B., Rouby, D., Robin, C., and Jiao, R.: Linking continental erosion to marine sediment transport and deposition: A new implicit and O(n) method for inverse analysis, Earth and Planetary Science Letters, 524, 115728, https://doi.org/10.1016/j.epsl.2019.115728, 2019. a, b
Short summary
We usually simulate how landscapes evolve by starting from an imaginary situation in the past, and applying physical laws to simulate the effect of erosion and tectonics. Here, we reverse the approach: starting from today's landscape, we work backwards to find out how it has evolved. Using a simple physical description of erosive and tectonic processes, we can infer which areas are more sensitive to erosion, or how the landscape looked like before erosion, or how fast it has been uplifting.
We usually simulate how landscapes evolve by starting from an imaginary situation in the past,...