Articles | Volume 13, issue 4
https://doi.org/10.5194/esurf-13-563-2025
https://doi.org/10.5194/esurf-13-563-2025
Short communication
 | 
18 Jul 2025
Short communication |  | 18 Jul 2025

Short communication: Learning how landscapes evolve with neural operators

Gareth G. Roberts

Related authors

Impact of Noise on Landscapes and Metrics Generated with Stream Power Models
Matthew J. Morris and Gareth G. Roberts
EGUsphere, https://doi.org/10.5194/egusphere-2025-1953,https://doi.org/10.5194/egusphere-2025-1953, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Reconciling surface deflections from simulations of global mantle convection
Conor P. B. O'Malley, Gareth G. Roberts, James Panton, Fred D. Richards, J. Huw Davies, Victoria M. Fernandes, and Sia Ghelichkhan
Geosci. Model Dev., 17, 9023–9049, https://doi.org/10.5194/gmd-17-9023-2024,https://doi.org/10.5194/gmd-17-9023-2024, 2024
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Localised geomorphic response to channel-spanning leaky wooden dams
Joshua M. Wolstenholme, Christopher J. Skinner, David Milan, Robert E. Thomas, and Daniel R. Parsons
Earth Surf. Dynam., 13, 647–663, https://doi.org/10.5194/esurf-13-647-2025,https://doi.org/10.5194/esurf-13-647-2025, 2025
Short summary
Surface grain-size mapping of braided channels from SfM photogrammetry
Loïs Ribet, Frédéric Liébault, Laurent Borgniet, Michaël Deschâtres, and Gabriel Melun
Earth Surf. Dynam., 13, 607–627, https://doi.org/10.5194/esurf-13-607-2025,https://doi.org/10.5194/esurf-13-607-2025, 2025
Short summary
Spatiotemporal denudation rates of the Swabian Alb escarpment (southwestern Germany) dominated by anthropogenic impact, lithology, and base-level lowering
Mirjam Schaller, Daniel Peifer, Alexander B. Neely, Thomas Bernard, Christoph Glotzbach, Alexander R. Beer, and Todd A. Ehlers
Earth Surf. Dynam., 13, 571–591, https://doi.org/10.5194/esurf-13-571-2025,https://doi.org/10.5194/esurf-13-571-2025, 2025
Short summary
Sediment aggradation rates in Himalayan rivers revealed through the InSAR differential residual topographic phase
Jingqiu Huang and Hugh D. Sinclair
Earth Surf. Dynam., 13, 531–547, https://doi.org/10.5194/esurf-13-531-2025,https://doi.org/10.5194/esurf-13-531-2025, 2025
Short summary
The glacial paleolandscapes of Southern Africa: the legacy of the Late Paleozoic Ice Age
Pierre Dietrich, François Guillocheau, Guilhem A. Douillet, Neil P. Griffis, Guillaume Baby, Daniel P. Le Héron, Laurie Barrier, Maximilien Mathian, Isabel P. Montañez, Cécile Robin, Thomas Gyomlai, Christoph Kettler, and Axel Hofmann
Earth Surf. Dynam., 13, 495–529, https://doi.org/10.5194/esurf-13-495-2025,https://doi.org/10.5194/esurf-13-495-2025, 2025
Short summary

Cited articles

Anderson, R. S. and Anderson, S. P.: Geomorphology: The Mechanics and Chemistry of Landscapes, Cambridge University Press, https://doi.org/10.1017/CBO9780511794827, 2010. a, b
Barnes, R.: Accelerating a fluvial incision and landscape evolution model with parallelism, Geomorphology, 330, 28–39, https://doi.org/10.1016/j.geomorph.2019.01.002, 2019. a
Barnes, R., Callaghan, K. L., and Wickert, A. D.: Computing water flow through complex landscapes – Part 3: Fill–Spill–Merge: flow routing in depression hierarchies, Earth Surf. Dynam., 9, 105–121, https://doi.org/10.5194/esurf-9-105-2021, 2021. a
Barnhart, K. R., Tucker, G. E., Doty, S. G., Shobe, C. M., Glade, R. C., Rossi, M. W., and Hill, M. C.: Inverting topography for landscape evolution model process representation: 1. Conceptualization and sensitivity analysis, J. Geophys. Res.-Earth, 125, e2018JF004961, https://doi.org/10.1029/2018JF004961, 2020. a
Bonetti, S., Hooshyar, M., Camporeale, C., and Porporato, A.: Channelization cascade in landscape evolution, P. Natl. Acad. Sci. USA, 117, 1375–1382, https://doi.org/10.1073/pnas.1911817117, 2020. a
Download
Short summary
The use of new artificial intelligence (AI) techniques to learn how landscapes evolve is demonstrated. A few “snapshots” of an eroding landscape at different stages of its history provide enough information for AI to ascertain rules governing its evolution. Once the rules are known, predicting landscape evolution is extremely rapid and efficient, providing new tools to understand landscape change.
Share