Articles | Volume 13, issue 4
https://doi.org/10.5194/esurf-13-683-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-683-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The roles of surface processes in porphyry copper deposit preservation
Beatriz Hadler Boggiani
CORRESPONDING AUTHOR
School of Geosciences, The University of Sydney, Sydney, Australia
Tristan Salles
School of Geosciences, The University of Sydney, Sydney, Australia
Claire Mallard
School of Geosciences, The University of Sydney, Sydney, Australia
Nicholas Atwood
BHP Exploration, Tucson, Arizona, USA
Related authors
No articles found.
Yinbing Zhu, Patrice Rey, and Tristan Salles
EGUsphere, https://doi.org/10.5194/egusphere-2025-1585, https://doi.org/10.5194/egusphere-2025-1585, 2025
Short summary
Short summary
We use computer models to study how landscapes respond to changes in rainfall and tectonic uplift. We find that rainfall rate changes produce unique slope change reversals near the headwaters, which differ from the simpler responses caused by uplift rate changes. These reversals are more pronounced when hillslope diffusion is dominant. These findings help us understand how climate and tectonic forcing shape the landscape differently and may allow scientists to tell their effects apart in nature.
Sara Polanco, Mike Blum, Tristan Salles, Bruce C. Frederick, Rebecca Farrington, Xuesong Ding, Ben Mather, Claire Mallard, and Louis Moresi
Earth Surf. Dynam., 12, 301–320, https://doi.org/10.5194/esurf-12-301-2024, https://doi.org/10.5194/esurf-12-301-2024, 2024
Short summary
Short summary
Two-thirds of the world's most populated cities are situated close to deltas. We use computer simulations to understand how deltas sink or rise in response to climate-driven sea level changes that operate from thousands to millions of years. Our research shows that because of the interaction between the outer layers of the Earth, sediment transport, and sea level changes deltas develop a self-regulated mechanism that modifies the space they need to gain or lose land.
Carole Petit, Tristan Salles, Vincent Godard, Yann Rolland, and Laurence Audin
Earth Surf. Dynam., 11, 183–201, https://doi.org/10.5194/esurf-11-183-2023, https://doi.org/10.5194/esurf-11-183-2023, 2023
Short summary
Short summary
We present new tools in the landscape evolution model Badlands to simulate 10Be production, erosion and transport. These tools are applied to a source-to-sink system in the SW French Alps, where the model is calibrated. We propose a model that fits river incision rates and 10Be concentrations in sediments, and we show that 10Be in deep marine sediments is a signal with multiple contributions that cannot be easily interpreted in terms of climate forcing.
Claire A. Mallard and Tristan Salles
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-89, https://doi.org/10.5194/esurf-2021-89, 2021
Preprint withdrawn
Short summary
Short summary
Using landscape evolution models integrating mantle dynamics, climate, eustatism and surface processes, we break down a previous idea that considers mantle flow as the main driver of the pulse of sedimentation in the Orange Basin, SA, over the last 30 Ma. Instead, climate impact seems to be a predominant mechanism. We also show that sediment flux and landscape evolution in the region is the product of interlinked processes accounting for both lithology variations, mantle dynamics and climate.
Gilles Brocard, Jane Kathrin Willenbring, Tristan Salles, Michael Cosca, Axel Guttiérez-Orrego, Noé Cacao Chiquín, Sergio Morán-Ical, and Christian Teyssier
Earth Surf. Dynam., 9, 795–822, https://doi.org/10.5194/esurf-9-795-2021, https://doi.org/10.5194/esurf-9-795-2021, 2021
Short summary
Short summary
The rise of a mountain affects the circulation of water, both in the atmosphere and over the land surface, thereby affecting the erosion of the land surface. We document how the rise of a mountain in central Guatemala has affected the erosion of an older range nearby. The new range intercepts precipitation formerly delivered to the older range. River response to the uplift of the new range has decreased incision across the older one. Both have reduced hillslope erosion over the old range.
Cited articles
Abbaszadeh, M., Ehteram, M., Ahmed, A. N., Singh, V. P., and Elshafie, A.: The copper grade estimation of porphyry deposits using machine learning algorithms and Henry gas solubility optimization, Earth Sci. Inform., 14, 2049–2075, https://doi.org/10.1007/s12145-021-00667-6, 2021. a
Aubouin, J.: The west Pacific geodynamic model, Tectonophysics, 183, 1–7, https://doi.org/10.1016/0040-1951(90)90185-B, 1990. a
Baker, M. C. W. and Francis, P. W.: Upper Cenozoic volcanism in the Central Andes – ages and volumes, Earth Planet. Sc. Lett., 41, 175–187, https://doi.org/10.1016/0012-821X(78)90008-0, 1978. a
Balay, S., Brown, J., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H.: Argonne national laboratory, PETSc, Web page, http://www.mcs.anl.gov/petsc (last access: 5 August 2025), 2012. a
Baldwin, S. L., Monteleone, B. D., Webb, L. E., Fitzgerald, P. G., Grove, M., and June Hill, E.: Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea, Nature, 431, 263–267, https://doi.org/10.1038/nature02846, 2004. a
Bonetti, S. and Porporato, A.: On the dynamic smoothing of mountains, Geophys. Res. Lett., 44, 5531–5539, https://doi.org/10.1002/2017GL073095, 2017. a
Boschman, L. M.: Andean mountain building since the Late Cretaceous: a paleoelevation reconstruction, Earth-Sci. Rev., 220, 103640, https://doi.org/10.1016/j.earscirev.2021.103640, 2021 (data available at: https://data.mendeley.com/datasets/h2w7pshz44/1 (last access: 21 May 2024). a, b, c, d, e, f, g, h, i
Bruch, A. A., Utescher, T., and Mosbrugger, V.: Precipitation patterns in the Miocene of Central Europe and the development of continentality, Palaeogeogr. Palaeocl., 304, 202–211, https://doi.org/10.1016/j.palaeo.2010.10.002, 2011. a
Clennett, E. J., Sigloch, K., Mihalynuk, M. G., Seton, M., Henderson, M. A., Hosseini, K., Mohammadzaheri, A., Johnston, S. T., and Müller, R. D.: A quantitative tomotectonic plate reconstruction of Western North America and the Eastern Pacific Basin, Geochem. Geophy. Geosy., 21, e2020GC009117, https://doi.org/10.1029/2020GC009117, 2020. a
Cooke, D. R., Hollings, P., and Walshe, J. L.: Giant porphyry deposits: characteristics, distribution, and tectonic controls, Econ. Geol., 100, 801–818, https://doi.org/10.2113/gsecongeo.100.5.801, 2005. a
Diaz-Rodriguez, J., Müller, R. D., and Chandra, R.: Predicting the emplacement of Cordilleran porphyry copper systems using a spatio-temporal machine learning model, Ore Geol. Rev., 137, 104300, https://doi.org/10.1016/j.oregeorev.2021.104300, 2021. a, b, c
Eastoe, C. J.: A fluid inclusion study of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea, Econ. Geol., 73, 721–748, https://doi.org/10.2113/gsecongeo.73.5.721, 1978. a, b
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing potentially without precedent in the last 420 million years, Nat. Commun., 8, 14845, https://doi.org/10.1038/ncomms14845, 2017. a
Fu, F. Q., McInnes, B. I. A., Evans, N. J., Davies, P. J., Schloderer, J., Griffin, W. L., and Saeed, A.: Thermal and exhumation history of the Parra Koh porphyry CU-AU deposit, Pakistan: inverse numerical modeling of U-PB-HE data, Salt Lake City Annual Meeting, 16–19 October 2005, https://gsa.confex.com/gsa/2005AM/webprogram/Paper94905.html (last access: 5 August 2025), 2005. a, b
Gómez, J., Schobbenhaus, C., and Montes Ramírez, N. E.: Geological Map Of South America At a Scale of 1: 5M, Tech. rep., Servicio Geológico Colombiano, https://doi.org/10.32685/10.143.2019.929, 2019. a
Hadler Boggiani, B.: biahadler/porphyry-data: Porphyry Copper Workflows (PophyryCopper), Zenodo [code], https://doi.org/10.5281/zenodo.15400584, 2025. a
Hadler Boggiani, B., Salles, T., Mallard, C. A., and Atwood, N.: Porphyry Copper Data, Zenodo [data set], https://doi.org/10.5281/zenodo.11239057, 2024. a, b
Handy, M. R., Ustaszewski, K., and Kissling, E.: Reconstructing the Alps–Carpathians–Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion, Int. J. Earth Sci., 104, 1–26, https://doi.org/10.1007/s00531-014-1060-3, 2015. a
Hedenquist, J. W., Harris, M., and Camus, F.: Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe, Society of Economic Geologists, https://doi.org/10.5382/SP.16, 2012. a, b, c
Hernando, I. R., Petrinovic, I. A., Gutiérrez, D. A., Bucher, J., Fuentes, T. G., and Aragón, E.: The caldera-forming eruption of the quaternary Payún Matrú volcano, Andean back-arc of the southern volcanic zone, J. Volcanol. Geoth. Res., 384, 15–30, https://doi.org/10.1016/j.jvolgeores.2019.07.003, 2019. a
Hoyer, S. and Hamman, J.: xarray: ND labeled arrays and datasets in Python, Journal of Open Research Software, 5, 10, https://doi.org/10.5334/jors.148 2017. a
Izosov, L. A., Petrishchevsky, A. M., Emel'yanova, T. A., Chuprynin, V. I., Lee, N. S., and Vasilyeva, M. A.: The model of formation of the Western Pacific Marginal Seas: vortex geodynamics, seismicity, and mantle upwelling, J. Volcanol. Seismol.+, 14, 44–57, https://doi.org/10.1134/S0742046320010029, 2020. a
Jafrasteh, B., Fathianpour, N., and Suárez, A.: Comparison of machine learning methods for copper ore grade estimation, Computat. Geosci., 22, 1371–1388, https://doi.org/10.1007/s10596-018-9758-0, 2018. a
Ji, W.-Q., Wu, F.-Y., Chung, S.-L., Wang, X.-C., Liu, C.-Z., Li, Q.-L., Liu, Z.-C., Liu, X.-C., and Wang, J.-G.: Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt–type magmatism in southern Tibet, Geology, 44, 283–286, https://doi.org/10.1130/G37612.1, 2016. a
Ji, W.-Q., Wu, F.-Y., Wang, J.-M., Liu, X.-C., Liu, Z.-C., Zhang, Z., Cao, W., Wang, J.-G., and Zhang, C.: Early evolution of Himalayan orogenic belt and generation of middle eocene magmatism: constraint from Haweng granodiorite porphyry in the Tethyan Himalaya, Front. Earth Sci., 8, 236, https://doi.org/10.3389/feart.2020.00236, 2020. a
Keykhay-Hosseinpoor, M., Kohsary, A.-H., Hossein-Morshedy, A., and Porwal, A.: A machine learning-based approach to exploration targeting of porphyry Cu-Au deposits in the Dehsalm district, eastern Iran, Ore Geol. Rev., 116, 103234, https://doi.org/10.1016/j.oregeorev.2019.103234, 2020. a
Landtwing, M. R., Pettke, T., Halter, W. E., Heinrich, C. A., Redmond, P. B., Einaudi, M. T., and Kunze, K.: Copper deposition during quartz dissolution by cooling magmatic–hydrothermal fluids: the Bingham porphyry, Earth Planet. Sc. Lett., 235, 229–243, https://doi.org/10.1016/j.epsl.2005.02.046, 2005. a
Lee, C.-T. A. and Tang, M.: How to make porphyry copper deposits, Earth Planet. Sc. Lett., 529, 115868, https://doi.org/10.1016/j.epsl.2019.115868, 2020. a, b
Leveille, R. A. and Stegen, R. J.: The Southwestern North America Porphyry Copper Province, in: Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe, Society of Economic Geologists, https://doi.org/10.5382/SP.16.15, 2012. a, b
Li, X., Hu, Y., Guo, J., Lan, J., Lin, Q., Bao, X., Yuan, S., Wei, M., Li, Z., Man, K., Yin, Z., Han, J., Zhang, J., Zhu, C., Zhao, Z., Liu, Y., Yang, J., and Nie, J.: A high-resolution climate simulation dataset for the past 540 million years, Scientific Data, 9, 371, https://doi.org/10.1038/s41597-022-01490-4, 2022 (data available at: https://figshare.com/articles/dataset/A_high-resolution_climate_simulation_dataset_for_the_past_540_million_years/19920662/1, last access: 21 May 2024). a, b, c, d, e, f, g, h
Markwick, P. J. and Valdes, P. J.: Palaeo-digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: a Maastrichtian (late Cretaceous) example, Palaeogeogr. Palaeocl., 213, 37–63, 2004. a
Mather, B. R., Müller, R. D., Zahirovic, S., Cannon, J., Chin, M., Ilano, L., Wright, N. M., Alfonso, C., Williams, S., Tetley, M., and Merdith, A.: Deep time spatio-temporal data analysis using pyGPlates with PlateTectonicTools and GPlately, Geosci. Data J., 10, 1–8, https://doi.org/10.1002/gdj3.185, 2023. a
Matsumoto, T.: Timing of geological events in the circum-Pacific region, Can. J. Earth Sci., 14, 551–561, https://doi.org/10.1139/e77-057, 1977. a
McInnes, B., Evans, N., Fu, F., Garwin, S., Belousova, E., Griffin, W., Bertens, A., Sukarna, D., Permanadewi, S., Andrew, R., and Deckart, K.: Thermal History Analysis of Selected Chilean, Indonesian and Iranian Porphyry Cu-Mo-Au Deposits, vol. 1, PGC Publishing, 1st edn., ISBN 0958057427, 2005. a
McKinney, W.: pandas: a foundational Python library for data analysis and statistics, Python for High Performance and Scientific Computing, 14, 1–9, 2011. a
McLemore, V. T.: Potential for Laramide porphyry copper deposits in southwestern New Mexico, in: Geology of the Gila Wilderness-Silver City area, New Mexico Geological Society, https://doi.org/10.56577/FFC-59.141, 141–149, 2008. a
McMillan, W., Thompson, J. F. H., Hart, C., and Johnston, S.: Porphyry deposits of the Canadian Cordillera, Geosci. Can., 23, 125–134, 1996. a
Montgomery, D. R. and Brandon, M. T.: Topographic controls on erosion rates in tectonically active mountain ranges, Earth Planet. Sc. Lett., 201, 481–489, https://doi.org/10.1016/S0012-821X(02)00725-2, 2002. a, b
Moosdorf, N., Cohen, S., and Von Hagke, C.: A global erodibility index to represent sediment production potential of different rock types, Appl. Geogr., 101, 36–44, https://doi.org/10.1016/j.apgeog.2018.10.010, 2018. a, b
Murphy, B. P., Johnson, J. P. L., Gasparini, N. M., and Sklar, L. S.: Chemical weathering as a mechanism for the climatic control of bedrock river incision, Nature, 532, 223–227, https://doi.org/10.1038/nature17449, 2016. a
Nathwani, C. L., Wilkinson, J. J., Fry, G., Armstrong, R. N., Smith, D. J., and Ihlenfeld, C.: Machine learning for geochemical exploration: classifying metallogenic fertility in arc magmas and insights into porphyry copper deposit formation, Miner. Deposita, 57, 1143–1166, https://doi.org/10.1007/s00126-021-01086-9, 2022. a
Nocquet, J.-M., Villegas-Lanza, J. C., Chlieh, M., Mothes, P. A., Rolandone, F., Jarrin, P., Cisneros, D., Alvarado, A., Audin, L., Bondoux, F., Martin, X., Font, Y., Régnier, M., Vallée, M., Tran, T., Beauval, C., Maguiña Mendoza, J. M., Martinez, W., Tavera, H., and Yepes, H.: Motion of continental slivers and creeping subduction in the northern Andes, Nat. Geosci., 7, 287–291, https://doi.org/10.1038/ngeo2099, 2014. a, b
Noury, M. and Calmus, T.: Exhumation history of the La Caridad and Suaqui Verde porphyry copper deposits in the eastern Basin and Range province of Sonora: insights from thermobarometry and apatite thermochronology, J. S. Am. Earth Sci., 105, 102893, https://doi.org/10.1016/j.jsames.2020.102893, 2021. a
Nur, A. and Ben-Avraham, Z.: Volcanic gaps due to oblique consumption of aseismic ridges, Tectonophysics, 99, 355–362, https://doi.org/10.1016/0040-1951(83)90112-9, 1983. a
Olaya, V.: Chapter 6 Basic Land-Surface Parameters, in: Geomorphometry, edited by: Hengl, T. and Reuter, H. I., Developments in Soil Science, vol. 33, Elsevier, https://doi.org/10.1016/S0166-2481(08)00006-8, 141–169, 2009. a
Oliphant, T. E.: Guide to Numpy, vol. 1, Trelgol Publishing USA, Identifier NumPyBook, 2006. a
Perello, J., Razique, A., Schloderer, J., and Asad-ur-Rehman: The Chagai porphyry copper belt, Baluchistan Province, Pakistan, Econ. Geol., 103, 1583–1612, https://doi.org/10.2113/gsecongeo.103.8.1583, 2008. a
Peucker-Ehrenbrink, B.: Land2Sea database of river drainage basin sizes, annual water discharges, and suspended sediment fluxes, Geochem. Geophy. Geosy., 10, Q06014, https://doi.org/10.1029/2008GC002356, 2009. a, b
Portner, D. E., Rodríguez, E. E., Beck, S., Zandt, G., Scire, A., Rocha, M. P., Bianchi, M. B., Ruiz, M., França, G. S., Condori, C., and Alvarado, P.: Detailed structure of the subducted Nazca slab into the lower mantle derived from continent-scale teleseismic P wave tomography, J. Geophys. Res.-Sol. Ea., 125, e2019JB017884, https://doi.org/10.1029/2019JB017884, 2020. a, b, c
Ramos, V. A.: Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle, in: Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision, Geological Society of America, https://doi.org/10.1130/2009.1204(02), 2009. a, b, c, d, e, f, g, h, i, j
Ramos, V. A.: Tectonic evolution of the central Andes: From terrane accretion to crustal delamination, AAPG Special Volumes, ISBN 978-0891813972, 2018. a
Reich, M., Palacios, C., Vargas, G., Luo, S., Cameron, E. M., Leybourne, M. I., Parada, M. A., Zúñiga, A., and You, C.-F.: Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile, Miner. Deposita, 44, 497–504, https://doi.org/10.1007/s00126-009-0229-3, 2009. a
Retallack, G.: Cenozoic paleoclimate on land in North America, J. Geol., 115, 271–294, https://doi.org/10.1086/512753, 2007. a, b
Richards, F. D., Hoggard, M. J., White, N., and Ghelichkhan, S.: Quantifying the relationship between short wavelength dynamic topography and thermomechanical structure of the upper mantle using calibrated parameterization of anelasticity, J. Geophys. Res.-Sol. Ea., 125, e2019JB019062, https://doi.org/10.1029/2019JB019062, 2020. a
Richards, J. P.: Porphyry copper deposit formation in arcs: What are the odds?, Geosphere, 18, 130–155, https://doi.org/10.1130/GES02086.1, 2022. a, b, c
Richardson, A., Hill, C. N., and Perron, J. T.: IDA: an implicit, parallelizable method for calculating drainage area, Water Resour. Res., 50, 4110–4130, https://doi.org/10.1002/2013WR014326, 2014. a, b, c
Rusk, B. G., Reed, M. H., and Dilles, J. H.: Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana, Econ. Geol., 103, 307–334, https://doi.org/10.2113/gsecongeo.103.2.307, 2008. a, b
Salles, T., Ding, X., and Brocard, G.: pyBadlands: a framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time, PLoS One, 13, e0195557, https://doi.org/10.1371/journal.pone.0195557, 2018. a, b
Salles, T., Rey, P., and Bertuzzo, E.: Mapping landscape connectivity as a driver of species richness under tectonic and climatic forcing, Earth Surf. Dynam., 7, 895–910, https://doi.org/10.5194/esurf-7-895-2019, 2019. a
Salles, T., Husson, L., Rey, P., Mallard, C., Zahirovic, S., Boggiani, B. H., Coltice, N., and Arnould, M.: Hundred million years of landscape dynamics from catchment to global scale, Science, 379, 918–923, https://doi.org/10.1126/science.add2541, 2023. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t
Scotese, C. and Schettino, A.: Late Permian-Early Jurassic paleogeography of western Tethys and the world, in: Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic margins, Elsevier, 57–95, https://doi.org/10.1016/B978-0-12-809417-4.00004-5, 2017. a
Sillitoe, R. H.: A plate tectonic model for the origin of porphyry copper deposits, Econ. Geol., 67, 184–197, https://doi.org/10.2113/gsecongeo.67.2.184, 1972. a
Sillitoe, R. H.: Porphyry copper systems, Econ. Geol., 105, 3–41, https://doi.org/10.2113/gsecongeo.105.1.3, 2010. a, b, c, d
Stalder, N. F., Herman, F., Fellin, M. G., Coutand, I., Aguilar, G., Reiners, P. W., and Fox, M.: The relationships between tectonics, climate and exhumation in the Central Andes (18–36°S): evidence from low-temperature thermochronology, Earth-Sci. Rev., 210, 103276, https://doi.org/10.1016/j.earscirev.2020.103276, 2020. a, b
Stefanini, B. and Williams-Jones, A. E.: Hydrothermal evolution in the Calabona porphyry copper system (Sardinia, Italy); the path to an uneconomic deposit, Econ. Geol., 91, 774–791, https://doi.org/10.2113/gsecongeo.91.4.774, 1996. a
Storetvedt, K.: The Tethys Sea and the Alpine-Himalayan orogenic belt; mega-elements in a new global tectonic system, Physics of the Earth and Planetary Interiors, 62, 141–184, https://doi.org/10.1016/0031-9201(90)90198-7, 1990. a, b
Straume, E. O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J. M., Abdul Fattah, R., Doornenbal, J. C., and Hopper, J. R.: Globsed: updated total sediment thickness in the world's oceans, Geochem. Geophy. Geosy., 20, 1756–1772, https://doi.org/10.1029/2018GC008115, 2019. a
Syvitski, J. P. and Milliman, J. D.: Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean, J. Geol., 115, 1–19, 2007. a
Uieda, L., Tian, D., Leong, W. J., Toney, L., Schlitzer, W., Grund, M., Newton, D., Ziebarth, M., Jones, M., and Wessel, P.: PyGMT: A Python interface for the generic mapping tools, Zenodo [code], https://doi.org/10.5281/zenodo.4592991, 2021. a
Valdes, P. J., Armstrong, E., Badger, M. P. S., Bradshaw, C. D., Bragg, F., Crucifix, M., Davies-Barnard, T., Day, J. J., Farnsworth, A., Gordon, C., Hopcroft, P. O., Kennedy, A. T., Lord, N. S., Lunt, D. J., Marzocchi, A., Parry, L. M., Pope, V., Roberts, W. H. G., Stone, E. J., Tourte, G. J. L., and Williams, J. H. T.: The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0, Geosci. Model Dev., 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017, 2017 (data available at: https://www.paleo.bristol.ac.uk/ummodel/scripts/papers/Valdes_et_al_2017.html?utm_source=chatgpt.com, last access: 5 August 2025). a, b, c, d
van Dongen, M., Weinberg, R., Tomkins, A., and Armstrong, R.: Ancient crust in the world's youngest giant porphyry Cu-Au deposit, Ok Tedi, Papua New Guinea, Conference, AGU Fall Meeting, 2007AGUFMV33F.07V, 2007, V33F–07, 9–14 December 2007 in San Francisco, Calif., https://ui.adsabs.harvard.edu/abs/2007AGUFM.V33F..07V, 2007. a
van Dongen, M., Weinberg, R. F., Tomkins, A. G., Armstrong, R. A., and Woodhead, J. D.: Recycling of Proterozoic crust in Pleistocene juvenile magma and rapid formation of the Ok Tedi porphyry Cu–Au deposit, Papua New Guinea, Lithos, 114, 282–292, https://doi.org/10.1016/j.lithos.2009.09.003, 2010. a
Vérard, C., Hochard, C., Baumgartner, P. O., Stampfli, G. M., and Liu, M.: 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations, Journal of Palaeogeography, 4, 64–84, https://doi.org/10.3724/SP.~J.1261.2015.00068, 2015. a
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, J. Geophys. Res.-Sol. Ea., 104, 17661–17674, 1999. a
Wilkinson, B. H. and McElroy, B. J.: The impact of humans on continental erosion and sedimentation, Geol. Soc. Am. Bull., 119, 140–156, https://doi.org/10.1130/B25899.1, 2007. a, b
Willenbring, J. K., Codilean, A. T., and McElroy, B.: Earth is (mostly) flat: apportionment of the flux of continental sediment over millennial time scales, Geology, 41, 343–346, https://doi.org/10.1130/G33918.1, 2013. a, b
Wittmann, H., von Blanckenburg, F., Maurice, L., Guyot, J.-L., Filizola, N., and Kubik, P. W.: Sediment production and delivery in the Amazon River basin quantified by in situ–produced cosmogenic nuclides and recent river loads, Geol. Soc. Am. Bull., 123, 934–950, 2011. a
Zhao, H., Wang, Q., Li, W., Shu, Q., Sun, X., and Deng, J.: The roles of emplacement depth, magma volume and local geologic conditions in the formation of the giant Yulong copper deposit, Eastern Tibet, Ore Geol. Rev., 145, 104877, https://doi.org/10.1016/j.oregeorev.2022.104877, 2022. a
Ziegler, A., Rowley, D. B., Lottes, A. L., Sahagian, D. L., Hulver, M. L., and Gierlowski, T. C.: Paleogeographic interpretation: with an example from the Mid-Cretaceous, Annu. Rev. Earth Pl. Sc., 13, 385–428, 1985. a
Zürcher, L., Bookstrom, A., Hammarstrom, J., Mars, J., Ludington, S., Zientek, M., Dunlap, P., and Wallis, J.: Tectono-magmatic evolution of porphyry belts in the central Tethys region of Turkey, the Caucasus, Iran, western Pakistan, and southern Afghanistan, Ore Geol. Rev., 111, 102849, https://doi.org/10.1016/j.oregeorev.2019.02.034, 2019. a
Short summary
We studied how erosion and tectonic forces can affect the exposure and preservation of copper deposits formed in subduction zones in the past 65 Myr. We used a global model that simulates landscape changes over time based on climate and elevation changes. Our findings show that climate is more important in preserving or exposing copper deposits than previously described. We help improve methods for locating copper deposits, offering new insights for mineral exploration.
We studied how erosion and tectonic forces can affect the exposure and preservation of copper...