Articles | Volume 13, issue 4
https://doi.org/10.5194/esurf-13-705-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-705-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
AI-based tracking of fast-moving alpine landforms using high-frequency monoscopic time-lapse imagery
Hanne Hendrickx
CORRESPONDING AUTHOR
Institute of Photogrammetry and Remote Sensing, TUD Dresden University of Technology, 01062 Dresden, Germany
Department of Geosciences, University of Fribourg, Fribourg, 1700, Switzerland
Melanie Elias
CORRESPONDING AUTHOR
Institute of Photogrammetry and Remote Sensing, TUD Dresden University of Technology, 01062 Dresden, Germany
Xabier Blanch
Institute of Photogrammetry and Remote Sensing, TUD Dresden University of Technology, 01062 Dresden, Germany
Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
Reynald Delaloye
Department of Geosciences, University of Fribourg, Fribourg, 1700, Switzerland
Anette Eltner
Institute of Photogrammetry and Remote Sensing, TUD Dresden University of Technology, 01062 Dresden, Germany
Related authors
Pedro Alberto Pereira Zamboni, Hanne Hendrickx, Dennis Sprute, Holger Flatt, Muhtasimul Islam Rushdi, Florian Brodrecht, and Anette Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 483–490, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-483-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-483-2024, 2024
Lea Epple, Oliver Grothum, Anne Bienert, and Anette Eltner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-380, https://doi.org/10.5194/essd-2025-380, 2025
Preprint under review for ESSD
Short summary
Short summary
The present study offers a unique, nested, high-resolution dataset that captures soil surface changes every 20 seconds during rainfall events, as well as over seasonal variations, across a range of spatial scales – plot, slope, and catchment. These data collected over a period of 3.5 years was facilitated by a camera-based approach. This open-access resource assists scientists in evaluating and refining existing models, improving process understanding, and training artificial intelligence.
Anette Eltner, David Favis-Mortlock, Oliver Grothum, Martin Neumann, Tomáš Laburda, and Petr Kavka
SOIL, 11, 413–434, https://doi.org/10.5194/soil-11-413-2025, https://doi.org/10.5194/soil-11-413-2025, 2025
Short summary
Short summary
This study develops a new method to improve the calibration and evaluation of models that predict soil erosion by water. By using advanced imaging techniques, we can capture detailed changes in the soil surface over time. This helps improve models that forecast erosion, especially as climate change creates new and unpredictable conditions. Our findings highlight the need for more precise tools to better model erosion of our land and environment in the future.
Oliver Grothum, Lea Epple, Anne Bienert, Xabier Blanch, and Anette Eltner
EGUsphere, https://doi.org/10.5194/egusphere-2025-2291, https://doi.org/10.5194/egusphere-2025-2291, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
Soil erosion threatens landscapes worldwide, and understanding how surfaces change over time is key to addressing this issue. We developed a new camera-based system that automatically captures and analyzes daily surface changes on a hillside over several years. Triggered by rain and a clock, the system showed how weather and farming impact the land. Our method offers a powerful way to monitor surface changes and can help improve predictions and solutions for soil erosion.
Xabier Blanch, Jens Grundmann, Ralf Hedel, and Anette Eltner
EGUsphere, https://doi.org/10.5194/egusphere-2025-724, https://doi.org/10.5194/egusphere-2025-724, 2025
Short summary
Short summary
This study presents a low-cost, automated system for monitoring river water levels using cameras and AI. By combining AI-based image analysis with photogrammetry, it accurately measures water levels in real-time, even in challenging conditions. Tested over 2.5 years at four sites, it achieved high accuracy (errors of 1.0–2.3 cm) and processed over 219,000 images. Its resilience makes it ideal for flood detection and water management in remote areas.
Line Rouyet, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Diego Cusicanqui, Margaret Darrow, Reynald Delaloye, Thomas Echelard, Christophe Lambiel, Lucas Ruiz, Lea Schmid, Flavius Sirbu, and Tazio Strozzi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-598, https://doi.org/10.5194/essd-2024-598, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Rock glaciers are landforms generated by the creep of frozen ground (permafrost) in cold-climate mountains. Mapping rock glaciers contributes to document the distribution and the dynamics of mountain permafrost. We compiled inventories documenting the location, the characteristics, and the extent of rock glaciers in 12 mountain regions around the world. In each region, a team of operators performed the work following common rules and agreed on final solutions when discrepancies were identified.
Robert Krüger, Xabier Blanch, Jens Grundmann, Ghazi Al-Rawas, and Anette Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 243–250, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-243-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-243-2024, 2024
Pedro Alberto Pereira Zamboni, Hanne Hendrickx, Dennis Sprute, Holger Flatt, Muhtasimul Islam Rushdi, Florian Brodrecht, and Anette Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 483–490, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-483-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-483-2024, 2024
Melanie Elias, Steffen Isfort, Anette Eltner, and Hans-Gerd Maas
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 57–64, https://doi.org/10.5194/isprs-annals-X-2-2024-57-2024, https://doi.org/10.5194/isprs-annals-X-2-2024-57-2024, 2024
Steffen Isfort, Melanie Elias, and Hans-Gerd Maas
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 113–120, https://doi.org/10.5194/isprs-annals-X-2-2024-113-2024, https://doi.org/10.5194/isprs-annals-X-2-2024-113-2024, 2024
Robert Krüger, Pierre Karrasch, and Anette Eltner
Geosci. Instrum. Method. Data Syst., 13, 163–176, https://doi.org/10.5194/gi-13-163-2024, https://doi.org/10.5194/gi-13-163-2024, 2024
Short summary
Short summary
Low-cost sensors could fill gaps in existing observation networks. To ensure data quality, the quality of the factory calibration of a given sensor has to be evaluated if the sensor is used out of the box. Here, the factory calibration of a widely used low-cost rain gauge type has been tested both in the lab (66) and in the field (20). The results of the study suggest that the calibration of this particular type should at least be checked for every sensor before being used.
O. Grothum, A. Bienert, M. Bluemlein, and A. Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 163–170, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-163-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-163-2023, 2023
Xabier Blanch, Marta Guinau, Anette Eltner, and Antonio Abellan
Nat. Hazards Earth Syst. Sci., 23, 3285–3303, https://doi.org/10.5194/nhess-23-3285-2023, https://doi.org/10.5194/nhess-23-3285-2023, 2023
Short summary
Short summary
We present cost-effective photogrammetric systems for high-resolution rockfall monitoring. The paper outlines the components, assembly, and programming codes required. The systems utilize prime cameras to generate 3D models and offer comparable performance to lidar for change detection monitoring. Real-world applications highlight their potential in geohazard monitoring which enables accurate detection of pre-failure deformation and rockfalls with a high temporal resolution.
R. Blaskow and A. Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 45–50, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-45-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-45-2023, 2023
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Isabelle Gärtner-Roer, Nina Brunner, Reynald Delaloye, Wilfried Haeberli, Andreas Kääb, and Patrick Thee
The Cryosphere, 16, 2083–2101, https://doi.org/10.5194/tc-16-2083-2022, https://doi.org/10.5194/tc-16-2083-2022, 2022
Short summary
Short summary
We intensely investigated the Gruben site in the Swiss Alps, where glaciers and permafrost landforms closely interact, to better understand cold-climate environments. By the interpretation of air photos from 5 decades, we describe long-term developments of the existing landforms. In combination with high-resolution positioning measurements and ground surface temperatures, we were also able to link these to short-term changes and describe different landform responses to climate forcing.
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021, https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
Short summary
The rise of new technologies such as drones (unmanned aerial systems – UASs) has allowed widespread use of image velocimetry techniques in place of more traditional, usually slower, methods during hydrometric campaigns. In order to minimize the velocity estimation errors, one must stabilise the acquired videos. In this research, we compare the performance of different UAS video stabilisation tools and provide guidelines for their use in videos with different flight and ground conditions.
Lea Epple, Andreas Kaiser, Marcus Schindewolf, and Anette Eltner
SOIL Discuss., https://doi.org/10.5194/soil-2021-85, https://doi.org/10.5194/soil-2021-85, 2021
Revised manuscript not accepted
Short summary
Short summary
Intensified extreme weather events due to climate change can result in changes of soil erosion. These unclear developments make an improvement of soil erosion modelling all the more important. Assuming that soil erosion models cannot keep up with the current data, this work gives an overview of 44 models, their strengths and weaknesses and discusses their potential for further development with respect to new and improved soil and soil erosion assessment techniques.
A. Eltner, D. Mader, N. Szopos, B. Nagy, J. Grundmann, and L. Bertalan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 717–722, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-717-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-717-2021, 2021
Sebastián Vivero, Reynald Delaloye, and Christophe Lambiel
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-8, https://doi.org/10.5194/esurf-2021-8, 2021
Preprint withdrawn
Short summary
Short summary
We use repeated drone flights to measure the velocities of a rock glacier located in the western Swiss Alps. The results are validated by comparing with simultaneous GPS measurements. Between 2016 and 2019, the rock glacier doubled its overall frontal velocity, from 5 m to more than 10 m per year. These high velocities and the development of a scarp feature indicate a rock glacier destabilisation phase. Finally, this work highlights the use of drones for rock glacier monitoring.
T. S. Akiyama, J. Marcato Junior, W. N. Gonçalves, P. O. Bressan, A. Eltner, F. Binder, and T. Singer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 1189–1193, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1189-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1189-2020, 2020
M. Elias and H.-G. Maas
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2020, 181–187, https://doi.org/10.5194/isprs-annals-V-1-2020-181-2020, https://doi.org/10.5194/isprs-annals-V-1-2020-181-2020, 2020
Anette Eltner, Hannes Sardemann, and Jens Grundmann
Hydrol. Earth Syst. Sci., 24, 1429–1445, https://doi.org/10.5194/hess-24-1429-2020, https://doi.org/10.5194/hess-24-1429-2020, 2020
Short summary
Short summary
An automatic workflow is introduced to measure surface flow velocities in rivers. The provided tool enables the measurement of spatially distributed surface flow velocities independently of the image acquisition perspective. Furthermore, the study illustrates how river discharge in previously ungauged and unmeasured regions can be retrieved, considering the image-based flow velocities and digital elevation models of the studied river reach reconstructed with UAV photogrammetry.
Coline Mollaret, Christin Hilbich, Cécile Pellet, Adrian Flores-Orozco, Reynald Delaloye, and Christian Hauck
The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, https://doi.org/10.5194/tc-13-2557-2019, 2019
Short summary
Short summary
We present a long-term multisite electrical resistivity tomography monitoring network (more than 1000 datasets recorded from six mountain permafrost sites). Despite harsh and remote measurement conditions, the datasets are of good quality and show consistent spatio-temporal variations yielding significant added value to point-scale borehole information. Observed long-term trends are similar for all permafrost sites, showing ongoing permafrost thaw and ground ice loss due to climatic conditions.
Mario Kummert and Reynald Delaloye
Geogr. Helv., 73, 357–371, https://doi.org/10.5194/gh-73-357-2018, https://doi.org/10.5194/gh-73-357-2018, 2018
M. Kröhnert and A. Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 543–550, https://doi.org/10.5194/isprs-archives-XLII-2-543-2018, https://doi.org/10.5194/isprs-archives-XLII-2-543-2018, 2018
H. Sardemann, A. Eltner, and H.-G. Maas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 1023–1027, https://doi.org/10.5194/isprs-archives-XLII-2-1023-2018, https://doi.org/10.5194/isprs-archives-XLII-2-1023-2018, 2018
D. Lin, A. Eltner, H. Sardemann, and H.-G. Maas
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2, 201–208, https://doi.org/10.5194/isprs-annals-IV-2-201-2018, https://doi.org/10.5194/isprs-annals-IV-2-201-2018, 2018
Benjamin Mewes, Christin Hilbich, Reynald Delaloye, and Christian Hauck
The Cryosphere, 11, 2957–2974, https://doi.org/10.5194/tc-11-2957-2017, https://doi.org/10.5194/tc-11-2957-2017, 2017
Antoine Marmy, Jan Rajczak, Reynald Delaloye, Christin Hilbich, Martin Hoelzle, Sven Kotlarski, Christophe Lambiel, Jeannette Noetzli, Marcia Phillips, Nadine Salzmann, Benno Staub, and Christian Hauck
The Cryosphere, 10, 2693–2719, https://doi.org/10.5194/tc-10-2693-2016, https://doi.org/10.5194/tc-10-2693-2016, 2016
Short summary
Short summary
This paper presents a new semi-automated method to calibrate the 1-D soil model COUP. It is the first time (as far as we know) that this approach is developed for mountain permafrost. It is applied at six test sites in the Swiss Alps. In a second step, the calibrated model is used for RCM-based simulations with specific downscaling of RCM data to the borehole scale. We show projections of the permafrost evolution at the six sites until the end of the century and according to the A1B scenario.
A. Eltner, D. Schneider, and H.-G. Maas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B5, 813–819, https://doi.org/10.5194/isprs-archives-XLI-B5-813-2016, https://doi.org/10.5194/isprs-archives-XLI-B5-813-2016, 2016
Anette Eltner, Andreas Kaiser, Carlos Castillo, Gilles Rock, Fabian Neugirg, and Antonio Abellán
Earth Surf. Dynam., 4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, https://doi.org/10.5194/esurf-4-359-2016, 2016
Short summary
Short summary
Three-dimensional reconstruction of earth surfaces from overlapping images is a promising tool for geoscientists. The method is very flexible, cost-efficient and easy to use, leading to a high variability in applications at different scales. Performance evaluation reveals that good accuracies are achievable but depend on the requirements of the individual case study. Future applications and developments (i.e. big data) will consolidate this essential tool for digital surface mapping.
B. Staub, A. Marmy, C. Hauck, C. Hilbich, and R. Delaloye
Geogr. Helv., 70, 45–62, https://doi.org/10.5194/gh-70-45-2015, https://doi.org/10.5194/gh-70-45-2015, 2015
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Use of simple analytical solutions in the calibration of shallow water equation debris flow models
Localised geomorphic response to channel-spanning leaky wooden dams
Surface grain-size mapping of braided channels from SfM photogrammetry
Spatiotemporal denudation rates of the Swabian Alb escarpment (southwestern Germany) dominated by anthropogenic impact, lithology, and base-level lowering
Short communication: Learning how landscapes evolve with neural operators
Sediment aggradation rates in Himalayan rivers revealed through the InSAR differential residual topographic phase
The glacial paleolandscapes of Southern Africa: the legacy of the Late Paleozoic Ice Age
Multiple equilibrium configurations in river-dominated deltas
Investigating the celerity of propagation for small perturbations and dispersive sediment aggradation under a supercritical flow
Short communication: Multiscale topographic complexity analysis with pyTopoComplexity
Sub-surface processes and heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps): seasonal ice and convective cooling render rock glaciers climate-robust
Influence of alluvial slope on avulsion in river deltas
Surficial sediment remobilization by shear between sediment and water above tsunamigenic megathrust ruptures: experimental study
Curvature-based pebble segmentation for reconstructed surface meshes
Haloturbation in the northern Atacama Desert revealed by a hidden subsurface network of calcium sulfate wedges
An evaluation of flow-routing algorithms for calculating contributing area on regular grids
Geometric constraints on tributary fluvial network junction angles
Effect of grain-sorting waves on alternate bar dynamics: Implications of the breakdown of the hydrograph boundary layer
Automatic detection of floating instream large wood in videos using deep learning
Investigating uncertainty and parameter sensitivity in bedform analysis by using a Monte Carlo approach
Geomorphic imprint of high-mountain floods: insights from the 2022 hydrological extreme across the upper Indus River catchment in the northwestern Himalayas
A numerical model for duricrust formation by water table fluctuations
Width evolution of channel belts as a random walk
Evidence of slow millennial cliff retreat rates using cosmogenic nuclides in coastal colluvium
Equilibrium distance from long-range dune interactions
Slow-moving rock glaciers in marginal periglacial environment of Southern Carpathians
Examination of analytical shear stress predictions for coastal dune evolution
Post-fire evolution of ravel transport regimes in the Diablo Range, CA
Landscape response to tectonic deformation and cyclic climate change since ca. 800 ka in the southern central Andes
The Aare main overdeepening on the northern margin of the European Alps: basins, riegels, and slot canyons
A simple model for faceted topographies at normal faults based on an extended stream-power law
Testing floc settling velocity models in rivers and freshwater wetlands
River suspended-sand flux computation with uncertainty estimation using water samples and high-resolution ADCP measurements
Barchan swarm dynamics from a Two-Flank Agent-Based Model
A landslide runout model for sediment transport, landscape evolution, and hazard assessment applications
Tracking slow-moving landslides with PlanetScope data: new perspectives on the satellite's perspective
Topographic metrics for unveiling fault segmentation and tectono-geomorphic evolution with insights into the impact of inherited topography, Ulsan Fault Zone, South Korea
Biomechanical parameters of marram grass (Calamagrostis arenaria) for advanced modeling of dune vegetation
Acceleration of coastal-retreat rates for high-Arctic rock cliffs on Brøggerhalvøya, Svalbard, over the past decade
The impact of bedrock meander cutoffs on 50 kyr scale incision rates, San Juan River, Utah
How water, temperature, and seismicity control the preconditioning of massive rock slope failure (Hochvogel)
Large structure simulation for landscape evolution models
Terrace formation linked to outburst floods at the Diexi palaeo-landslide dam, upper Minjiang River, eastern Tibetan Plateau
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Role of the forcing sources in morphodynamic modelling of an embayed beach
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Time-varying drainage basin development and erosion on volcanic edifices
Geomorphic risk maps for river migration using probabilistic modeling – a framework
Riccardo Bonomelli, Marco Pilotti, and Gabriele Farina
Earth Surf. Dynam., 13, 665–681, https://doi.org/10.5194/esurf-13-665-2025, https://doi.org/10.5194/esurf-13-665-2025, 2025
Short summary
Short summary
Debris flows are fundamental components of the hazard in mountain regions, and numerical models must be used for the related risk computation. Most existing commercial software strongly conceptualizes the main characteristics of the flow, leading to an inevitable calibration process, which is time-consuming and difficult to accomplish. This contribution offers some physically based solutions to confine the calibration process and to better understand the implications of the selected choice.
Joshua M. Wolstenholme, Christopher J. Skinner, David Milan, Robert E. Thomas, and Daniel R. Parsons
Earth Surf. Dynam., 13, 647–663, https://doi.org/10.5194/esurf-13-647-2025, https://doi.org/10.5194/esurf-13-647-2025, 2025
Short summary
Short summary
Leaky wooden dams are a popular form of natural flood management used to slow the flow of water by increasing floodplain connectivity whilst decreasing connectivity along the river profile. By monitoring two leaky wooden dams in North Yorkshire, UK, we present the geomorphological response to their installation, highlighting that the structures significantly increase channel complexity in response to different river flow conditions.
Loïs Ribet, Frédéric Liébault, Laurent Borgniet, Michaël Deschâtres, and Gabriel Melun
Earth Surf. Dynam., 13, 607–627, https://doi.org/10.5194/esurf-13-607-2025, https://doi.org/10.5194/esurf-13-607-2025, 2025
Short summary
Short summary
This work presents a protocol and a model to obtain the sizes of the pebbles in mountain rivers from uncrewed aerial vehicle images. A total of 12 rivers located in southeastern France were photographed to build the model. The results show that the model has little error and should be usable for similar rivers. The grain size of mountain rivers is an important parameter for environmental diagnostics by mapping the aquatic habitats and for flood management by estimating the pebble fluxes during floods.
Mirjam Schaller, Daniel Peifer, Alexander B. Neely, Thomas Bernard, Christoph Glotzbach, Alexander R. Beer, and Todd A. Ehlers
Earth Surf. Dynam., 13, 571–591, https://doi.org/10.5194/esurf-13-571-2025, https://doi.org/10.5194/esurf-13-571-2025, 2025
Short summary
Short summary
This study reports chemical weathering, physical erosion, and denudation rates from river load data in the Swabian Alb, southwestern Germany. Tributaries to the Neckar River draining to the north show higher rates than tributaries draining to the southeast into the Danube River, causing a retreat of the Swabian Alb escarpment. Observations are discussed in light of anthropogenic impact, lithology, and topography. The data are further compared to other rates over space and time and to global data.
Gareth G. Roberts
Earth Surf. Dynam., 13, 563–570, https://doi.org/10.5194/esurf-13-563-2025, https://doi.org/10.5194/esurf-13-563-2025, 2025
Short summary
Short summary
The use of new artificial intelligence (AI) techniques to learn how landscapes evolve is demonstrated. A few “snapshots” of an eroding landscape at different stages of its history provide enough information for AI to ascertain rules governing its evolution. Once the rules are known, predicting landscape evolution is extremely rapid and efficient, providing new tools to understand landscape change.
Jingqiu Huang and Hugh D. Sinclair
Earth Surf. Dynam., 13, 531–547, https://doi.org/10.5194/esurf-13-531-2025, https://doi.org/10.5194/esurf-13-531-2025, 2025
Short summary
Short summary
We develop a novel approach based on satellite radar images to quantify millimetre-scale sedimentation during monsoon floods over a 15 km stretch of four rivers, from the Himalayan mountain front to the gravel–sand transition. The results show how sediment accumulates more rapidly near the mountain front and decreases downstream, while the floodplain sinks. This method can improve river monitoring, enhance flood prediction, and benefit communities at risk of flooding in Nepal and India.
Pierre Dietrich, François Guillocheau, Guilhem A. Douillet, Neil P. Griffis, Guillaume Baby, Daniel P. Le Héron, Laurie Barrier, Maximilien Mathian, Isabel P. Montañez, Cécile Robin, Thomas Gyomlai, Christoph Kettler, and Axel Hofmann
Earth Surf. Dynam., 13, 495–529, https://doi.org/10.5194/esurf-13-495-2025, https://doi.org/10.5194/esurf-13-495-2025, 2025
Short summary
Short summary
At the evocation of icy landscapes, Africa is not the first place that comes to mind. The modern relief of Southern Africa is generally considered to be a result of uplift and counteracting erosion. We show that some of the modern relief of this region is due to fossil glacial landscapes – striated pavements, valleys, and fjords – tied to an ice age that occurred ca. 300 Myr ago. We focus on how these landscapes have escaped being erased for hundreds of millions of years.
Lorenzo Durante, Nicoletta Tambroni, and Michele Bolla Pittaluga
Earth Surf. Dynam., 13, 455–471, https://doi.org/10.5194/esurf-13-455-2025, https://doi.org/10.5194/esurf-13-455-2025, 2025
Short summary
Short summary
River deltas evolve due to natural forces and human activities, posing challenges for communities relying on stable water flow. This study examines how different flow distributions shape delta channels. Using a new theoretical model, we identify branch length as the key factor influencing stability. Applying this to Italy's Po River Delta, we highlight areas at risk of change, providing insights for better management and planning.
Hasan Eslami, Erfan Poursoleymanzadeh, Mojtaba Hiteh, Keivan Tavakoli, Melika Yavari Nia, Ehsan Zadehali, Reihaneh Zarrabi, and Alessio Radice
Earth Surf. Dynam., 13, 437–454, https://doi.org/10.5194/esurf-13-437-2025, https://doi.org/10.5194/esurf-13-437-2025, 2025
Short summary
Short summary
A channel may be aggraded by overloaded sediment. In this study we realize an aggradation experiment and determine the celerity at which an aggradation wave, due to sediment overloading, migrates. We also investigate the celerity of small perturbations, as quantified by mathematical formulations. The celerities of the two kinds are correlated with each other. However, the celerity of small perturbations is larger than the other one, which is less than a few percent of the water velocity.
Larry Syu-Heng Lai, Adam M. Booth, Alison R. Duvall, and Erich Herzig
Earth Surf. Dynam., 13, 417–435, https://doi.org/10.5194/esurf-13-417-2025, https://doi.org/10.5194/esurf-13-417-2025, 2025
Short summary
Short summary
pyTopoComplexity is an open-source Python tool for multiscale land surface complexity analysis. Applied to a landslide-affected area in Washington, USA, it accurately identified landform features at various scales, enhancing our understanding of landform recovery after disturbances. By integrating with Landlab’s landscape evolution simulations, the software allows researchers to explore how different processes drive the evolution of surface complexity in response to natural forces.
Dominik Amschwand, Jonas Wicky, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
Earth Surf. Dynam., 13, 365–401, https://doi.org/10.5194/esurf-13-365-2025, https://doi.org/10.5194/esurf-13-365-2025, 2025
Short summary
Short summary
Rock glaciers are comparatively climate-robust permafrost landforms. We estimated the energy budget of the seasonally thawing active layer (AL) of Murtèl rock glacier (Swiss Alps) based on a novel sub-surface sensor array. In the coarse blocky AL, heat is transferred by thermal radiation and air convection. The ground heat flux is largely spent on melting seasonal ice in the AL. Convective cooling and the seasonal ice turnover make rock glaciers climate-robust and shield the permafrost beneath.
Octria A. Prasojo, Trevor B. Hoey, Amanda Owen, and Richard D. Williams
Earth Surf. Dynam., 13, 349–363, https://doi.org/10.5194/esurf-13-349-2025, https://doi.org/10.5194/esurf-13-349-2025, 2025
Short summary
Short summary
Decades of delta avulsion (i.e. channel abrupt jump) studies have not resolved what the main controls of delta avulsion are. Using a computer model, integrated with field observation, analytical, and laboratory-made deltas, we found that the sediment load, which itself is controlled by the steepness of the river upstream of a delta, controls the timing of avulsion. We can now better understand the main cause of abrupt channel changes in deltas, a finding that aids flood risk management in river deltas.
Chloé Seibert, Cecilia McHugh, Chris Paola, Leonardo Seeber, and James Tucker
Earth Surf. Dynam., 13, 341–348, https://doi.org/10.5194/esurf-13-341-2025, https://doi.org/10.5194/esurf-13-341-2025, 2025
Short summary
Short summary
We propose a new mechanism of co-seismic sediment entrainment induced by shear stress at the sediment–water interface during major subduction earthquakes rupturing to the trench. Physical experiments show that flow velocities consistent with long-period earthquake motions can entrain synthetic marine sediment, and high-frequency vertical shaking can enhance this mobilization. They validate the proposed entrainment mechanism, which opens new avenues for paleoseismology in deep-sea environments.
Aljoscha Rheinwalt, Benjamin Purinton, and Bodo Bookhagen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1110, https://doi.org/10.5194/egusphere-2025-1110, 2025
Short summary
Short summary
Our study presents a computer-based method to detect and measure pebbles in 3D models reconstructed from camera photos. We tested it in a controlled setup and achieved 98 % accuracy in detecting pebbles. Unlike traditional 2D methods, our approach provides full 3D size and orientation data. This improves sediment analysis and riverbed studies by offering more precise measurements. Our work highlights the potential of 3D modeling for studying natural surfaces.
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
Earth Surf. Dynam., 13, 257–276, https://doi.org/10.5194/esurf-13-257-2025, https://doi.org/10.5194/esurf-13-257-2025, 2025
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Alexander B. Prescott, Jon D. Pelletier, Satya Chataut, and Sriram Ananthanarayan
Earth Surf. Dynam., 13, 239–256, https://doi.org/10.5194/esurf-13-239-2025, https://doi.org/10.5194/esurf-13-239-2025, 2025
Short summary
Short summary
Many Earth surface processes are controlled by the spatial pattern of surface water flow. We review commonly used methods for predicting such spatial patterns in digital landform models and document the pros and cons of commonly used methods. We propose a new method that is designed to minimize those limitations and show that it works well in a variety of test cases.
Jon D. Pelletier, Robert G. Hayes, Olivia Hoch, Brendan Fenerty, and Luke A. McGuire
Earth Surf. Dynam., 13, 219–238, https://doi.org/10.5194/esurf-13-219-2025, https://doi.org/10.5194/esurf-13-219-2025, 2025
Short summary
Short summary
We demonstrate that landscapes with more planar initial conditions tend to have lower mean junction angles. Geomorphic processes on alluvial piedmonts result in especially planar initial conditions, consistent with a correlation between junction angles and the presence/absence of Late Cenozoic alluvial deposits and the constraint imposed by the intersection of planar approximations to the topography upslope from tributary junctions. We caution against using junction angles to infer paleoclimate.
Soichi Tanabe and Toshiki Iwasaki
EGUsphere, https://doi.org/10.5194/egusphere-2025-103, https://doi.org/10.5194/egusphere-2025-103, 2025
Short summary
Short summary
We try to understand how the sediment supply from the upstream river reach affect the downstream river morphology using a numerical model. If the supplied sediment is composed of variety of size class of particles, a small size bed wave that is composed of mainly fine particles (sorting wave) can propagate to downstream very long distance. However, presence of bars suppresses the effect of sorting wave greatly, and thus the sediment supply has limited role in the downstream river morphology.
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
Earth Surf. Dynam., 13, 167–189, https://doi.org/10.5194/esurf-13-167-2025, https://doi.org/10.5194/esurf-13-167-2025, 2025
Short summary
Short summary
This study presents a novel convolutional-neural-network approach for detecting instream large wood in rivers, addressing the need for flexible monitoring methods across diverse data sources. Using a database of 15 228 fully labelled images, the model achieved a weighted mean average precision of 67 %. Fine-tuning parameters and sampling techniques can improve performance by over 10 % in some cases, offering valuable insights into ecosystem management.
Julius Reich and Axel Winterscheid
Earth Surf. Dynam., 13, 191–217, https://doi.org/10.5194/esurf-13-191-2025, https://doi.org/10.5194/esurf-13-191-2025, 2025
Short summary
Short summary
Analyzing the geometry and the dynamics of riverine bedforms (so-called dune tracking) is important for various fields of application and contributes to sound and efficient river and sediment management. We developed a workflow that enables a robust estimation of bedform characteristics and with which comprehensive sensitivity analyses can be carried out. Using a field dataset, we show that the setting of input parameters in bedform analyses can have a significant impact on the results.
Abhishek Kashyap, Kristen L. Cook, and Mukunda Dev Behera
Earth Surf. Dynam., 13, 147–166, https://doi.org/10.5194/esurf-13-147-2025, https://doi.org/10.5194/esurf-13-147-2025, 2025
Short summary
Short summary
Short-lived, high-magnitude flood events across high mountain regions leave substantial geomorphic imprints, which are frequently triggered by excess precipitation, glacial lake outbursts, and natural dam breaches. These catastrophic floods highlight the importance of understanding the complex interaction between climatic, hydrological, and geological forces in bedrock catchments. Extreme floods can have long-term geomorphic consequences on river morphology and fluvial processes.
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
Earth Surf. Dynam., 13, 119–146, https://doi.org/10.5194/esurf-13-119-2025, https://doi.org/10.5194/esurf-13-119-2025, 2025
Short summary
Short summary
We have developed a new numerical model to represent the formation of duricrusts, which are hard mineral layers found in soils and at the surface of the Earth. We assume that the formation mechanism implies variations in the height of the water table and that the hardening rate is proportional to precipitation. The model allows us to quantify the potential feedbacks they generate on the surface topography and the thickness of the regolith/soil layer.
Jens M. Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 13, 97–117, https://doi.org/10.5194/esurf-13-97-2025, https://doi.org/10.5194/esurf-13-97-2025, 2025
Short summary
Short summary
Channel belts comprise the area affected by a river due to lateral migration and floods. As a landform, they affect water resources and flood hazard, and they often host unique ecological communities. We develop a model describing the evolution of channel-belt area over time. The model connects the behaviour of the river to the evolution of the channel belt over a timescale of centuries. A comparison to selected data from experiments and real river systems verifies the random walk approach.
Rémi Bossis, Vincent Regard, Sébastien Carretier, and Sandrine Choy
Earth Surf. Dynam., 13, 71–79, https://doi.org/10.5194/esurf-13-71-2025, https://doi.org/10.5194/esurf-13-71-2025, 2025
Short summary
Short summary
The erosion of rocky coasts occurs episodically through wave action and landslides, constituting a major natural hazard. Documenting the factors that control the coastal retreat rate over millennia is fundamental to evidencing any change in time. However, the known rates to date are essentially representative of the last few decades. Here, we present a new method using the concentration of an isotope, 10Be, in sediment eroded from the cliff to quantify its retreat rate averaged over millennia.
Jean Vérité, Clément Narteau, Olivier Rozier, Jeanne Alkalla, Laurie Barrier, and Sylvain Courrech du Pont
Earth Surf. Dynam., 13, 23–39, https://doi.org/10.5194/esurf-13-23-2025, https://doi.org/10.5194/esurf-13-23-2025, 2025
Short summary
Short summary
Using a numerical model in 2D, we study how two identical dunes interact with each other when exposed to reversing winds. Depending on the distance between the dunes, they either repel or attract each other until they reach an equilibrium distance, which is controlled by the wind strength, wind reversal frequency, and dune size. This process is controlled by the modification of wind flow over dunes of various shapes, influencing the sediment transport downstream.
Alexandru Onaca, Flavius Sirbu, Valentin Poncos, Christin Hilbich, Tazio Strozzi, Petru Urdea, Răzvan Popescu, Oana Berzescu, Bernd Etzelmüller, Alfred Vespremeanu-Stroe, Mirela Vasile, Delia Teleagă, Dan Birtaș, Iosif Lopătiță, Simon Filhol, Alexandru Hegyi, and Florina Ardelean
EGUsphere, https://doi.org/10.5194/egusphere-2024-3262, https://doi.org/10.5194/egusphere-2024-3262, 2025
Short summary
Short summary
This study establishes a methodology for the study of slow-moving rock glaciers in marginal permafrost and provides the basic knowledge for understanding rock glaciers in south east Europe. By using a combination of different methods (remote sensing, geophysical survey, thermal measurements), we found out that, on the transitional rock glaciers, low ground ice content (i.e. below 20 %) produces horizontal displacements of up to 3 cm per year.
Orie Cecil, Nicholas Cohn, Matthew Farthing, Sourav Dutta, and Andrew Trautz
Earth Surf. Dynam., 13, 1–22, https://doi.org/10.5194/esurf-13-1-2025, https://doi.org/10.5194/esurf-13-1-2025, 2025
Short summary
Short summary
Using computational fluid dynamics, we analyze the error trends of an analytical shear stress distribution model used to drive aeolian transport for coastal dunes, which are an important line of defense against storm-related flooding hazards. We find that compared to numerical simulations, the analytical model results in a net overprediction of the landward migration rate. Additionally, two data-driven approaches are proposed for reducing the error while maintaining computational efficiency.
Hayden L. Jacobson, Danica L. Roth, Gabriel Walton, Margaret Zimmer, and Kerri Johnson
Earth Surf. Dynam., 12, 1415–1446, https://doi.org/10.5194/esurf-12-1415-2024, https://doi.org/10.5194/esurf-12-1415-2024, 2024
Short summary
Short summary
Loose grains travel farther after a fire because no vegetation is left to stop them. This matters since loose grains at the base of a slope can turn into a debris flow if it rains. To find if grass growing back after a fire had different impacts on grains of different sizes on slopes of different steepness, we dropped thousands of natural grains and measured how far they went. Large grains went farther 7 months after the fire than 11 months after, and small grain movement didn’t change much.
Elizabeth N. Orr, Taylor F. Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo N. Alonso
Earth Surf. Dynam., 12, 1391–1413, https://doi.org/10.5194/esurf-12-1391-2024, https://doi.org/10.5194/esurf-12-1391-2024, 2024
Short summary
Short summary
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina, record river evolution and global climate cycles over time. Landform dating reveals lower-frequency climate cycles (100 kyr) preserved downstream and higher-frequency cycles (21/40 kyr) upstream, supporting theoretical predications that longer rivers filter out higher-frequency climate signals. This finding improves our understanding of the spatial distribution of sedimentary paleoclimate records within landscapes.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Stefan Hergarten
Earth Surf. Dynam., 12, 1315–1327, https://doi.org/10.5194/esurf-12-1315-2024, https://doi.org/10.5194/esurf-12-1315-2024, 2024
Short summary
Short summary
Faceted topographies are impressive footprints of active tectonics in geomorphology. This paper investigates the evolution of faceted topographies at normal faults and their interaction with a river network theoretically and numerically. As a main result beyond several relations for the geometry of facets, the horizontal displacement associated with normal faults is crucial for the dissection of initially polygonal facets into triangular facets bounded by almost parallel rivers.
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
Earth Surf. Dynam., 12, 1267–1294, https://doi.org/10.5194/esurf-12-1267-2024, https://doi.org/10.5194/esurf-12-1267-2024, 2024
Short summary
Short summary
Fine sediment grains in freshwater can cohere into faster-settling particles called flocs, but floc settling velocity theory has not been fully validated. Combining three data sources in novel ways in the Wax Lake Delta, we verified a semi-empirical model relying on turbulence and geochemical factors. For a physics-based model, we showed that the representative grain diameter within flocs relies on floc structure and that heterogeneous flow paths inside flocs increase floc settling velocity.
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024, https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
Dominic T. Robson and Andreas C. W. Baas
Earth Surf. Dynam., 12, 1205–1226, https://doi.org/10.5194/esurf-12-1205-2024, https://doi.org/10.5194/esurf-12-1205-2024, 2024
Short summary
Short summary
Barchans are fast-moving sand dunes which form large populations (swarms) on Earth and Mars. We show that a small range of model parameters produces swarms in which dune size does not vary downwind – something that is observed in nature but not when using earlier models. We also show how the shape of dunes and the spatial patterns they form are affected by wind direction. This work furthers our understanding of the interplay between environmental drivers, dune interactions, and swarm properties.
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024, https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Short summary
MassWastingRunout (MWR) is a new landslide runout model designed for sediment transport, landscape evolution, and hazard assessment applications. MWR is written in Python and includes a calibration utility that automatically determines best-fit parameters for a site and empirical probability density functions of each parameter for probabilistic model implementation. MWR and Jupyter Notebook tutorials are available as part of the Landlab package at https://github.com/landlab/landlab.
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024, https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary
Short summary
This study investigates the use of optical PlanetScope data for offset tracking of the Earth's surface movement. We found that co-registration accuracy is locally degraded when outdated elevation models are used for orthorectification. To mitigate this bias, we propose to only correlate scenes acquired from common perspectives or base orthorectification on more up-to-date elevation models generated from PlanetScope data alone. This enables a more detailed analysis of landslide dynamics.
Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, and Byung Yong Yu
Earth Surf. Dynam., 12, 1091–1120, https://doi.org/10.5194/esurf-12-1091-2024, https://doi.org/10.5194/esurf-12-1091-2024, 2024
Short summary
Short summary
Topographic metrics were used to understand changes due to tectonic activity. We evaluated the relative tectonic activity along the Ulsan Fault Zone (UFZ), one of the most active fault zones in South Korea. We divided the UFZ into five segments, based on the spatial variation in activity. We modeled the landscape evolution of the study area and interpreted tectono-geomorphic history during which the northern part of the UFZ experienced asymmetric uplift, while the southern part did not.
Viktoria Kosmalla, Oliver Lojek, Jana Carus, Kara Keimer, Lukas Ahrenbeck, Björn Mehrtens, David Schürenkamp, Boris Schröder, and Nils Goseberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-2688, https://doi.org/10.5194/egusphere-2024-2688, 2024
Short summary
Short summary
This study analysed seasonal biomechanical traits of marram grass at two coastal dune sites using monthly field and lab data acquired 2022. Differences in density, leaf length, and flower stems were observed, which are unaffected by wind and deemed transferable. These findings enable surrogate model development for numerical and physical experiments alike, where live vegetation is impractical. Results address the knowledge gap how dune stability and erosion resistance are affected by vegetation.
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Aaron T. Steelquist, Gustav B. Seixas, Mary L. Gillam, Sourav Saha, Seulgi Moon, and George E. Hilley
Earth Surf. Dynam., 12, 1071–1089, https://doi.org/10.5194/esurf-12-1071-2024, https://doi.org/10.5194/esurf-12-1071-2024, 2024
Short summary
Short summary
The rates at which rivers erode their bed can be used to interpret the geologic history of a region. However, these rates depend significantly on the time window over which you measure. We use multiple dating methods to determine an incision rate for the San Juan River and compare it to regional rates with longer timescales. We demonstrate how specific geologic events, such as cutoffs of bedrock meander bends, are likely to preserve material we can date but also bias the rates we measure.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Julien Coatléven and Benoit Chauveau
Earth Surf. Dynam., 12, 995–1026, https://doi.org/10.5194/esurf-12-995-2024, https://doi.org/10.5194/esurf-12-995-2024, 2024
Short summary
Short summary
The aim of this paper is to explain how to incorporate classical water flow routines into landscape evolution models while keeping numerical errors under control. The key idea is to adapt filtering strategies to eliminate anomalous numerical errors and mesh dependencies, as confirmed by convergence tests with analytic solutions. The emergence of complex geomorphic structures is now driven exclusively by nonlinear heterogeneous physical processes rather than by random numerical artifacts.
Jingjuan Li, John D. Jansen, Xuanmei Fan, Zhiyong Ding, Shugang Kang, and Marco Lovati
Earth Surf. Dynam., 12, 953–971, https://doi.org/10.5194/esurf-12-953-2024, https://doi.org/10.5194/esurf-12-953-2024, 2024
Short summary
Short summary
In this study, we investigated the geomorphology, sedimentology, and chronology of Tuanjie (seven terraces) and Taiping (three terraces) terraces in Diexi, eastern Tibetan Plateau. Results highlight that two damming and three outburst events occurred in the area during the late Pleistocene, and the outburst floods have been a major factor in the formation of tectonically active mountainous river terraces. Tectonic activity and climatic changes play a minor role.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024, https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Short summary
Fluvial sediment fluxes increased dramatically in Taiwan during Typhoon Morakot in 2009, which produced some of the heaviest landsliding on record. We analyzed fluvial discharge and suspended sediment concentration data at 87 gauging stations across Taiwan to quantify fluvial sediment responses since Morakot. In basins heavily impacted by landsliding, rating curve coefficients sharply increased during Morakot and then declined exponentially with a characteristic decay time of <10 years.
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024, https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary
Short summary
Ice cliffs are melt hot spots that increase melt rates on debris-covered glaciers which otherwise see a reduction in melt rates. In this study, we show how surface runoff streams contribute to the generation, evolution, and survival of ice cliffs by carving into the glacier and transporting rocky debris. On Kennicott Glacier, Alaska, 33 % of ice cliffs are actively influenced by streams, while nearly half are within 10 m of streams.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Brayden Noh, Omar Wani, Kieran B. J. Dunne, and Michael P. Lamb
Earth Surf. Dynam., 12, 691–708, https://doi.org/10.5194/esurf-12-691-2024, https://doi.org/10.5194/esurf-12-691-2024, 2024
Short summary
Short summary
In this paper, we propose a framework for generating risk maps that provide the probabilities of erosion due to river migration. This framework uses concepts from probability theory to learn the river migration model's parameter values from satellite data while taking into account parameter uncertainty. Our analysis shows that such geomorphic risk estimation is more reliable than models that do not explicitly consider various sources of variability and uncertainty.
Cited articles
Altmann, M., Piermattei, L., Haas, F., Heckmann, T., Fleischer, F., Rom, J., Betz-Nutz, S., Knoflach, B., Müller, S., Ramskogler, K., Pfeiffer, M., Hofmeister, F., Ressl, C., and Becht, M.: Long-Term Changes of Morphodynamics on Little Ice Age Lateral Moraines and the Resulting Sediment Transfer into Mountain Streams in the Upper Kauner Valley, Austria, Water, 12, 3375, https://doi.org/10.3390/W12123375, 2020.
Barsch, D.: Rockglaciers, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-80093-1, 1996.
Blanch, X., Guinau, M., Eltner, A., and Abellan, A.: Fixed photogrammetric systems for natural hazard monitoring with high spatio-temporal resolution, Nat. Hazards Earth Syst. Sci., 23, 3285–3303, https://doi.org/10.5194/nhess-23-3285-2023, 2023.
Cicoira, A., Marcer, M., Gärtner-Roer, I., Bodin, X., Arenson, L. U., and Vieli, A.: A general theory of rock glacier creep based on in-situ and remote sensing observations, Permafrost Periglac., 32, 139–153, https://doi.org/10.1002/ppp.2090, 2021.
Cicoira, A., Weber, S., Biri, A., Buchli, B., Delaloye, R., Da Forno, R., Gärtner-Roer, I., Gruber, S., Gsell, T., Hasler, A., Lim, R., Limpach, P., Mayoraz, R., Meyer, M., Noetzli, J., Phillips, M., Pointner, E., Raetzo, H., Scapozza, C., Strozzi, T., Thiele, L., Vieli, A., Vonder Mühll, D., Wirz, V., and Beutel, J.: In situ observations of the Swiss periglacial environment using GNSS instruments, Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, 2022.
Computer Vision and Geometry Lab (CVG, ETH Zürich): LightGlue, Github [code], https://github.com/cvg/LightGlue (last access: 4 August 2025), 2023.
Delaloye, R., Lambiel, C., and Gärtner-Roer, I.: Overview of rock glacier kinematics research in the Swiss Alps, Geogr. Helv., 65, 135–145, https://doi.org/10.5194/gh-65-135-2010, 2010.
Delaloye, R., Morard, S., Barboux, C., Abbet, D., Gruber, V., Riedo, M., and Gachet, S.: Rapidly moving rock glaciers in Mattertal, Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft, 21–31, 2013.
Elias, M.: GIRAFFE, Github [code], https://github.com/mel-ias/GIRAFFE (last access: 4 August 2025), 2024.
Elias, M. and Hendrickx, H.: AI-Based Tracking of Fast-Moving Alpine Landforms Using High Frequency Monoscopic Time-Lapse Imagery. In Earth Surface Dynamics, Zenodo [data set], https://doi.org/10.5281/zenodo.14260180, 2024.
Elias, M. and Maas, H.-G.: Measuring Water Levels by Handheld Smartphones: A contribution to exploit crowdsourcing in the spatio-temporal densification of water gauging networks, Int. Hydrogr. Rev., 27, 9–22, https://doi.org/10.58440/ihr-27-a01, 2022.
Elias, M., Kehl, C., and Schneider, D.: Photogrammetric water level determination using smartphone technology, Photogramm. Rec., 34, 198–223, https://doi.org/10.1111/phor.12280, 2019.
Elias, M., Eltner, A., Liebold, F., and Maas, H.-G.: Assessing the Influence of Temperature Changes on the Geometric Stability of Smartphone- and Raspberry Pi Cameras, Sensors, 20, 643, https://doi.org/10.3390/s20030643, 2020.
Elias, M., Weitkamp, A., and Eltner, A.: Multi-modal image matching to colorize a SLAM based point cloud with arbitrary data from a thermal camera, ISPRS Open Journal of Photogrammetry and Remote Sensing, 9, 100041, https://doi.org/10.1016/j.ophoto.2023.100041, 2023.
Elias, M., Isfort, S., Eltner, A., and Maas, H.-G.: UAS Photogrammetry for Precise Digital Elevation Models of Complex Topography: A Strategy Guide, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 57–64, https://doi.org/10.5194/isprs-annals-X-2-2024-57-2024, 2024.
Eltner, A., Kaiser, A., Abellan, A., and Schindewolf, M.: Time lapse structure-from-motion photogrammetry for continuous geomorphic monitoring, Earth Surf. Proc. Land., 42, 2240–2253, https://doi.org/10.1002/esp.4178, 2017.
Eltner, A., Sardemann, H., and Grundmann, J.: Technical Note: Flow velocity and discharge measurement in rivers using terrestrial and unmanned-aerial-vehicle imagery, Hydrol. Earth Syst. Sci., 24, 1429–1445, https://doi.org/10.5194/hess-24-1429-2020, 2020.
Eltner, A., Hoffmeiste, D., Kaiser, A., Karrasch, P., Klingbeil, L., Stöcker, C., and Rovere, A.: UAVs for the Environmental Sciences, 494 pp., https://doi.org/10.53186/1028514, 2022.
Fortun, D., Bouthemy, P., and Kervrann, C.: Optical flow modeling and computation: A survey, Comput. Vis. Image Und., 134, 1–21, https://doi.org/10.1016/j.cviu.2015.02.008, 2015.
Frauenfelder, R., Haeberli, W., and Hoelzle, M.: Rockglacier occurrence and related terrain parameters in a study area of the Eastern Swiss Alps, in: Permafrost: Proceedings of the 8th International Conference on Permafrost, edited by: Phillips, M., Springman, S. M., and Arenson, L. U., Swets & Zeitlinger, 253–258, https://www.arlis.org/docs/vol1/ICOP/55700698/Pdf/Chapter_046.pdf (last access: 22 July 2025), 2003.
Harley, A. W.: pips2, Github [code], https://github.com/aharley/pips2 (last access: 4 August 2025), 2023.
Harley, A. W., Fang, Z., and Fragkiadaki, K.: Particle Video Revisited: Tracking Through Occlusions Using Point Trajectories, arXiv [preprint], https://doi.org/10.48550/arxiv.2204.04153, 2022.
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 770–778, https://doi.org/10.1109/CVPR.2016.90, 2016.
Heid, T. and Kääb, A.: Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery, Remote Sens. Environ., 118, 339–355, https://doi.org/10.1016/j.rse.2011.11.024, 2012.
Hendrickx, H.: pips_env, Github [code] and [data set], https://github.com/hannehendrickx/pips_env (last access: 4 August 2025), 2024.
Hermle, D., Gaeta, M., Krautblatter, M., Mazzanti, P., and Keuschnig, M.: Performance Testing of Optical Flow Time Series Analyses Based on a Fast, High-Alpine Landslide, Remote Sens., 14, 455, https://doi.org/10.3390/rs14030455, 2022.
How, P., Hulton, N. R. J., Buie, L., and Benn, D. I.: PyTrx: A Python-Based Monoscopic Terrestrial Photogrammetry Toolset for Glaciology, Front. Earth Sci., 8, 21, https://doi.org/10.3389/feart.2020.00021, 2020.
Huang, Z., Shi, X., Zhang, C., Wang, Q., Cheung, K. C., Qin, H., Dai, J., and Li, H.: FlowFormer: A Transformer Architecture for Optical Flow, in: Computer Vision – ECCV 2022, Cham, 668–685, https://doi.org/10.1007/978-3-031-19790-1_40, 2022.
Hur, J. and Roth, S.: Optical Flow Estimation in the Deep Learning Age, in: Modelling Human Motion: From Human Perception to Robot Design, edited by: Noceti, N., Sciutti, A., and Rea, F., Springer International Publishing, Cham, 119–140, https://doi.org/10.1007/978-3-030-46732-6_7, 2020.
Ioli, F., Dematteis, N., Giordan, D., Nex, F., and Pinto, L.: Deep Learning Low-cost Photogrammetry for 4D Short-term Glacier Dynamics Monitoring, PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 92, 657–678, https://doi.org/10.1007/s41064-023-00272-w, 2024.
James, M. R. and Robson, S.: Sequential digital elevation models of active lava flows from ground-based stereo time-lapse imagery, ISPRS J. Photogramm., 97, 160–170, https://doi.org/10.1016/j.isprsjprs.2014.08.011, 2014.
Kääb, A. and Reichmuth, T.: Advance mechanisms of rock glaciers, Permafrost Periglac., 16, 187–193, https://doi.org/10.1002/ppp.507, 2005.
Kenner, R., Bühler, Y., Delaloye, R., Ginzler, C., and Phillips, M.: Monitoring of high alpine mass movements combining laser scanning with digital airborne photogrammetry, Geomorphology, 206, 492–504, https://doi.org/10.1016/j.geomorph.2013.10.020, 2014.
Kenner, R., Phillips, M., Limpach, P., Beutel, J., and Hiller, M.: Monitoring mass movements using georeferenced time-lapse photography: Ritigraben rock glacier, western Swiss Alps, Cold Reg. Sci. Technol., 145, 127–134, https://doi.org/10.1016/j.coldregions.2017.10.018, 2018.
Kummert, M. and Delaloye, R.: Mapping and quantifying sediment transfer between the front of rapidly moving rock glaciers and torrential gullies, Geomorphology, 309, 60–76, https://doi.org/10.1016/j.geomorph.2018.02.021, 2018.
Kummert, M., Delaloye, R., and Braillard, L.: Erosion and sediment transfer processes at the front of rapidly moving rock glaciers: Systematic observations with automatic cameras in the western Swiss Alps, Permafrost Periglac., 29, 21–33, https://doi.org/10.1002/ppp.1960, 2018.
Lindenberger, P., Sarlin, P.-E., and Pollefeys, M.: LightGlue: Local Feature Matching at Light Speed, arXiv [preprint], https://doi.org/10.48550/arXiv.2306.13643, 2023.
Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints, Int. J. Comput. Vision, 60, 91–110, https://doi.org/10.1023/B:VISI.0000029664.99615.94, 2004.
Marcer, M., Bodin, X., Brenning, A., Schoeneich, P., Charvet, R., and Gottardi, F.: Permafrost Favorability Index: Spatial Modeling in the French Alps Using a Rock Glacier Inventory, Front. Earth Sci., 5, 105, https://doi.org/10.3389/feart.2017.00105, 2017.
Marcer, M., Cicoira, A., Cusicanqui, D., Bodin, X., Echelard, T., Obregon, R., and Schoeneich, P.: Rock glaciers throughout the French Alps accelerated and destabilised since 1990 as air temperatures increased, Commun. Earth Environ., 2, 1–11, https://doi.org/10.1038/s43247-021-00150-6, 2021.
Matsuoka, N.: Combining Time-Lapse Photography and Multisensor Monitoring to Understand Frost Creep Dynamics in the Japanese Alps, Permafrost Periglac., 25, 94–106, https://doi.org/10.1002/ppp.1806, 2014.
McColl, S. T. and Draebing, D.: Rock Slope Instability in the Proglacial Zone: State of the Art, Springer, Cham, 119–141, https://doi.org/10.1007/978-3-319-94184-4_8, 2019.
Pellet, C., Bodin, X., Cusicanqui, D., Delaloye, R., Kaab, A., Kaufmann, V., Noetzli, J., Thibert, E., Vivero, S., and Kellerer-Pirklbauer, A.: State of the climate in 2022: Rock glaciers velocity, B. Am. Meteor. Soc., 104, 41–42, https://doi.org/10.1175/2023BAMSStateoftheClimate.1, 2023.
Rock glacier inventories and kinematics (RGIK): Guidelines for inventorying rock glaciers: baseline and practical concepts (Version 1.0), https://doi.org/10.51363/unifr.srr.2023.002, 2023.
Sarlin, P. E., Detone, D., Malisiewicz, T., and Rabinovich, A.: SuperGlue: Learning Feature Matching with Graph Neural Networks, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4937–4946, https://doi.org/10.1109/CVPR42600.2020.00499, 2020.
Schwalbe, E. and Maas, H.-G.: The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences, Earth Surf. Dynam., 5, 861–879, https://doi.org/10.5194/esurf-5-861-2017, 2017.
Shi, X., Huang, Z., Bian, W., Li, D., Zhang, M., Cheung, K. C., See, S., Qin, H., Dai, J., and Li, H.: VideoFlow: Exploiting Temporal Cues for Multi-frame Optical Flow Estimation, arXiv [preprint], https://doi.org/10.48550/arXiv.2303.08340, 20 August 2023.
Stumpf, A., Augereau, E., Delacourt, C., and Bonnier, J.: Photogrammetric discharge monitoring of small tropical mountain rivers: A case study at Rivière des Pluies, Réunion Island, Water Resour. Res., 52, 4550–4570, https://doi.org/10.1002/2015WR018292, 2016.
Sun, J., Shen, Z., Wang, Y., Bao, H., and Zhou, X.: LoFTR: Detector-Free Local Feature Matching with Transformers, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4, 8918–8927, https://doi.org/10.1109/CVPR46437.2021.00881, 2021.
Teed, Z. and Deng, J.: RAFT: Recurrent All-Pairs Field Transforms for Optical Flow, in: Computer Vision – ECCV 2020, Cham, 402–419, https://doi.org/10.1007/978-3-030-58536-5_24, 2020.
Travelletti, J., Delacourt, C., Allemand, P., Malet, J.-P., Schmittbuhl, J., Toussaint, R., and Bastard, M.: Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations, ISPRS J. Photogramm., 70, 39–55, https://doi.org/10.1016/j.isprsjprs.2012.03.007, 2012.
Geomorphology Research Group (UniFr): GRABENGUFER LANDSLIDE (VS), https://www.unifr.ch/geo/geomorphology/en/resources/study-sites/grabengufer-landslide.html (last access: 18 July 2025), 2025a.
Geomorphology Research Group (UniFr): GRABENGUFER ROCKGLACIER (VS), https://www.unifr.ch/geo/geomorphology/en/resources/study-sites/grabengufer-rg.html (last access: 18 July 2025), 2025b.
Ulm, M., Elias, M., Eltner, A. Lotsari, E., and Anders, K.: Automated change detection in photogrammetric 4D point clouds – transferability and extension of 4D objects-by-change for monitoring riverbank dynamics using low-cost cameras, Applied Geomatics, 17, 367–378, https://doi.org/10.1007/s12518-025-00623-9, 2025.
Wegner, K., Stark, M., Haas, F., and Becht, M.: Suitability of terrestrial archival imagery for SfM-MVS based surface reconstruction of steep rock walls for the detection of rockfalls, J. Geomorphol., https://doi.org/10.1127/jgeomorphology/2023/0775, 2023.
Xu, H., Zhang, J., Cai, J., Rezatofighi, H., and Tao, D.: GMFlow: Learning Optical Flow via Global Matching, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, June 2022, 8111–8120, https://doi.org/10.1109/CVPR52688.2022.00795, 2022.
Zheng, Y., Harley, A. W., Shen, B., Wetzstein, G., and Guibas, L. J.: PointOdyssey: A Large-Scale Synthetic Dataset for Long-Term Point Tracking, arXiv [preprint], https://doi.org/10.48550/arXiv.2307.15055, 2023.
Short summary
This study presents a novel AI-based method for tracking and analysing the movement of rock glaciers and landslides, key landforms in high mountain regions. By utilising time-lapse images, our approach generates detailed velocity data, uncovering movement patterns often missed by traditional methods. This cost-effective tool enhances geohazard monitoring, providing insights into environmental drivers, improving process understanding, and contributing to better safety in alpine areas.
This study presents a novel AI-based method for tracking and analysing the movement of rock...