Articles | Volume 13, issue 4
https://doi.org/10.5194/esurf-13-745-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-745-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Old orogen–young topography: lithological contrasts controlling erosion and relief formation in the Bohemian Massif
Department of Environment and Biodiversity, Division of Geology and Physical Geography, University of Salzburg, 5020 Salzburg, Austria
Fabian Dremel
Department of Environment and Biodiversity, Division of Geology and Physical Geography, University of Salzburg, 5020 Salzburg, Austria
Kurt Stüwe
Institute for Earth Sciences, University of Graz, 8020 Graz, Austria
Stefan Hergarten
Institute of Earth and Environmental Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
Christoph von Hagke
Department of Environment and Biodiversity, Division of Geology and Physical Geography, University of Salzburg, 5020 Salzburg, Austria
Derek Fabel
Scottish Universities Environmental Research Center, The University of Glasgow, East Kilbride, United Kingdom
Related authors
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023, https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
Short summary
In this study, we benchmark a topography-based model for glacier erosion (OpenLEM) with a well-established process-based model (iSOSIA). Our experiments show that large-scale erosion patterns and particularly the transformation of valley length geometry from fluvial to glacial conditions are very similar in both models. This finding enables the application of OpenLEM to study the influence of climate and tectonics on glaciated mountains with reasonable computational effort on standard PCs.
Stefan Hergarten and Jörg Robl
Geosci. Model Dev., 15, 2063–2084, https://doi.org/10.5194/gmd-15-2063-2022, https://doi.org/10.5194/gmd-15-2063-2022, 2022
Short summary
Short summary
The influence of climate on landform evolution has attracted great interest over the past decades. This paper presents a simple model for simulating the influence of topography on precipitation and the decrease in precipitation over large continental areas. The approach can be included in numerical models of large-scale landform evolution and causes only a moderate increase in the numerical complexity. It opens a door to investigating feedbacks between climate and landform evolution.
Anne-Laure Argentin, Jörg Robl, Günther Prasicek, Stefan Hergarten, Daniel Hölbling, Lorena Abad, and Zahra Dabiri
Nat. Hazards Earth Syst. Sci., 21, 1615–1637, https://doi.org/10.5194/nhess-21-1615-2021, https://doi.org/10.5194/nhess-21-1615-2021, 2021
Short summary
Short summary
This study relies on topography to simulate the origin and displacement of potentially river-blocking landslides. It highlights a continuous range of simulated landslide dams that go unnoticed in the field due to their small scale. The computation results show that landslide-dammed lake volume can be estimated from upstream drainage area and landslide volume, thus enabling an efficient hazard assessment of possible landslide-dammed lake volume – and flooding magnitude in case of dam failure.
Stefan Hergarten
EGUsphere, https://doi.org/10.5194/egusphere-2025-2242, https://doi.org/10.5194/egusphere-2025-2242, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Numerical glacier and ice-sheet models have been widely used in the context of climate change and landform evolution. While simulations of ice flow were numerically expensive for a long time, their performance has recently been boosted to an unprecedented level by machine learning techniques. This paper aims at keeping classical numerics competitive by introducing a novel numerical scheme, which allows for simulations at spatial resolutions of 25 m or even finer on standard desktop PCs.
Stefan Hergarten
Earth Surf. Dynam., 12, 1315–1327, https://doi.org/10.5194/esurf-12-1315-2024, https://doi.org/10.5194/esurf-12-1315-2024, 2024
Short summary
Short summary
Faceted topographies are impressive footprints of active tectonics in geomorphology. This paper investigates the evolution of faceted topographies at normal faults and their interaction with a river network theoretically and numerically. As a main result beyond several relations for the geometry of facets, the horizontal displacement associated with normal faults is crucial for the dissection of initially polygonal facets into triangular facets bounded by almost parallel rivers.
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024, https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary
Short summary
Toma hills are relatively isolated hills found in the deposits of rock avalanches, and their origin is still enigmatic. This paper presents the results of numerical simulations based on a modified version of a friction law that was originally introduced for snow avalanches. The model produces more or less isolated hills (which look much like toma hills) on the valley floor. The results provide, perhaps, the first explanation of the occurrence of toma hills based on a numerical model.
Stefan Hergarten
Geosci. Model Dev., 17, 781–794, https://doi.org/10.5194/gmd-17-781-2024, https://doi.org/10.5194/gmd-17-781-2024, 2024
Short summary
Short summary
The Voellmy rheology has been widely used for simulating snow and rock avalanches. Recently, a modified version of this rheology was proposed, which turned out to be able to predict the observed long runout of large rock avalanches theoretically. The software MinVoellmy presented here is the first numerical implementation of the modified rheology. It consists of MATLAB and Python classes, where simplicity and parsimony were the design goals.
Stefan Hergarten
Earth Surf. Dynam., 12, 219–229, https://doi.org/10.5194/esurf-12-219-2024, https://doi.org/10.5194/esurf-12-219-2024, 2024
Short summary
Short summary
Large landslides turn into an avalanche-like mode of flow at high velocities, which allows for a much longer runout than predicted for a sliding solid body. In this study, the Voellmy rheology widely used in models for hazard assessment is reinterpreted and extended. The new approach predicts the increase in runout length with volume observed in nature quite well and may thus be a major step towards a more consistent modeling of rock avalanches and improved hazard assessment.
Stefan Hergarten
Nat. Hazards Earth Syst. Sci., 23, 3051–3063, https://doi.org/10.5194/nhess-23-3051-2023, https://doi.org/10.5194/nhess-23-3051-2023, 2023
Short summary
Short summary
Rockslides are a major hazard in mountainous regions. In formerly glaciated regions, the disposition mainly arises from oversteepened topography and decreases through time. However, little is known about this decrease and thus about the present-day hazard of huge, potentially catastrophic rockslides. This paper presents a new theoretical framework that explains the decrease in maximum rockslide size through time and predicts the present-day frequency of large rockslides for the European Alps.
Jannick Strüven and Stefan Hergarten
Hydrol. Earth Syst. Sci., 27, 3041–3058, https://doi.org/10.5194/hess-27-3041-2023, https://doi.org/10.5194/hess-27-3041-2023, 2023
Short summary
Short summary
This study uses dendritic flow patterns to analyze the recession behavior of aquifer springs. The results show that the long-term recession becomes slower for large catchments. After a short recharge event, however, the short-term behavior differs strongly from the exponential recession that would be expected from a linear reservoir. The exponential component still accounts for more than 80 % of the total discharge, much more than typically assumed for karst aquifers.
Stefan Hergarten and Alexa Pietrek
Earth Surf. Dynam., 11, 741–755, https://doi.org/10.5194/esurf-11-741-2023, https://doi.org/10.5194/esurf-11-741-2023, 2023
Short summary
Short summary
The transition from hillslopes to channelized flow is typically attributed to a threshold catchment size in landform evolution models. Here we propose an alternative concept directly based on topography. Using this concept, channels and hillslopes self-organize, whereby the catchment size of the channel heads varies over some range. Our numerical results suggest that this concept works better than the established idea of a strict threshold catchment size.
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023, https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
Short summary
In this study, we benchmark a topography-based model for glacier erosion (OpenLEM) with a well-established process-based model (iSOSIA). Our experiments show that large-scale erosion patterns and particularly the transformation of valley length geometry from fluvial to glacial conditions are very similar in both models. This finding enables the application of OpenLEM to study the influence of climate and tectonics on glaciated mountains with reasonable computational effort on standard PCs.
Tancrède P. M. Leger, Andrew S. Hein, Ángel Rodés, Robert G. Bingham, Irene Schimmelpfennig, Derek Fabel, Pablo Tapia, and ASTER Team
Clim. Past, 19, 35–59, https://doi.org/10.5194/cp-19-35-2023, https://doi.org/10.5194/cp-19-35-2023, 2023
Short summary
Short summary
Over the past 800 thousand years, variations in the Earth’s orbit and tilt have caused antiphased solar insolation intensity in the Northern and Southern Hemispheres. Paradoxically, glacial records suggest that global ice sheets have responded synchronously to major cold glacial and warm interglacial episodes. To address this puzzle, we present a new detailed glacier chronology that estimates the timing of multiple Patagonian ice-sheet waxing and waning cycles over the past 300 thousand years.
Kevin Alexander Frings, Elco Luijendijk, István Dunkl, Peter Kukla, Nicolas Villamizar-Escalante, Herfried Madritsch, and Christoph von Hagke
EGUsphere, https://doi.org/10.5194/egusphere-2022-1323, https://doi.org/10.5194/egusphere-2022-1323, 2022
Preprint archived
Short summary
Short summary
We use apatite (U-Th-Sm)/He thermochronologic on detrital grains sampled from a well to unravel the exhumation history of the northern Swiss Molasse Basin and reconcile seemingly contradicting previous studies. With single grain ages and provenance ages, we achieve to narrowly constrain exhumation magnitude and timing and embed previous results into a single consistent thermal history. This includes proof for hydrothermal activity and a contribution to the discussion on exhumation drivers.
Stefan Hergarten
Earth Surf. Dynam., 10, 671–686, https://doi.org/10.5194/esurf-10-671-2022, https://doi.org/10.5194/esurf-10-671-2022, 2022
Short summary
Short summary
Many studies on modeling landform evolution have focused on mountain ranges, while large parts of Earth's surface are quite flat and alluvial plains have been preferred locations for human settlements. Conducting large-scale simulations of fluvial erosion and sediment transport, this study reveals that rivers in a tectonically inactive foreland are much more dynamic than rivers in a mountain range; the local redistribution of deposits in the foreland is the main driver of the dynamics.
Stefan Hergarten and Jörg Robl
Geosci. Model Dev., 15, 2063–2084, https://doi.org/10.5194/gmd-15-2063-2022, https://doi.org/10.5194/gmd-15-2063-2022, 2022
Short summary
Short summary
The influence of climate on landform evolution has attracted great interest over the past decades. This paper presents a simple model for simulating the influence of topography on precipitation and the decrease in precipitation over large continental areas. The approach can be included in numerical models of large-scale landform evolution and causes only a moderate increase in the numerical complexity. It opens a door to investigating feedbacks between climate and landform evolution.
Stefan Hergarten
Earth Surf. Dynam., 9, 937–952, https://doi.org/10.5194/esurf-9-937-2021, https://doi.org/10.5194/esurf-9-937-2021, 2021
Short summary
Short summary
This paper presents a new approach to modeling glacial erosion on large scales. The formalism is similar to large-scale models of fluvial erosion, so glacial and fluvial processes can be easily combined. The model is simpler and numerically less demanding than established models based on a more detailed description of the ice flux. The numerical implementation almost achieves the efficiency of purely fluvial models, so that simulations over millions of years can be performed on standard PCs.
Anne-Laure Argentin, Jörg Robl, Günther Prasicek, Stefan Hergarten, Daniel Hölbling, Lorena Abad, and Zahra Dabiri
Nat. Hazards Earth Syst. Sci., 21, 1615–1637, https://doi.org/10.5194/nhess-21-1615-2021, https://doi.org/10.5194/nhess-21-1615-2021, 2021
Short summary
Short summary
This study relies on topography to simulate the origin and displacement of potentially river-blocking landslides. It highlights a continuous range of simulated landslide dams that go unnoticed in the field due to their small scale. The computation results show that landslide-dammed lake volume can be estimated from upstream drainage area and landslide volume, thus enabling an efficient hazard assessment of possible landslide-dammed lake volume – and flooding magnitude in case of dam failure.
Elco Luijendijk, Leo Benard, Sarah Louis, Christoph von Hagke, and Jonas Kley
Solid Earth Discuss., https://doi.org/10.5194/se-2021-22, https://doi.org/10.5194/se-2021-22, 2021
Revised manuscript not accepted
Short summary
Short summary
Our knowledge of the geological history of mountain belts relies strongly on thermochronometers, methods that reconstruct the temperature history of rocks found in mountain belts. Here we provide a new equation that describes the motion of rocks in a simplified, wedge-shaped representation of a mountain belt. The equation can be used to interpret thermochronometers and can help quantify the deformation, uplift and erosion history of mountain belts.
Daniel Peifer, Cristina Persano, Martin D. Hurst, Paul Bishop, and Derek Fabel
Earth Surf. Dynam., 9, 167–181, https://doi.org/10.5194/esurf-9-167-2021, https://doi.org/10.5194/esurf-9-167-2021, 2021
Short summary
Short summary
Plate tectonics drive the formation of mountain ranges. Yet when tectonic forces cease, mountain ranges persist for hundreds of millions of years, forming major Earth surface features. This work presents denudation rate estimates from one such ancient mountain range that show that denudation is strongly tied to rock type. Resistant rocks denude more slowly despite having much steeper topography, and contrasts in rock type cause increasing relief in the absence of active tectonics.
Stefan Hergarten
Earth Surf. Dynam., 8, 841–854, https://doi.org/10.5194/esurf-8-841-2020, https://doi.org/10.5194/esurf-8-841-2020, 2020
Short summary
Short summary
Many contemporary models of large-scale fluvial erosion focus on the detachment-limited regime where all material entrained by the river is immediately excavated. This limitation facilitates the comparison with real river profiles and strongly reduces the numerical complexity. Here a simple formulation for the opposite case, transport-limited erosion, and a new numerical scheme that achieves almost the same numerical efficiency as detachment-limited models are presented.
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020, https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
Short summary
Based on thermochronological data, we infer thrusting along-strike the northern rim of the Central Alps between 12–4 Ma. While the lithology influences the pattern of thrusting at the local scale, we observe that thrusting in the foreland is a long-wavelength feature occurring between Lake Geneva and Salzburg. This coincides with the geometry and dynamics of the attached lithospheric slab at depth. Thus, thrusting in the foreland is at least partly linked to changes in slab dynamics.
Cited articles
Ahnert, F.: Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins, Am. J. Sci., 268, 243–263, https://doi.org/10.2475/ajs.268.3.243, 1970. a, b, c
Anderson, S., Gasparini, N., and Johnson, J.: Building a bimodal landscape: bedrock lithology and bed thickness controls on the morphology of Last Chance Canyon, New Mexico, USA, Earth Surf. Dynam., 11, 995–1011, https://doi.org/10.5194/esurf-11-995-2023, 2023. a
Asch, K.: The 1 : 5 Million International Geological Map of Europe and Adjacent Areas: Development and Implementation of a GIS-enabled Concept, vol. SA 3 of Geologisches Jahrbuch, E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 1st edn., ISBN 978-3510959037, 2003. a
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008. a, b
Baran, R., Friedrich, A. M., and Schlunegger, F.: The late Miocene to Holocene erosion pattern of the Alpine foreland basin reflects Eurasian slab unloading beneath the western Alps rather than global climate change, Lithosphere, 6, 124–131, https://doi.org/10.1130/L307.1, 2014. a
Baumann, S., Robl, J., Prasicek, G., Salcher, B., and Keil, M.: The effects of lithology and base level on topography in the northern alpine foreland, Geomorphology, 313, 13–26, https://doi.org/10.1016/j.geomorph.2018.04.006, 2018. a, b, c, d
Bernard, T., Sinclair, H. D., Gailleton, B., Mudd, S. M., and Ford, M.: Lithological control on the post-orogenic topography and erosion history of the Pyrenees, Earth Planet. Sc. Lett., 518, 53–66, https://doi.org/10.1016/j.epsl.2019.04.034, 2019. a
Bourgeois, O., Ford, M., Diraison, M., de Le Veslud, C. C., Gerbault, M., Pik, R., Ruby, N., and Bonnet, S.: Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland, Int. J. Earth Sci., 96, 1003–1031, https://doi.org/10.1007/s00531-007-0202-2, 2007. a
Cyr, A. J., Granger, D. E., Olivetti, V., and Molin, P.: Distinguishing between tectonic and lithologic controls on bedrock channel longitudinal profiles using cosmogenic 10Be erosion rates and channel steepness index, Geomorphology, 209, 27–38, https://doi.org/10.1016/j.geomorph.2013.12.010, 2014. a
Danišík, M., Migoń, P., Kuhlemann, J., Evans, N. J., Dunkl, I., and Frisch, W.: Thermochronological constraints on the long-term erosional history of the Karkonosze Mts., Central Europe, Geomorphology, 117, 78–89, https://doi.org/10.1016/j.geomorph.2009.11.010, 2010. a
Dannhaus, N., Wittmann, H., Krám, P., Christl, M., and von Blanckenburg, F.: Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric 10Be/9Be ratios, Geochim. Cosmochim. Ac., 222, 618–641, https://doi.org/10.1016/j.gca.2017.11.005, 2018. a
Delunel, R., Schlunegger, F., Valla, P. G., Dixon, J., Glotzbach, C., Hippe, K., Kober, F., Molliex, S., Norton, K. P., Salcher, B., Wittmann, H., Akçar, N., and Christl, M.: Late-Pleistocene catchment-wide denudation patterns across the European Alps, Earth-Sci. Rev., 211, 103407, https://doi.org/10.1016/j.earscirev.2020.103407, 2020. a
DiBiase, R. A.: Short communication: Increasing vertical attenuation length of cosmogenic nuclide production on steep slopes negates topographic shielding corrections for catchment erosion rates, Earth Surf. Dynam., 6, 923–931, https://doi.org/10.5194/esurf-6-923-2018, 2018. a
DiBiase, R. A., Whipple, K. X., Heimsath, A. M., and Ouimet, W. B.: Landscape form and millennial erosion rates in the San Gabriel Mountains, CA, Earth Planet. Sc. Lett., 289, 134–144, https://doi.org/10.1016/j.epsl.2009.10.036, 2010. a
Dixon, J. L., von Blanckenburg, F., Stüwe, K., and Christl, M.: Glaciation's topographic control on Holocene erosion at the eastern edge of the Alps, Earth Surf. Dynam., 4, 895–909, https://doi.org/10.5194/esurf-4-895-2016, 2016. a, b
Flint, J. J.: Stream gradient as a function of order, magnitude, and discharge, Water Resour. Res., 10, 969–973, https://doi.org/10.1029/WR010i005p00969, 1974. a
Fox, M., Reverman, R., Herman, F., Fellin, M. G., Sternai, P., and Willett, S. D.: Rock uplift and erosion rate history of the Bergell intrusion from the inversion of low temperature thermochronometric data, Geochem. Geophy. Geosy., 15, 1235–1257, https://doi.org/10.1002/2013GC005224, 2014. a
Franke, W.: Topography of the Variscan orogen in Europe: failed–not collapsed, Int. J. Earth Sci., 103, 1471–1499, https://doi.org/10.1007/s00531-014-1014-9, 2014. a
Fuchs, W. and Fuchs, G.: Geodaten – Blatt 36 Ottenschlag (1 : 50 000), Geologische Bundesanstalt, Wien, https://doi.org/10.24341/tethys.21, 2021. a
Gallen, S. F.: Lithologic controls on landscape dynamics and aquatic species evolution in post-orogenic mountains, Earth Planet. Sc. Lett., 493, 150–160, https://doi.org/10.1016/j.epsl.2018.04.029, 2018. a, b
Genser, J., Cloetingh, S. A., and Neubauer, F.: Late orogenic rebound and oblique Alpine convergence: New constraints from subsidence analysis of the Austrian Molasse basin, Global Planet. Change, 58, 214–223, https://doi.org/10.1016/j.gloplacha.2007.03.010, 2007. a, b
Gradwohl, G., Stüwe, K., Liebl, M., Robl, J., Plan, L., and Rummler, L.: The elevated low-relief landscapes of the Eastern Alps, Geomorphology, 458, 109264, https://doi.org/10.1016/j.geomorph.2024.109264, 2024. a
Granger, D. E., Kirchner, J. W., and Finkel, R.: Spatially Averaged Long-Term Erosion Rates Measured from in Situ-Produced Cosmogenic Nuclides in Alluvial Sediment, J. Geol., 104, 249–257, https://doi.org/10.1086/629823, 1996. a
Guerit, L., Yuan, X.-P., Carretier, S., Bonnet, S., Rohais, S., Braun, J., and Rouby, D.: Fluvial landscape evolution controlled by the sediment deposition coefficient: Estimation from experimental and natural landscapes, Geology, 47, 853–856, https://doi.org/10.1130/G46356.1, 2019. a
Haag, M. B., Schoenbohm, L. M., Wolpert, J., Jess, S., Bierman, P., Corbett, L., Sommer, C. A., and Endrizzi, G.: Rock strength controls erosion in tectonically dead landscapes, Sci. Adv., 11, eadr2610, https://doi.org/10.1126/sciadv.adr2610, 2025. a
Hejl, E., Coyle, D., Lal, N., den van Haute, P., and Wagner, G. A.: Fission-track dating of the western border of the Bohemian massif: thermochronology and tectonic implications, Geol. Rundsch., 86, 210, https://doi.org/10.1007/s005310050133, 1997. a
Hejl, E., Sekyra, G., and Friedl, G.: Fission-track dating of the south-eastern Bohemian massif (Waldviertel, Austria): thermochronology and long-term erosion, Int. J. Earth Sci., 92, 677–690, https://doi.org/10.1007/s00531-003-0342-y, 2003. a
Herber, L. J.: Separation of feldspar from quartz by flotation, Am. Mineral., 54, 1212–1215, 1969. a
Hergarten, S.: Transport-limited fluvial erosion – simple formulation and efficient numerical treatment, Earth Surf. Dynam., 8, 841–854, https://doi.org/10.5194/esurf-8-841-2020, 2020. a, b
Hergarten, S.: The Influence of Sediment Transport on Stationary and Mobile Knickpoints in River Profiles, J. Geophys. Res.-Earth, 126, e2021JF006218, https://doi.org/10.1029/2021JF006218, 2021. a
Hergarten, S.: A simple model for faceted topographies at normal faults based on an extended stream-power law, Earth Surf. Dynam., 12, 1315–1327, https://doi.org/10.5194/esurf-12-1315-2024, 2024. a
Hergarten, S. and Robl, J.: The linear feedback precipitation model (LFPM 1.0) – a simple and efficient model for orographic precipitation in the context of landform evolution modeling, Geosci. Model Dev., 15, 2063–2084, https://doi.org/10.5194/gmd-15-2063-2022, 2022. a
Jautzy, T., Rixhon, G., Braucher, R., Delunel, R., Valla, P. G., Schmitt, L., and Team, A.: Cosmogenic (un-)steadiness revealed by paired-nuclide catchment-wide denudation rates in the formerly half-glaciated Vosges Mountains (NE France), Earth Planet. Sc. Lett., 625, 118490, https://doi.org/10.1016/j.epsl.2023.118490, 2024. a
Kröll, A., Wessely, G., and Zych, D.: Molassezone Niederösterreich und angrenzende Gebiete, 1:200 000, Strukturkarte der Molassebasis, Geologische Bundesanstalt, Wien, 2001. a
Kroner, U. and Romer, R. L.: Two plates – Many subduction zones: The Variscan orogeny reconsidered, Gondwana Res., 24, 298–329, https://doi.org/10.1016/j.gr.2013.03.001, 2013. a
Kuhlemann, J. and Kempf, O.: Post-Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics, Sediment. Geol., 152, 45–78, https://doi.org/10.1016/S0037-0738(01)00285-8, 2002. a, b
Larsen, I. J. and Montgomery, D. R.: Landslide erosion coupled to tectonics and river incision, Nat. Geosci., 5, 468–473, https://doi.org/10.1038/ngeo1479, 2012. a
Legrain, N., Dixon, J., Stüwe, K., von Blanckenburg, F., and Kubik, P.: Post-Miocene landscape rejuvenation at the eastern end of the Alps, Lithosphere, 7, 3–13, https://doi.org/10.1130/L391.1, 2015. a, b, c, d
Lehner, B. and Grill, G.: Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems, Hydrol. Process., 27, 2171–2186, https://doi.org/10.1002/hyp.9740, 2013. a, b
Meyer, H., Hetzel, R., Fügenschuh, B., and Strauss, H.: Determining the growth rate of topographic relief using in situ-produced 10Be: A case study in the Black Forest, Germany, Earth Planet. Sc. Lett., 290, 391–402, https://doi.org/10.1016/j.epsl.2009.12.034, 2010a. a
Meyer, H., Hetzel, R., and Strauss, H.: Erosion rates on different timescales derived from cosmogenic 10Be and river loads: implications for landscape evolution in the Rhenish Massif, Germany, Int. J. Earth Sci., 99, 395–412, https://doi.org/10.1007/s00531-008-0388-y, 2010b. a, b
Montgomery, D. R.: Slope distributions, threshold hillslopes, and steady-state topography, Am. J. Sci., 301, 432–454, 2001. a
Moosdorf, N., Cohen, S., and von Hagke, C.: A global erodibility index to represent sediment production potential of different rock types, Appl. Geogr., 101, 36–44, https://doi.org/10.1016/j.apgeog.2018.10.010, 2018. a
Morel, P., von Blanckenburg, F., Schaller, M., Kubik, P. W., and Hinderer, M.: Lithology, landscape dissection and glaciation controls on catchment erosion as determined by cosmogenic nuclides in river sediment (the Wutach Gorge, Black Forest), Terra Nova, 15, 398–404, https://doi.org/10.1046/j.1365-3121.2003.00519.x, 2003. a, b
Nagl, H. and Verginis, S.: Die Morphogenese der Wachau: Versuch einer neuen Deutung, Inst. für Geographie und Regionalforschung der Univ., 1987. a
Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., and McAninch, J.: Absolute calibration of 10Be AMS standards, Nucl. Instrum. Meth. B, 258, 403–413, https://doi.org/10.1016/j.nimb.2007.01.297, 2007. a
O'Brien, P. J. and Carswell, D. A.: Tectonometamorphic evolution of the Bohemian Massif: evidence from high pressure metamorphic rocks, Geol. Rundsch., 82, 531–555, https://doi.org/10.1007/BF00212415, 1993. a
Olivetti, V., Godard, V., and Bellier, O.: Cenozoic rejuvenation events of Massif Central topography (France): Insights from cosmogenic denudation rates and river profiles, Earth Planet. Sc. Lett., 444, 179–191, https://doi.org/10.1016/j.epsl.2016.03.049, 2016. a, b
Peifer, D., Persano, C., Hurst, M. D., Bishop, P., and Fabel, D.: Growing topography due to contrasting rock types in a tectonically dead landscape, Earth Surf. Dynam., 9, 167–181, https://doi.org/10.5194/esurf-9-167-2021, 2021. a
Perne, M., Covington, M. D., Thaler, E. A., and Myre, J. M.: Steady state, erosional continuity, and the topography of landscapes developed in layered rocks, Earth Surf. Dynam., 5, 85–100, https://doi.org/10.5194/esurf-5-85-2017, 2017. a, b
Phillips, F. M., Argento, D. C., Balco, G., Caffee, M. W., Clem, J., Dunai, T. J., Finkel, R., Goehring, B., Gosse, J. C., Hudson, A. M., Jull, A. T., Kelly, M. A., Kurz, M., Lal, D., Lifton, N., Marrero, S. M., Nishiizumi, K., Reedy, R. C., Schaefer, J., Stone, J. O., Swanson, T., and Zreda, M. G.: The CRONUS-Earth Project: A synthesis, Quat. Geochronol., 31, 119–154, https://doi.org/10.1016/j.quageo.2015.09.006, 2016. a
Portenga, E. W. and Bierman, P. R.: Understanding earth's eroding surface with 10Be, GSA Today, 21, 4–10, https://doi.org/10.1130/G111A.1, 2011. a, b, c
Robl, J., Hergarten, S., and Stüwe, K.: Morphological analysis of the drainage system in the Eastern Alps, Tectonophysics, 460, 263–277, https://doi.org/10.1016/j.tecto.2008.08.024, 2008. a, b, c
Robl, J., Prasicek, G., Hergarten, S., and Stüwe, K.: Alpine topography in the light of tectonic uplift and glaciation, Global Planet. Change, 127, 34–49, https://doi.org/10.1016/j.gloplacha.2015.01.008, 2015. a
Robl, J., Heberer, B., Prasicek, G., Neubauer, F., and Hergarten, S.: The topography of a continental indenter: The interplay between crustal deformation, erosion, and base level changes in the eastern Southern Alps, J. Geophys. Res.-Earth, 122, 310–334, https://doi.org/10.1002/2016JF003884, 2017a. a, b
Robl, J., Hergarten, S., and Prasicek, G.: The topographic state of fluvially conditioned mountain ranges, Earth-Sci. Rev., 168, 190–217, https://doi.org/10.1016/j.earscirev.2017.03.007, 2017b. a
Schaller, M., von Blanckenburg, F., Hovius, N., and Kubik, P. W.: Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments, Earth Planet. Sc. Lett., 188, 441–458, https://doi.org/10.1016/S0012-821X(01)00320-X, 2001. a, b, c, d
Schaller, M., Ehlers, T. A., Stor, T., Torrent, J., Lobato, L., Christl, M., and Vockenhuber, C.: Timing of European fluvial terrace formation and incision rates constrained by cosmogenic nuclide dating, Earth Planet. Sc. Lett., 451, 221–231, https://doi.org/10.1016/j.epsl.2016.07.022, 2016. a
Scharf, T. E., Codilean, A. T., de Wit, M., Jansen, J. D., and Kubik, P. W.: Strong rocks sustain ancient postorogenic topography in southern Africa, Geology, 41, 331–334, https://doi.org/10.1130/G33806.1, 2013. a
Schwanghart, W. and Kuhn, N. J.: TopoToolbox: A set of Matlab functions for topographic analysis, Environ. Model. Softw., 25, 770–781, https://doi.org/10.1016/j.envsoft.2009.12.002, 2010. a
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014. a
Serpelloni, E., Faccenna, C., Spada, G., Dong, D., and Williams, S. D. P.: Vertical GPS ground motion rates in the Euro–Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia–Eurasia plate boundary, J. Geophys. Res.-Sol. Ea., 118, 6003–6024, https://doi.org/10.1002/2013JB010102, 2013. a
Serpelloni, E., Cavaliere, A., Martelli, L., Pintori, F., Anderlini, L., Borghi, A., Randazzo, D., Bruni, S., Devoti, R., Perfetti, P., and Cacciaguerra, S.: Surface Velocities and Strain-Rates in the Euro-Mediterranean Region From Massive GPS Data Processing, Front. Earth Sci., 10, 907897, https://doi.org/10.3389/feart.2022.907897, 2022. a
Small, E. E. and Anderson, R. S.: Pleistocene relief production in Laramide mountain ranges, western United States, Geology, 26, 123–126, https://doi.org/10.1130/0091-7613(1998)026<0123:PRPILM>2.3.CO;2, 1998. a
Sobel, E. R. and Strecker, M. R.: Uplift, exhumation and precipitation: tectonic and climatic control of Late Cenozoic landscape evolution in the northern Sierras Pampeanas, Argentina, Basin Res., 15, 431–451, https://doi.org/10.1046/j.1365-2117.2003.00214.x, 2003. a
Stokes, M. F., Kim, D., Gallen, S. F., Benavides, E., Keck, B. P., Wood, J., Goldberg, S. L., Larsen, I. J., Mollish, J. M., Simmons, J. W., Near, T. J., and Perron, J. T.: Erosion of heterogeneous rock drives diversification of Appalachian fishes, Science, 380, 855–859, https://doi.org/10.1126/science.add9791, 2023. a
Wagner, T., Fabel, D., Fiebig, M., Häuselmann, P., Sahy, D., Xu, S., and Stüwe, K.: Young uplift in the non-glaciated parts of the Eastern Alps, Earth Planet. Sc. Lett., 295, 159–169, https://doi.org/10.1016/j.epsl.2010.03.034, 2010. a
Wagner, T., Fritz, H., Stüwe, K., Nestroy, O., Rodnight, H., Hellstrom, J., and Benischke, R.: Correlations of cave levels, stream terraces and planation surfaces along the River Mur-Timing of landscape evolution along the eastern margin of the Alps, Geomorphology (Amsterdam, Netherlands), 134, 62–78, https://doi.org/10.1016/j.geomorph.2011.04.024, 2011. a
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D.: The Generic Mapping Tools Version 6, Geochem. Geophy. Geosy., 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019. a
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D.: Tectonics from topography: Procedures, promise, and pitfalls, in: Tectonics, Climate, and Landscape Evolution, edited by: Willett, S. D., Hovius, N., Brandon, M. T., and Fisher, D. M., Geological Society of America, ISBN 9780813723983, https://doi.org/10.1130/2006.2398(04), 2006. a
Wolff, R., Hetzel, R., and Strobl, M.: Quantifying river incision into low-relief surfaces using local and catchment-wide 10 Be denudation rates, Earth Surf. Proc. Land., 43, 2327–2341, https://doi.org/10.1002/esp.4394, 2018. a
Wolpert, J. A. and Forte, A. M.: Response of transient rock uplift and base level knickpoints to erosional efficiency contrasts in bedrock streams, Earth Surf. Proc. Land., 46, 2092–2109, https://doi.org/10.1002/esp.5146, 2021. a
Ziegler, P. A. and Dèzes, P.: Cenozoic uplift of Variscan Massifs in the Alpine foreland: Timing and controlling mechanisms, Global Planet. Change, 58, 237–269, https://doi.org/10.1016/j.gloplacha.2006.12.004, 2007. a
Zondervan, J. R., Stokes, M., Boulton, S. J., Telfer, M. W., and Mather, A. E.: Rock strength and structural controls on fluvial erodibility: Implications for drainage divide mobility in a collisional mountain belt, Earth Planet. Sc. Lett., 538, 116221, https://doi.org/10.1016/j.epsl.2020.116221, 2020. a
Short summary
The Bohemian Massif is one of several low mountain ranges in Europe that rises more than 1 km above the surrounding lowlands. Landscape characteristics indicate relief rejuvenation due to recent surface uplift. To constrain the pace of relief formation, we determined erosion rates of 20 catchments that range from 22 to 51 m Myr-1. Correlating these rates with topographic properties reveals that contrasts in bedrock erodibility represent a critical control of landscape evolution.
The Bohemian Massif is one of several low mountain ranges in Europe that rises more than 1 km...