Articles | Volume 4, issue 4
https://doi.org/10.5194/esurf-4-831-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/esurf-4-831-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum
Department of Earth Sciences and Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA
Related authors
Matias Romero, Shanti B. Penprase, Maximillian S. Van Wyk de Vries, Andrew D. Wickert, Andrew G. Jones, Shaun A. Marcott, Jorge A. Strelin, Mateo A. Martini, Tammy M. Rittenour, Guido Brignone, Mark D. Shapley, Emi Ito, Kelly R. MacGregor, and Marc W. Caffee
Clim. Past, 20, 1861–1883, https://doi.org/10.5194/cp-20-1861-2024, https://doi.org/10.5194/cp-20-1861-2024, 2024
Short summary
Short summary
Investigating past glaciated regions is crucial for understanding how ice sheets responded to climate forcings and how they might respond in the future. We use two independent dating techniques to document the timing and extent of the Lago Argentino glacier lobe, a former lobe of the Patagonian Ice Sheet, during the late Quaternary. Our findings highlight feedbacks in the Earth’s system responsible for modulating glacier growth in the Southern Hemisphere prior to the global Last Glacial Maximum.
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-131, https://doi.org/10.5194/gmd-2024-131, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We present the Water Table Model (WTM), which simulates groundwater and lake levels at continental scales over millennia. Our simulations show that North America held more ground- and lake-water at the Last Glacial Maximum than in the present day – enough to lower sea level by 6 cm. We also simulate the changing water table from 21,000 to 16,000 years ago, finding that groundwater storage decreased following reduced precipitation in the model inputs. Open-source WTM code is available on Github.
Andrew D. Wickert, Jabari C. Jones, and Gene-Hua Crystal Ng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3118, https://doi.org/10.5194/egusphere-2023-3118, 2024
Preprint archived
Short summary
Short summary
For over a century, scientists have used a simple algebraic relationship to estimate the amount of water flowing through a river (its discharge) from the height of the flow (its stage). Here we add physical realism to this approach by explicitly representing both the channel and floodplain, thereby allowing channel and floodplain geometry and roughness to these estimates. Our proposed advance may improve predictions of floods and water resources, even when the river channel itself changes.
Maximillian Van Wyk de Vries and Andrew D. Wickert
The Cryosphere, 15, 2115–2132, https://doi.org/10.5194/tc-15-2115-2021, https://doi.org/10.5194/tc-15-2115-2021, 2021
Short summary
Short summary
We can measure glacier flow and sliding velocity by tracking patterns on the ice surface in satellite images. The surface velocity of glaciers provides important information to support assessments of glacier response to climate change, to improve regional assessments of ice thickness, and to assist with glacier fieldwork. Our paper describes Glacier Image Velocimetry (GIV), a new, easy-to-use, and open-source toolbox for calculating high-resolution velocity time series for any glacier on earth.
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 9, 105–121, https://doi.org/10.5194/esurf-9-105-2021, https://doi.org/10.5194/esurf-9-105-2021, 2021
Short summary
Short summary
Existing ways of modeling the flow of water amongst landscape depressions such as swamps and lakes take a long time to run. However, as our previous work explains, depressions can be quickly organized into a data structure – the depression hierarchy. This paper explains how the depression hierarchy can be used to quickly simulate the realistic filling of depressions including how they spill over into each other and, if they become full enough, how they merge into one another.
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 8, 431–445, https://doi.org/10.5194/esurf-8-431-2020, https://doi.org/10.5194/esurf-8-431-2020, 2020
Short summary
Short summary
Maps of elevation are used to help predict the flow of water so we can better understand landslides, floods, and global climate change. However, modeling the flow of water is difficult when elevation maps include swamps, lakes, and other depressions. This paper explains a new method that overcomes these difficulties, allowing models to run faster and more accurately.
Sara Savi, Stefanie Tofelde, Andrew D. Wickert, Aaron Bufe, Taylor F. Schildgen, and Manfred R. Strecker
Earth Surf. Dynam., 8, 303–322, https://doi.org/10.5194/esurf-8-303-2020, https://doi.org/10.5194/esurf-8-303-2020, 2020
Short summary
Short summary
Fluvial deposits record changes in water and sediment supply. As such, they are often used to reconstruct the tectonic or climatic history of a basin. In this study we used an experimental setting to analyze how fluvial deposits register changes in water or sediment supply at a confluence zone. We provide a new conceptual framework that may help understanding the construction of these deposits under different forcings conditions, information crucial to correctly inferring the history of a basin.
Kerry L. Callaghan and Andrew D. Wickert
Earth Surf. Dynam., 7, 737–753, https://doi.org/10.5194/esurf-7-737-2019, https://doi.org/10.5194/esurf-7-737-2019, 2019
Short summary
Short summary
Lakes and swales are real landscape features but are generally treated as data errors when calculating water flow across a surface. This is a problem because depressions can store water and fragment drainage networks. Until now, there has been no good generalized approach to calculate which depressions fill and overflow and which do not. We addressed this problem by simulating runoff flow across a landscape, selectively flooding depressions and more realistically connecting lakes and rivers.
Stefanie Tofelde, Sara Savi, Andrew D. Wickert, Aaron Bufe, and Taylor F. Schildgen
Earth Surf. Dynam., 7, 609–631, https://doi.org/10.5194/esurf-7-609-2019, https://doi.org/10.5194/esurf-7-609-2019, 2019
Short summary
Short summary
We performed seven physical experiments to explore terrace formation and sediment export from a braided alluvial river system that is perturbed by changes in water discharge, sediment supply, or base level. Each perturbation differently affects (1) the geometry of terraces and channels, (2) the timing of terrace formation, and (3) the transient response of sediment discharge. Our findings provide guidelines for interpreting fill terraces and sediment export from fluvial systems.
Andrew D. Wickert, Chad T. Sandell, Bobby Schulz, and Gene-Hua Crystal Ng
Hydrol. Earth Syst. Sci., 23, 2065–2076, https://doi.org/10.5194/hess-23-2065-2019, https://doi.org/10.5194/hess-23-2065-2019, 2019
Short summary
Short summary
Measuring Earth's changing environment is a critical part of natural science, but to date most of the equipment to do so is expensive, proprietary, and difficult to customize. We addressed this challenge by developing and deploying the ALog, a low-power, lightweight, Arduino-compatible data logger. We present our hardware schematics and layouts, as well as our customizable code library that operates the ALog and helps users to link it to off-the-shelf sensors.
Leila Saberi, Rachel T. McLaughlin, G.-H. Crystal Ng, Jeff La Frenierre, Andrew D. Wickert, Michel Baraer, Wei Zhi, Li Li, and Bryan G. Mark
Hydrol. Earth Syst. Sci., 23, 405–425, https://doi.org/10.5194/hess-23-405-2019, https://doi.org/10.5194/hess-23-405-2019, 2019
Short summary
Short summary
The relationship among glacier melt, groundwater, and streamflow remains highly uncertain, especially in tropical glacierized watersheds in response to climate. We implemented a multi-method approach and found that melt contribution varies considerably and may drive streamflow variability at hourly to multi-year timescales, rather than buffer it, as commonly thought. Some of the melt contribution occurs through groundwater pathways, resulting in longer timescale interactions with streamflow.
Andrew D. Wickert and Taylor F. Schildgen
Earth Surf. Dynam., 7, 17–43, https://doi.org/10.5194/esurf-7-17-2019, https://doi.org/10.5194/esurf-7-17-2019, 2019
Short summary
Short summary
Rivers can raise or lower their beds by depositing or eroding sediments. We combine equations for flow, channel/valley geometry, and gravel transport to learn how climate and tectonics shape down-valley profiles of river-bed elevation. Rivers steepen when they receive more sediment (relative to water) and become straighter with tectonic uplift. Weathering and breakdown of gravel is needed to produce gradually widening river channels with concave-up profiles that are often observed in the field.
G.-H. Crystal Ng, Andrew D. Wickert, Lauren D. Somers, Leila Saberi, Collin Cronkite-Ratcliff, Richard G. Niswonger, and Jeffrey M. McKenzie
Geosci. Model Dev., 11, 4755–4777, https://doi.org/10.5194/gmd-11-4755-2018, https://doi.org/10.5194/gmd-11-4755-2018, 2018
Short summary
Short summary
The profound importance of water has led to the development of increasingly complex hydrological models. However, implementing these models is usually time-consuming and requires specialized expertise, stymieing their widespread use to support science-driven decision-making. In response, we have developed GSFLOW–GRASS, a robust and comprehensive set of software tools that can be readily used to set up and execute GSFLOW, the U.S. Geological Survey's coupled groundwater–surface-water flow model.
A. D. Wickert
Geosci. Model Dev., 9, 997–1017, https://doi.org/10.5194/gmd-9-997-2016, https://doi.org/10.5194/gmd-9-997-2016, 2016
Short summary
Short summary
Earth's lithosphere bends beneath surface loads, such as ice, sediments, and mountain belts. The pattern of this bending, or flexural isostatic response, is a function of both the loads and the spatially variable strength of the lithosphere. gFlex is an easy-to-use program to calculate flexural isostastic response, and may be used to better understand how ice sheets, glaciers, large lakes, sedimentary basins, volcanoes, and other surface loads interact with the solid Earth.
Matias Romero, Shanti B. Penprase, Maximillian S. Van Wyk de Vries, Andrew D. Wickert, Andrew G. Jones, Shaun A. Marcott, Jorge A. Strelin, Mateo A. Martini, Tammy M. Rittenour, Guido Brignone, Mark D. Shapley, Emi Ito, Kelly R. MacGregor, and Marc W. Caffee
Clim. Past, 20, 1861–1883, https://doi.org/10.5194/cp-20-1861-2024, https://doi.org/10.5194/cp-20-1861-2024, 2024
Short summary
Short summary
Investigating past glaciated regions is crucial for understanding how ice sheets responded to climate forcings and how they might respond in the future. We use two independent dating techniques to document the timing and extent of the Lago Argentino glacier lobe, a former lobe of the Patagonian Ice Sheet, during the late Quaternary. Our findings highlight feedbacks in the Earth’s system responsible for modulating glacier growth in the Southern Hemisphere prior to the global Last Glacial Maximum.
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-131, https://doi.org/10.5194/gmd-2024-131, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We present the Water Table Model (WTM), which simulates groundwater and lake levels at continental scales over millennia. Our simulations show that North America held more ground- and lake-water at the Last Glacial Maximum than in the present day – enough to lower sea level by 6 cm. We also simulate the changing water table from 21,000 to 16,000 years ago, finding that groundwater storage decreased following reduced precipitation in the model inputs. Open-source WTM code is available on Github.
Andrew D. Wickert, Jabari C. Jones, and Gene-Hua Crystal Ng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3118, https://doi.org/10.5194/egusphere-2023-3118, 2024
Preprint archived
Short summary
Short summary
For over a century, scientists have used a simple algebraic relationship to estimate the amount of water flowing through a river (its discharge) from the height of the flow (its stage). Here we add physical realism to this approach by explicitly representing both the channel and floodplain, thereby allowing channel and floodplain geometry and roughness to these estimates. Our proposed advance may improve predictions of floods and water resources, even when the river channel itself changes.
Maximillian Van Wyk de Vries and Andrew D. Wickert
The Cryosphere, 15, 2115–2132, https://doi.org/10.5194/tc-15-2115-2021, https://doi.org/10.5194/tc-15-2115-2021, 2021
Short summary
Short summary
We can measure glacier flow and sliding velocity by tracking patterns on the ice surface in satellite images. The surface velocity of glaciers provides important information to support assessments of glacier response to climate change, to improve regional assessments of ice thickness, and to assist with glacier fieldwork. Our paper describes Glacier Image Velocimetry (GIV), a new, easy-to-use, and open-source toolbox for calculating high-resolution velocity time series for any glacier on earth.
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 9, 105–121, https://doi.org/10.5194/esurf-9-105-2021, https://doi.org/10.5194/esurf-9-105-2021, 2021
Short summary
Short summary
Existing ways of modeling the flow of water amongst landscape depressions such as swamps and lakes take a long time to run. However, as our previous work explains, depressions can be quickly organized into a data structure – the depression hierarchy. This paper explains how the depression hierarchy can be used to quickly simulate the realistic filling of depressions including how they spill over into each other and, if they become full enough, how they merge into one another.
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 8, 431–445, https://doi.org/10.5194/esurf-8-431-2020, https://doi.org/10.5194/esurf-8-431-2020, 2020
Short summary
Short summary
Maps of elevation are used to help predict the flow of water so we can better understand landslides, floods, and global climate change. However, modeling the flow of water is difficult when elevation maps include swamps, lakes, and other depressions. This paper explains a new method that overcomes these difficulties, allowing models to run faster and more accurately.
Sara Savi, Stefanie Tofelde, Andrew D. Wickert, Aaron Bufe, Taylor F. Schildgen, and Manfred R. Strecker
Earth Surf. Dynam., 8, 303–322, https://doi.org/10.5194/esurf-8-303-2020, https://doi.org/10.5194/esurf-8-303-2020, 2020
Short summary
Short summary
Fluvial deposits record changes in water and sediment supply. As such, they are often used to reconstruct the tectonic or climatic history of a basin. In this study we used an experimental setting to analyze how fluvial deposits register changes in water or sediment supply at a confluence zone. We provide a new conceptual framework that may help understanding the construction of these deposits under different forcings conditions, information crucial to correctly inferring the history of a basin.
Kerry L. Callaghan and Andrew D. Wickert
Earth Surf. Dynam., 7, 737–753, https://doi.org/10.5194/esurf-7-737-2019, https://doi.org/10.5194/esurf-7-737-2019, 2019
Short summary
Short summary
Lakes and swales are real landscape features but are generally treated as data errors when calculating water flow across a surface. This is a problem because depressions can store water and fragment drainage networks. Until now, there has been no good generalized approach to calculate which depressions fill and overflow and which do not. We addressed this problem by simulating runoff flow across a landscape, selectively flooding depressions and more realistically connecting lakes and rivers.
Stefanie Tofelde, Sara Savi, Andrew D. Wickert, Aaron Bufe, and Taylor F. Schildgen
Earth Surf. Dynam., 7, 609–631, https://doi.org/10.5194/esurf-7-609-2019, https://doi.org/10.5194/esurf-7-609-2019, 2019
Short summary
Short summary
We performed seven physical experiments to explore terrace formation and sediment export from a braided alluvial river system that is perturbed by changes in water discharge, sediment supply, or base level. Each perturbation differently affects (1) the geometry of terraces and channels, (2) the timing of terrace formation, and (3) the transient response of sediment discharge. Our findings provide guidelines for interpreting fill terraces and sediment export from fluvial systems.
Andrew D. Wickert, Chad T. Sandell, Bobby Schulz, and Gene-Hua Crystal Ng
Hydrol. Earth Syst. Sci., 23, 2065–2076, https://doi.org/10.5194/hess-23-2065-2019, https://doi.org/10.5194/hess-23-2065-2019, 2019
Short summary
Short summary
Measuring Earth's changing environment is a critical part of natural science, but to date most of the equipment to do so is expensive, proprietary, and difficult to customize. We addressed this challenge by developing and deploying the ALog, a low-power, lightweight, Arduino-compatible data logger. We present our hardware schematics and layouts, as well as our customizable code library that operates the ALog and helps users to link it to off-the-shelf sensors.
Leila Saberi, Rachel T. McLaughlin, G.-H. Crystal Ng, Jeff La Frenierre, Andrew D. Wickert, Michel Baraer, Wei Zhi, Li Li, and Bryan G. Mark
Hydrol. Earth Syst. Sci., 23, 405–425, https://doi.org/10.5194/hess-23-405-2019, https://doi.org/10.5194/hess-23-405-2019, 2019
Short summary
Short summary
The relationship among glacier melt, groundwater, and streamflow remains highly uncertain, especially in tropical glacierized watersheds in response to climate. We implemented a multi-method approach and found that melt contribution varies considerably and may drive streamflow variability at hourly to multi-year timescales, rather than buffer it, as commonly thought. Some of the melt contribution occurs through groundwater pathways, resulting in longer timescale interactions with streamflow.
Andrew D. Wickert and Taylor F. Schildgen
Earth Surf. Dynam., 7, 17–43, https://doi.org/10.5194/esurf-7-17-2019, https://doi.org/10.5194/esurf-7-17-2019, 2019
Short summary
Short summary
Rivers can raise or lower their beds by depositing or eroding sediments. We combine equations for flow, channel/valley geometry, and gravel transport to learn how climate and tectonics shape down-valley profiles of river-bed elevation. Rivers steepen when they receive more sediment (relative to water) and become straighter with tectonic uplift. Weathering and breakdown of gravel is needed to produce gradually widening river channels with concave-up profiles that are often observed in the field.
G.-H. Crystal Ng, Andrew D. Wickert, Lauren D. Somers, Leila Saberi, Collin Cronkite-Ratcliff, Richard G. Niswonger, and Jeffrey M. McKenzie
Geosci. Model Dev., 11, 4755–4777, https://doi.org/10.5194/gmd-11-4755-2018, https://doi.org/10.5194/gmd-11-4755-2018, 2018
Short summary
Short summary
The profound importance of water has led to the development of increasingly complex hydrological models. However, implementing these models is usually time-consuming and requires specialized expertise, stymieing their widespread use to support science-driven decision-making. In response, we have developed GSFLOW–GRASS, a robust and comprehensive set of software tools that can be readily used to set up and execute GSFLOW, the U.S. Geological Survey's coupled groundwater–surface-water flow model.
A. D. Wickert
Geosci. Model Dev., 9, 997–1017, https://doi.org/10.5194/gmd-9-997-2016, https://doi.org/10.5194/gmd-9-997-2016, 2016
Short summary
Short summary
Earth's lithosphere bends beneath surface loads, such as ice, sediments, and mountain belts. The pattern of this bending, or flexural isostatic response, is a function of both the loads and the spatially variable strength of the lithosphere. gFlex is an easy-to-use program to calculate flexural isostastic response, and may be used to better understand how ice sheets, glaciers, large lakes, sedimentary basins, volcanoes, and other surface loads interact with the solid Earth.
Related subject area
Cross-cutting themes: Impacts of climate change on Earth surface dynamics
Storm frequency, magnitude, and cumulative storm beach impact along the US east coast
Spatially coherent variability in modern orographic precipitation produces asymmetric paleo-glacier extents in flowline models: Olympic Mountains, USA
Modeling deadwood for rockfall mitigation assessments in windthrow areas
A 4000-year debris flow record based on amphibious investigations of fan delta activity in Plansee (Austria, Eastern Alps)
Biophysical controls of marsh soil shear strength along an estuarine salinity gradient
Current glacier recession causes significant rockfall increase: the immediate paraglacial response of deglaciating cirque walls
Temperature effects on the spatial structure of heavy rainfall modify catchment hydro-morphological response
Detection and explanation of spatiotemporal patterns in Late Cenozoic palaeoclimate change relevant to Earth surface processes
Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens
Vertical movements of frost mounds in subarctic permafrost regions analyzed using geodetic survey and satellite interferometry
Erosional response of an actively uplifting mountain belt to cyclic rainfall variations
Coastal vulnerability of a pinned, soft-cliff coastline – Part I: Assessing the natural sensitivity to wave climate
Rachele Dominguez, Michael S. Fenster, and John W. McManus
Earth Surf. Dynam., 12, 1145–1163, https://doi.org/10.5194/esurf-12-1145-2024, https://doi.org/10.5194/esurf-12-1145-2024, 2024
Short summary
Short summary
Climate change is a hot topic and changes in storminess can be indicative of climate change impacts. Also, coastal storms can impact ecosystems and the people who live, work, and recreate along our world's coasts. Our findings show that the number of the US east coast storms has not increased since the early 20th century, but storm strength has increased moderately. Finally, beaches can take up to 10 years to recover depending on the number, timing, and strength of previous storms.
Andrew A. Margason, Alison M. Anders, Robert J. C. Conrick, and Gerard H. Roe
Earth Surf. Dynam., 11, 849–863, https://doi.org/10.5194/esurf-11-849-2023, https://doi.org/10.5194/esurf-11-849-2023, 2023
Short summary
Short summary
We examine differences in glacier extent in the Olympic Mountains, USA, where modern precipitation in east-facing valleys is only 50 % of that in west-facing valleys. During the Last Glacial Period, there were very small glaciers in the east and very large glaciers in the west. We use climate data and glacier models to show that the modern spatial pattern of precipitation is likely to have been similar during the past glaciation and may be sufficient to explain the asymmetry of glacier extent.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 10, 1303–1319, https://doi.org/10.5194/esurf-10-1303-2022, https://doi.org/10.5194/esurf-10-1303-2022, 2022
Short summary
Short summary
The presented automatic deadwood generator (ADG) allows us to consider deadwood in rockfall simulations in unprecedented detail. Besides three-dimensional fresh deadwood cones, we include old woody debris in rockfall simulations based on a higher compaction rate and lower energy absorption thresholds. Simulations including different deadwood states indicate that a 10-year-old deadwood pile has a higher protective capacity than a pre-storm forest stand.
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
Megan N. Gillen, Tyler C. Messerschmidt, and Matthew L. Kirwan
Earth Surf. Dynam., 9, 413–421, https://doi.org/10.5194/esurf-9-413-2021, https://doi.org/10.5194/esurf-9-413-2021, 2021
Short summary
Short summary
We measured the shear strength of marsh soils along an estuarine salinity gradient to determine salinity's influence on marsh erodibility. Our work is one of the first studies to directly examine the relationship between salinity and marsh erodibility. We find that an increase in salinity correlates with higher soil shear strength values, indicating that salt marshes may be more resistant to erosion. We also show that both belowground biomass and soil properties drive shear strength differences.
Ingo Hartmeyer, Robert Delleske, Markus Keuschnig, Michael Krautblatter, Andreas Lang, Lothar Schrott, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 729–751, https://doi.org/10.5194/esurf-8-729-2020, https://doi.org/10.5194/esurf-8-729-2020, 2020
Short summary
Short summary
Climate warming is causing significant ice surface lowering even in the uppermost parts of alpine glaciers. Using terrestrial lidar, we quantify rockfall in freshly exposed cirque walls. During 6-year monitoring (2011–2017), an extensive dataset was established and over 600 rockfall events identified. Drastically increased rockfall activity following ice retreat can clearly be observed as 60 % of the rockfall volume detached from less than 10 m above the glacier surface.
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020, https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary
Short summary
Extreme rainfall is expected to intensify with increasing temperatures, which will likely affect rainfall spatial structure. The spatial variability of rainfall can affect streamflow and sediment transport volumes and peaks. The sensitivity of the hydro-morphological response to changes in the structure of heavy rainfall was investigated. It was found that the morphological components are more sensitive to changes in rainfall spatial structure in comparison to the hydrological components.
Sebastian G. Mutz and Todd A. Ehlers
Earth Surf. Dynam., 7, 663–679, https://doi.org/10.5194/esurf-7-663-2019, https://doi.org/10.5194/esurf-7-663-2019, 2019
Short summary
Short summary
We apply machine learning techniques to quantify and explain differences between recent palaeoclimates with regards to factors that are important in shaping the Earth's surface. We find that changes in ice cover, near-surface air temperature and rainfall duration create the most distinct differences. We also identify regions particularly prone to changes in rainfall and temperature-controlled erosion, which will help with the interpretation of erosion rates and geological archives.
Sebastian G. Mutz, Todd A. Ehlers, Martin Werner, Gerrit Lohmann, Christian Stepanek, and Jingmin Li
Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, https://doi.org/10.5194/esurf-6-271-2018, 2018
Short summary
Short summary
We use a climate model and statistics to provide an overview of regional climates from different times in the late Cenozoic. We focus on tectonically active mountain ranges in particular. Our results highlight significant changes in climates throughout the late Cenozoic, which should be taken into consideration when interpreting erosion rates. We also document the differences between model- and proxy-based estimates for late Cenozoic climate change in South America and Tibet.
I. Beck, R. Ludwig, M. Bernier, T. Strozzi, and J. Boike
Earth Surf. Dynam., 3, 409–421, https://doi.org/10.5194/esurf-3-409-2015, https://doi.org/10.5194/esurf-3-409-2015, 2015
J. Braun, C. Voisin, A. T. Gourlan, and C. Chauvel
Earth Surf. Dynam., 3, 1–14, https://doi.org/10.5194/esurf-3-1-2015, https://doi.org/10.5194/esurf-3-1-2015, 2015
Short summary
Short summary
We have derived a simple solution to the stream power law equation governing the erosion of rapidly uplifting tectonic areas assuming that rainfall varies as a periodic function of time. We show that the erosional response of this forcing is characterized by an amplification of the resulting erosional flux variations as well as a time lag. We show how this time lag can be important in interpreting several geological observations.
A. Barkwith, C. W. Thomas, P. W. Limber, M. A. Ellis, and A. B. Murray
Earth Surf. Dynam., 2, 295–308, https://doi.org/10.5194/esurf-2-295-2014, https://doi.org/10.5194/esurf-2-295-2014, 2014
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, 2009.
Anders, M. D., Pederson, J. L., Rittenour, T. M., Sharp, W. D., Gosse, J. C., Karlstrom, K. E., Crossey, L. J., Goble, R. J., Stockli, L., and Yang, G.: Pleistocene geomorphology and geochronology of eastern Grand Canyon: linkages of landscape components during climate changes, Quaternary Sci. Rev., 24, 2428–2448, https://doi.org/10.1016/j.quascirev.2005.03.015, 2005.
Anderson, J.: History of the Missouri River Valley from the Late Pleistocene to Present: Climatic vs . Tectonic Forcing on Valley Architecture, MS Thesis, Texas Christian University, 2015.
Anderson, L. S., Roe, G. H., and Anderson, R. S.: The effects of interannual climate variability on the moraine record, Geology, 42, 55–58, https://doi.org/10.1130/G34791.1, 2014.
Anderson, R. C.: Reconstruction of preglacial drainage and its diversion by earliest glacial forebulge in the upper Mississippi Valley region, Geology, 16, 254–257, 1988.
Andersson, A., Fennig, K., Klepp, C., Bakan, S., Graßl, H., and Schulz, J.: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3, Earth Syst. Sci. Data, 2, 215–234, https://doi.org/10.5194/essd-2-215-2010, 2010.
Andersson, A., Klepp, C., Fennig, K., Bakan, S., Grassl, H., and Schulz, J.: Evaluation of HOAPS-3 Ocean Surface Freshwater Flux Components, J. Appl. Meteorol. Clim., 50, 379–398, https://doi.org/10.1175/2010JAMC2341.1, 2011.
Andrews, J. T. and Dunhill, G.: Early to mid-Holocene Atlantic water influx and deglacial meltwater events, Beaufort Sea slope, Arctic Ocean, Quaternary Res., 61, 14–21, https://doi.org/10.1016/j.yqres.2003.08.003, 2004.
Andrews, J. T. and MacLean, B.: Hudson Strait ice streams: a review of stratigraphy, chronology and links with North Atlantic Heinrich events, Boreas, 32, 4–17, https://doi.org/10.1080/03009480310001010, 2003.
Andrews, J. T. and Tedesco, K.: Detrital carbonate-rich sediments, northwestern Labrador Sea: Implications for ice-sheet dynamics and iceberg rafting (Heinrich) events in the North Atlantic, Geology, 20, 1087–1090, https://doi.org/10.1130/0091-7613(1992)020<1087:DCRSNL>2.3.CO;2, 1992.
Andrews, J. T., Erlenkeuser, H., Tedesco, K., Aksu, A. E., and Jull, A.: Late Quaternary (Stage 2 and 3) Meltwater and Heinrich Events, Northwest Labrador Sea, Quaternary Res., 41, 26–34, https://doi.org/10.1006/qres.1994.1003, 1994.
Andrews, J. T., Keigwin, L., Hall, F., and Jennings, A. E.: Abrupt deglaciation events and Holocene palaeoceanography from high-resolution cores, Cartwright Saddle, Labrador Shelf, Canada, J. Quaternary Sci., 14, 383–397, https://doi.org/10.1002/(SICI)1099-1417(199908)14:5<383::AID-JQS464>3.0.CO;2-J, 1999.
Antevs, E.: The recession of the last ice sheet in New England, American Geographical Society of New York: The Conde Nast Press, Greenwich, CT, USA, 1922.
Argus, D. F. and Peltier, W. R.: Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives, Geophys. J. Int., 181, 697–723, 2010.
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W.: The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories, Geophys. J. Int., 198, 537–563, https://doi.org/10.1093/gji/ggu140, 2014.
Asmerom, Y., Polyak, V. J., and Burns, S. J.: Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts, Nat. Geosci., 3, 114–117, https://doi.org/10.1038/ngeo754, 2010.
Atwater, B. F.: Periodic floods from glacial Lake Missoula into the Sanpoil arm of glacial Lake Columbia, northeastern Washington, Geology, 12, 464–467, https://doi.org/10.1130/0091-7613(1984)12<464:PFFGLM>2.0.CO;2, 1984.
Austermann, J., Mitrovica, J. X., Latychev, K., and Milne, G. A.: Barbados-based estimate of ice volume at Last Glacial Maximum affected by subducted plate, Nat. Geosci., 6, 553–557, https://doi.org/10.1038/ngeo1859, 2013.
Barber, D. C., Jennings, A. E., Andrews, J. T., Kerwin, M. W., and Morehead, M. D.: Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes, Nature, 400, 13–15, https://doi.org/10.1038/22504, 1999.
Bell, R.: On glacial phenomena in Canada, Bull. Geol. Soc. Am., 1, 287–310, 1889.
Benito, G. and O'Connor, J. E.: Number and size of last-glacial Missoula floods in the Columbia River valley between the Pasco Basin, Washington, and Portland, Oregon, Geol. Soc. Am. Bull., 115, 624–638, https://doi.org/10.1130/0016-7606(2003)115<0624:NASOLM>2.0.CO;2, 2003.
Benson, L., Burdett, J., Lund, S., Kashgarian, M., and Mensing, S.: Nearly synchronous climate change in the Northern Hemisphere during the last glacial termination, Nature, 388, 263–265, 1997.
Bentley, S.: Fluvial Sediment Delivery to Hudson Bay in a Changing Climate: Projections and Hypotheses, in: ArcticNet Annual Scientific Meeting, 12–15 December, Victoria, British Columbia, Canada, 2006.
Bettis, E. A., Benn, D. W., and Hajic, E. R.: Landscape evolution, alluvial architecture, environmental history, and the archaeological record of the Upper Mississippi River Valley, Geomorphology, 101, 362–377, https://doi.org/10.1016/j.geomorph.2008.05.030, 2008.
Birks, S. J., Edwards, T. W. D., and Remenda, V. H.: Isotopic evolution of Glacial Lake Agassiz: New insights from cellulose and porewater isotopic archives, Palaeogeogr. Palaeocl., 246, 8–22, https://doi.org/10.1016/j.palaeo.2006.10.024, 2007.
Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Ferrier, S., Veloz, S. D., He, F., Liu, Z., Manion, G., and Otto-Bliesner, B.: Modeling the climatic drivers of spatial patterns in vegetation composition since the Last Glacial Maximum, Ecography, 36, 460–473, https://doi.org/10.1111/j.1600-0587.2012.07852.x, 2013.
Bluemle, J. P.: Pleistocene Drainage Development in North Dakota, Geol. Soc. Am. Bull., 83, 2189, https://doi.org/10.1130/0016-7606(1972)83[2189:PDDIND]2.0.CO;2, 1972.
Bluemle, J. P.: Origin of the Missouri River in North Dakota, in: Quaternary geology of the Missouri River Valley and adjacent areas in northwest-central North Dakota, edited by: Manz, L. A., Midwest Friends of the Pleistocene, North Dakota Geological Survey, 2006.
Blum, M. D., Guccione, M. J., Wysocki, D. A., Robnett, P. C., and Rutledge, E. M.: Late Pleistocene evolution of the lower Mississippi River valley, southern Missouri to Arkansas, Geol. Soc. Am. Bull., 112, 221–235, https://doi.org/10.1130/0016-7606(2000)112<221:LPEOTL>2.0.CO;2, 2000.
Blumentritt, D. J., Wright, H. E., and Stefanova, V.: Formation and early history of Lakes Pepin and St. Croix of the upper Mississippi River, J. Paleolimnol., 41, 545–562, 2009.
Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution, Geomorphology, 180–181, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013.
Breckenridge, A.: The Lake Superior varve stratigraphy and implications for eastern Lake Agassiz outflow from 10,700 to 8900 cal ybp (9.5–8.0 {14}C ka), Palaeogeogr. Palaeocl., 246, 45–61, https://doi.org/10.1016/j.palaeo.2006.10.026, 2007.
Breckenridge, A.: The Tintah-Campbell gap and implications for glacial Lake Agassiz drainage during the Younger Dryas cold interval, Quaternary Sci. Rev., 117, 124–134, https://doi.org/10.1016/j.quascirev.2015.04.009, 2015.
Breckenridge, A. and Johnson, T. C.: Paleohydrology of the upper Laurentian Great Lakes from the late glacial to early Holocene, Quaternary Res., 71, 397–408, https://doi.org/10.1016/j.yqres.2009.01.003, 2009.
Breckenridge, A., Lowell, T. V., Stroup, J. S., and Evans, G.: A review and analysis of varve thickness records from glacial Lake Ojibway (Ontario and Quebec, Canada), Quatern. Int., 260, 43–54, https://doi.org/10.1016/j.quaint.2011.09.031, 2012.
Bretz, J. H.: The channeled scablands of the Columbia Plateau, J. Geol., 31, 617–649, 1923.
Bretz, J. H.: The Lake Missoula floods and the channeled scabland, J. Geol., 77, 505–543, 1969.
British Oceanographic Data Centre: The GEBCO_08 Grid, version 20100927, 2010.
Broecker, W. S. and Farrand, W. R.: Radiocarbon age of the two creeks forest bed, Wisconsin, Bull. Geol. Soc. Am., 74, 795–802, https://doi.org/10.1130/0016-7606(1963)74[795:RAOTTC]2.0.CO;2, 1963.
Broecker, W. S., Kennett, J. P., Flower, B. P., Teller, J. T., Trumbore, S., Bonani, G., and Wolfli, W.: Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode, Nature, 341, 318–321, https://doi.org/10.1038/341318a0, 1989.
Bromwich, D. H., Toracinta, E. R., Wei, H., Oglesby, R. J., Fastook, J. L., Hughes, T. J., Group, P. M., Polar, B., Program, A. S., Springs, C., Studies, C., Bromwich, D. H., Toracinta, E. R., Wei, H., Oglesby, R. J., Fastook, J. L., Hughes, T. J., Group, P. M., Polar, B., Program, A. S., Springs, C., Studies, C., Bromwich, D. H., Toracinta, E. R., Wei, H., Oglesby, R. J., Fastook, J. L., and Hughes, T. J.: Polar MM5 Simulations of the Winter Climate of the Laurentide Ice Sheet at the LGM, J. Climate, 17, 3415–3433, https://doi.org/10.1175/1520-0442(2004)017<3415:PMSOTW>2.0.CO;2, 2004.
Brown, E. A.: Initial Ablation of the Laurentide Ice Sheet Based on Gulf of Mexico Sediments, MS thesis, University of South Florida, St. Petersburg, FL, USA, 2011.
Brugger, K. A.: Climate in the Southern Sawatch Range and Elk Mountains, Colorado, U.S.A., during the Last Glacial Maximum: Inferences Using a Simple Degree-Day Model, Arct. Antarct. Alp. Res., 42, 164–178, https://doi.org/10.1657/1938-4246-42.2.164, 2010.
Caley, T., Roche, D. M., Waelbroeck, C., and Michel, E.: Oxygen stable isotopes during the Last Glacial Maximum climate: perspectives from data-model (iLOVECLIM) comparison, Clim. Past, 10, 1939–1955, https://doi.org/10.5194/cp-10-1939-2014, 2014.
Carlson, A. E.: Geochemical constraints on the Laurentide Ice Sheet contribution to Meltwater Pulse 1A, Quaternary Sci. Rev., 28, 1625–1630, 2009.
Carlson, A. E. and Clark, P. U.: Comment: Radiocarbon deglaciation chronology of the Thunder Bay, Ontario area and implications for ice sheet retreat patterns, Quaternary Sci. Rev., 28, 2546–2547, https://doi.org/10.1016/j.quascirev.2009.02.025, 2009.
Carlson, A. E. and Clark, P. U.: Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation, Rev. Geophys., 50, RG4007, https://doi.org/10.1029/2011RG000371, 2012.
Carlson, A. E., Clark, P. U., Haley, B. A., Klinkhammer, G. P., Simmons, K., Brook, E. J., and Meissner, K. J.: Geochemical proxies of North American freshwater routing during the Younger Dryas cold event, P. Natl. Acad. Sci. USA, 104, 6556–6561, https://doi.org/10.1073/pnas.0611313104, 2007a.
Carlson, A. E., Clark, P. U., Raisbeck, G. M., and Brook, E. J.: Rapid holocene deglaciation of the labrador sector of the Laurentide Ice Sheet, J. Climate, 20, 5126–5133, https://doi.org/10.1175/JCLI4273.1, 2007b.
Carlson, A. E., LeGrande, A. N., Oppo, D. W., Came, R. E., Schmidt, G. A., Anslow, F. S., Licciardi, J. M., and Obbink, E. A.: Rapid early Holocene deglaciation of the Laurentide ice sheet, Nat. Geosci., 1, 620–624, https://doi.org/10.1038/ngeo285, 2008.
Carlson, A. E., Clark, P. U., Haley, B. A., and Klinkhammer, G. P.: Routing of western Canadian Plains runoff during the 8.2 ka cold event, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL038778, 2009.
Carriquiry, J. D. and Sánchez, A.: Sedimentation in the Colorado River delta and Upper Gulf of California after nearly a century of discharge loss, Mar. Geol., 158, 125–145, https://doi.org/10.1016/S0025-3227(98)00189-3, 1999.
Carson, M. A., Jasper, J. N., and Conly, F. M.: Magnitude and sources of sediment input to the Mackenzie Delta, Northwest Territories, 1974–94, Arctic, 51, 116–124, 1998.
Catto, N., Liverman, D. G. E., Bobrowsky, P. T., and Rutter, N.: Laurentide, cordilleran, and montane glaciation in the western Peace River – Grande Prairie region, Alberta and British Columbia, Canada, Quatern. Int., 32, 21–32, https://doi.org/10.1016/1040-6182(95)00061-5, 1996.
Chen, M., Xie, P., Janowiak, J. E., and Arkin, P. A.: Global Land Precipitation: A 50-yr Monthly Analysis Based on Gauge Observations, J. Hydrometeorol., 3, 249–266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2, 2002.
Clague, J. J. and James, T. S.: History and isostatic effects of the last ice sheet in southern British Columbia, Quaternary Sci. Rev., 21, 71–87, https://doi.org/10.1016/S0277-3791(01)00070-1, 2002.
Clark, J., Mitrovica, J. X., and Alder, J.: Coastal paleogeography of the California-Oregon-Washington and Bering Sea continental shelves during the latest Pleistocene and Holocene: Implications for the archaeological record, J. Archaeol. Sci., 52, 12–23, https://doi.org/10.1016/j.jas.2014.07.030, 2014.
Clark, P. U., Marshall, S. J., Clarke, G. K. C., Hostetler, S. W., Licciardi, J. M., and Teller, J. T.: Freshwater forcing of abrupt climate change during the last glaciation, Science, 293, 283–287, https://doi.org/10.1126/science.1062517, 2001.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The Last Glacial Maximum, Science, 325, 710–714, https://doi.org/10.1126/science.1172873, 2009.
Clayton, L. and Moran, S. R.: Chronology of late wisconsinan glaciation in middle North America, Quaternary Sci. Rev., 1, 55–82, https://doi.org/10.1016/0277-3791(82)90019-1, 1982.
Cohen, M. J., Henges-Jeck, C., and Castillo-Moreno, G.: A preliminary water balance for the Colorado River delta, 1992–1998, J. Arid Environ., 49, 35–48, https://doi.org/10.1006/jare.2001.0834, 2001.
Cohen, S., Kettner, A. J., Syvitski, J. P. M., and Fekete, B. M.: WBMsed, a distributed global-scale riverine sediment flux model: Model description and validation, Comput. & Geosci., 53, 80–93, https://doi.org/10.1016/j.cageo.2011.08.011, 2013.
COHMAP members: Climatic Changes of the Last 18,000 Years: Observations and Model Simulations, Science, 241, 1043–1052, https://doi.org/10.1126/science.241.4869.1043, 1988.
Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D., and Smith, R. D.: The Community Climate System Model Version 3 (CCSM3), J. Climate, 19, 2122–2143, https://doi.org/10.1175/JCLI3761.1, 2006.
Condron, A. and Winsor, P.: Meltwater routing and the Younger Dryas, P. Natl. Acad. Sci. USA, 109, 19928–19933, https://doi.org/10.1073/pnas.1207381109, 2012.
Cook, K. L., Whipple, K. X., Heimsath, A. M., and Hanks, T. C.: Rapid incision of the Colorado River in Glen Canyon - insights from channel profiles, local incision rates, and modeling of lithologic controls, Earth Surf. Proc. Land., 1010, 994–1010, https://doi.org/10.1002/esp.1790, 2009.
Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. F., Le Brocq, A. M., Gladstone, R. M., Payne, A. J., Ng, E. G., and Lipscomb, W. H.: Adaptive mesh, finite volume modeling of marine ice sheets, J. Comput. Phys., 232, 529–549, https://doi.org/10.1016/j.jcp.2012.08.037, 2013.
Cronin, T. M., Rayburn, J., Guilbault, J.-P., Thunell, R., and Franzi, D.: Stable isotope evidence for glacial lake drainage through the St. Lawrence Estuary, eastern Canada, ∼ 3.1–12.9 ka, Quatern. Int., 260, 55–65, https://doi.org/10.1016/j.quaint.2011.08.041, 2012.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic Press, Oxford, UK, 4th edn., 2010.
Currey, D. R.: Quaternary palaeolakes in the evolution of semidesert basins, with special emphasis on Lake Bonneville and the Great Basin, U.S.A, Palaeogeogr. Palaeoclimatol. Palaeoecol., 76, 189–214, https://doi.org/10.1016/0031-0182(90)90113-L, 1990.
Curry, B. B.: Evidence at Lomax, Illinois, for Mid-Wisconsin (40,000 yr BP) Position of the Des Moines Lobe and for Diversion of the Mississippi River by the Lake Michigan Lobe (20,350 yr BP)∗ 1, Quaternary Res., 50, 128–138, 1998.
Curry, B. B., Hajic, E. R., Clark, J. A., Befus, K. M., Carrell, J. E., and Brown, S. E.: The Kankakee Torrent and other large meltwater flooding events during the last deglaciation, Illinois, USA, Quaternary Sci. Rev., 90, 22–36, https://doi.org/10.1016/j.quascirev.2014.02.006, 2014.
de Vernal, A., Hillaire-Marcel, C., and Bilodeau, G.: Reduced meltwater outflow from the Laurentide ice margin during the Younger Dryas, Nature, 381, 774–777, https://doi.org/10.1038/381774a0, 1996.
Deschamps, P., Durand, N., Bard, E., Hamelin, B., Camoin, G., Thomas, A. L., Henderson, G. M., Okuno, J., and Yokoyama, Y.: Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago, Nature, 483, 559–564, https://doi.org/10.1038/nature10902, 2012.
Dierckx, P.: Curve and surface fitting with splines, Oxford University Press, 1993.
Dixon, J. E. and Monteleone, K.: Gateway to the Americas: Underwater Archeological Survey in Beringia and the North Pacific, in: Prehistoric Archaeology on the Continental Shelf, chap. 6, 95–114, Springer, New York, https://doi.org/10.1007/978-1-4614-9635-9_6, 2014.
Dolgopolova, E. N. and Isupova, M. V.: Water and sediment dynamics at Saint Lawrence River mouth, Water Resour., 38, 453–469, https://doi.org/10.1134/S009780781104004X, 2011.
Doyon, P.: Seasonal Structure of the Gulf of St. Lawrence Upper-Layer Thermohaline Fields during the Ice-free Months, MS Thesis, McGill University, 1996.
Dreimanis, A. and Goldthwait, R. P.: Wisconsin Glaciation in the Huron, Erie, and Ontario Lobes, in: GSA Memoirs: The Wisconsinan Stage, 136, 71–106, Geological Society of America, Boulder, CO, USA, https://doi.org/10.1130/MEM136-p71, 1973.
Duk-Rodkin, A., Hughes, O. L., Survey, G., and Calgary, S. N. W.: Tertiary-quaternary drainage of the Pre-glacial Mackenzie basin, Quatern. Int., 22–23, 221–241, https://doi.org/10.1016/1040-6182(94)90015-9, 1994.
Dury, G. H.: Subsurface Exploration and Chronology of underfit streams, Professional Paper 452-B, U.S. Geological Survey, Washington, DC, 1964.
Dutton, A. and Lambeck, K.: Ice Volume and Sea Level During the Last Interglacial, Science, 337, 216–219, https://doi.org/10.1126/science.1205749, 2012.
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto, R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-level rise due to polar ice-sheet mass loss during past warm periods, Science, 349, aaa4019, https://doi.org/10.1126/science.aaa4019, 2015.
Dyke, A. S.: An outline of North American deglaciation with emphasis on central and northern Canada, in: Quaternary Glaciations–Extent and Chronology — Part II: North America, edited by: Ehlers, J. and Gibbard, P. L., vol. 2, Developments in Quaternary Sciences, 373–424, 2004.
Dyke, A. S. and Prest, V. K.: Late Wisconsinan and Holocene History of the Laurentide Ice Sheet, Géographie physique et Quaternaire, 41, 237, https://doi.org/10.7202/032681ar, 1987.
Dyke, A. S., Moore, A., and Robertson, L.: Deglaciation of North America, Open File 1574, Natural Resources Canada, Ottawa, 2003.
Environment Canada: St. Lawrence River, available at: http://www.ec.gc.ca/stl/ (last access: 18 December 2015), 2013.
Evenson, E. B., Farrand, W. R., Eschman, D. F., Mickelson, D. M., and Maher, L. J.: Greatlakean Substage: A replacement for Valderan Substage in the Lake Michigan basin, Quaternary Res., 6, 411–424, https://doi.org/10.1016/0033-5894(67)90005-1, 1976.
Fairbanks, R. G.: A 17, 000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation, Nature, 342, 637–642, 1989.
Fan, Y., Li, H., and Miguez-Macho, G.: Global Patterns of Groundwater Table Depth, Science, 339, 940–943, https://doi.org/10.1126/science.1229881, 2013.
Fedje, D. W. and Christensen, T.: Modeling Paleoshorelines and Locating Early Holocene Coastal Sites in Haida Gwaii, Am. Antiquity, 64, 635, https://doi.org/10.2307/2694209, 1999.
Ferguson, G. and Jasechko, S.: The isotopic composition of the Laurentide Ice Sheet and fossil groundwater, Geophys. Res. Lett., 42, 1–6, https://doi.org/10.1002/2015GL064106.Received, 2015.
Fisher, T. G.: Chronology of glacial Lake Agassiz meltwater routed to the Gulf of Mexico, Quaternary Res., 59, 271–276, 2003.
Fisher, T. G.: Abandonment chronology of glacial Lake Agassiz's Northwestern outlet, Palaeogeogr. Palaeocl., 246, 31–44, https://doi.org/10.1016/j.palaeo.2006.10.031, 2007.
Fisher, T. G. and Souch, C.: Northwest outlet channels of Lake Agassiz, isostatic tilting and a migrating continental drainage divide, Saskatchewan, Canada, Geomorphology, 25, 57–73, https://doi.org/10.1016/S0169-555X(98)00028-2, 1998.
Fisher, T. G., Yansa, C. H., Lowell, T. V., Lepper, K., Hajdas, I., and Ashworth, A.: The chronology, climate, and confusion of the Moorhead Phase of glacial Lake Agassiz: new results from the Ojata Beach, North Dakota, USA, Quaternary Sci. Rev., 27, 1124–1135, https://doi.org/10.1016/j.quascirev.2008.02.010, 2008.
Flock, M. A.: The late Wisconsinan Savanna Terrace in tributaries to the upper Mississippi River, Quaternary Res., 20, 165–176, https://doi.org/10.1016/0033-5894(83)90075-3, 1983.
Flower, B. P., Hastings, D. W., Hill, H. W., and Quinn, T. M.: Phasing of deglacial warming and Laurentide Ice Sheet meltwater in the Gulf of Mexico, Geology, 32, 597, https://doi.org/10.1130/G20604.1, 2004.
Galloway, W. E., Whiteaker, T. L., and Ganey-Curry, P.: History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin, Geosphere, 7, 938–973, https://doi.org/10.1130/GES00647.1, 2011.
Gasson, E., DeConto, R. M., Pollard, D., and Levy, R. H.: Dynamic Antarctic ice sheet during the early to mid-Miocene, P. Natl. Acad. Sci. USA, 113, 3459–3464, https://doi.org/10.1073/pnas.1516130113, 2016.
Gates, L. D., Hagemann, S., and Golz, C.: Observed historical discharge data from major rivers for climate model validation, Tech. Rep. 307, Max-Planck-Institut für Meterologie, Hamburg, Germany, 2000.
Gibb, O. T., Hillaire-Marcel, C., and de Vernal, A.: Oceanographic regimes in the northwest Labrador Sea since Marine Isotope Stage 3 based on dinocyst and stable isotope proxy records, Quaternary Sci. Rev., 92, 269–279, https://doi.org/10.1016/j.quascirev.2013.12.010, 2014.
Gil, I. M., Keigwin, L. D., and Abrantes, F.: The deglaciation over Laurentian Fan: History of diatoms, IRD, ice and fresh water, Quaternary Sci. Rev., 129, 57–67, https://doi.org/10.1016/j.quascirev.2015.10.006, 2015.
Gilbert, G. K.: Lake Bonneville, Monograph 1, US Geological Survey, Washington, DC, 1890.
Godsey, H. S., Currey, D. R., and Chan, M. A.: New evidence for an extended occupation of the Provo shoreline and implications for regional climate change, Pleistocene Lake Bonneville, Utah, USA, Quaternary Res., 63, 212–223, https://doi.org/10.1016/j.yqres.2005.01.002, 2005.
Godsey, H. S., Oviatt, C. G., Miller, D. M., and Chan, M. A.: Stratigraphy and chronology of offshore to nearshore deposits associated with the Provo shoreline, Pleistocene Lake Bonneville, Utah, Palaeogeogr. Palaeocl., 310, 442–450, https://doi.org/10.1016/j.palaeo.2011.08.005, 2011.
Gomez, N., Gregoire, L. J., Mitrovica, J. X., and Payne, A. J.: Laurentide-Cordilleran Ice Sheet saddle collapse as a contribution to meltwater pulse 1A, Geophys. Res. Lett., 42, 3954–3962, https://doi.org/10.1002/2015GL063960, 2015.
Gowan, E. J.: An assessment of the minimum timing of ice free conditions of the western Laurentide Ice Sheet, Quaternary Sci. Rev., 75, 100–113, https://doi.org/10.1016/j.quascirev.2013.06.001, 2013.
Gowan, E. J., Tregoning, P., Purcell, A., Lea, J., Fransner, O. J., Noormets, R., and Dowdeswell, J. A.: ICESHEET 1.0: a program to produce paleo-ice sheet reconstructions with minimal assumptions, Geosci. Model Dev., 9, 1673–1682, https://doi.org/10.5194/gmd-9-1673-2016, 2016a.
Gowan, E. J., Tregoning, P., Purcell, A., Montillet, J.-P., and McClusky, S.: A model of the western Laurentide Ice Sheet, using observations of glacial isostatic adjustment, Quaternary Sci. Rev., 139, 1–16, https://doi.org/10.1016/j.quascirev.2016.03.003, 2016b.
GRASS Development Team: Geographic Resources Analysis Support System (GRASS GIS) Software, 2015.
Gregoire, L. J., Payne, A. J., and Valdes, P. J.: Deglacial rapid sea level rises caused by ice-sheet saddle collapses, Nature, 487, 219–222, https://doi.org/10.1038/nature11257, 2012.
Gregoire, L. J., Otto-Bliesner, B., Valdes, P. J., and Ivanovic, R.: Abrupt Bølling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise, Geophys. Res. Lett., 43, 9130–9137, https://doi.org/10.1002/2016GL070356, 2016.
Grimaldi, S., Nardi, F., Benedetto, F. D., Istanbulluoglu, E., and Bras, R. L.: A physically-based method for removing pits in digital elevation models, Adv. Water Resour., 30, 2151–2158, https://doi.org/10.1016/j.advwatres.2006.11.016, 2007.
Gross, M. G., Karweit, M., Cronin, W. B., Schubel, J. R., Gross, M. G., Karweit, M., Cronin, W. B., and Schubel, J. R.: Suspended sediment discharge of the Susquehanna River to northern Chesapeake Bay, 1966 to 1976, Estuaries, 1, 106–110, 1978.
Guido, Z. S., Ward, D. J., and Anderson, R. S.: Pacing the post-Last Glacial Maximum demise of the Animas Valley glacier and the San Juan Mountain ice cap, Colorado, Geology, 35, 739, https://doi.org/10.1130/G23596A.1, 2007.
Hager, B. H. and Richards, M. A.: Long-Wavelength Variations in Earth's Geoid: Physical Models and Dynamical Implications, Philos. T. R. Soc. A, 328, 309–327, https://doi.org/10.1098/rsta.1989.0038, 1989.
Hansel, A. K. and Mickelson, D. M.: A reevaluation of the timing and causes of high lake phases in the Lake Michigan basin, Quaternary Res., 29, 113–128, https://doi.org/10.1016/0033-5894(88)90055-5, 1988.
Hanson, M. A., Lian, O. B., and Clague, J. J.: The sequence and timing of large late Pleistocene floods from glacial Lake Missoula, Quaternary Sci. Rev., 31, 67–81, https://doi.org/10.1016/j.quascirev.2011.11.009, 2012.
Harmar, O. P. and Clifford, N. J.: Geomorphological explanation of the long profile of the Lower Mississippi River, Geomorphology, 84, 222–240, https://doi.org/10.1016/j.geomorph.2006.01.045, 2007.
Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Hay, C., Mitrovica, J. X., Gomez, N., Creveling, J. R., Austermann, J., and Kopp, R. E.: The sea-level fingerprints of ice-sheet collapse during interglacial periods, Quaternary Sci. Rev., 87, 60–69, https://doi.org/10.1016/j.quascirev.2013.12.022, 2014.
He, F.: Simulating Transiet Climate Evolution of the Last Deglaciation with CCSM3, PhD thesis, University of Wisconsin – Madison, Madison, Wisconsin, USA, 2011.
He, F., Shakun, J. D., Clark, P. U., Carlson, A. E., Liu, Z., Otto-Bliesner, B. L., and Kutzbach, J. E.: Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation, Nature, 494, 81–85, https://doi.org/10.1038/nature11822, 2013.
Hearty, P. J., Hollin, J. T., Neumann, A. C., O'Leary, M. J., and McCulloch, M.: Global sea-level fluctuations during the Last Interglaciation (MIS 5e), Quaternary Sci. Rev., 26, 2090–2112, https://doi.org/10.1016/j.quascirev.2007.06.019, 2007.
Heinrich, H.: Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years, Quaternary Res., 29, 142–152, https://doi.org/10.1016/0033-5894(88)90057-9, 1988.
Hemming, S. R.: Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint, Rev. Geophys., 42, RG1005, https://doi.org/10.1029/2003RG000128, 2004.
Hillaire-Marcel, C., Maccali, J., Not, C., and Poirier, A.: Geochemical and isotopic tracers of Arctic sea ice sources and export with special attention to the Younger Dryas interval, Quaternary Sci. Rev., 79, 184–190, https://doi.org/10.1016/j.quascirev.2013.05.001, 2013.
Hladyniuk, R. and Longstaffe, F. J.: Oxygen-isotope variations in post-glacial Lake Ontario, Quaternary Sci. Rev., 134, 39–50, https://doi.org/10.1016/j.quascirev.2016.01.002, 2016.
Hoffman, J. S., Carlson, A. E., Winsor, K., Klinkhammer, G. P., LeGrande, A. N., Andrews, J. T., and Strasser, J. C.: Linking the 8.2 ka event and its freshwater forcing in the Labrador Sea, Geophys. Res. Lett., 39, L18703, https://doi.org/10.1029/2012GL053047, 2012.
Holeman, J. N.: The Sediment Yield of Major Rivers of the World, Water Resour. Res., 4, 737–747, https://doi.org/10.1029/WR004i004p00737, 1968.
Hooke, R. L. and Clausen, H. B.: Wisconsin and Holocene δ{18}O variations, Barnes Ice Cap, Canada, Geol. Soc. Am. Bull., 93, 784–789, https://doi.org/10.1130/0016-7606(1982)93<784:WAHOVB>2.0.CO;2, 1982.
Huang, P.-c. and Lee, K. T.: An efficient method for DEM-based overland flow routing, J. Hydrol., 489, 238–245, https://doi.org/10.1016/j.jhydrol.2013.03.014, 2013.
Ivanović, R. F., Gregoire, L. J., Wickert, A. D., and Valdes, P. J.: How did the North American ice Saddle Collapse impact the climate 14,500 years ago?, in: AGU Fall Meeting Abstracts, PP51D–1153, American Geophysical Union, San Francisco, CA, USA, 15–19 December 2014.
Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J., Burke, A., Drummond, R., Peltier, W. R., and Tarasov, L.: Transient climate simulations of the deglaciation 21-9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, 2016.
Ivanović, R. F., Gregoire, L. J., Wickert, A. D., Valdes, P. J., and Burke, A.: Collapse of the North American ice saddle 14,500 years ago caused widespread cooling and reduced ocean overturning circulation, Geophys. Res. Lett., submitted, 2016b.
Jarrett, R. D. and Malde, H. E.: Paleodischarge of the late Pleistocene Bonneville Flood, Snake River, Idaho, computed from new evidence, Geol. Soc. Am. Bull., 99, 127, https://doi.org/10.1130/0016-7606(1987)99<127:POTLPB>2.0.CO;2, 1987.
Jennings, A., Andrews, J., Pearce, C., Wilson, L., and Ólfasdóttir, S.: Detrital carbonate peaks on the Labrador shelf, a 13–7ka template for freshwater forcing from the Hudson Strait outlet of the Laurentide Ice Sheet into the subpolar gyre, Quaternary Sci. Rev., 107, 62–80, https://doi.org/10.1016/j.quascirev.2014.10.022, 2015.
Kammerer, J. C.: Largest Rivers in the United States, Open-File Report, United States Geological Survey, Reston, Virginia, USA, 1990.
Kaufman, D. S. and Miller, G. H.: Abrupt early Holocene (9.9–9.6 ka) ice-stream advance at the mouth of Hudson Strait, Arctic Canada, Geology, 21, 1063–1066, https://doi.org/10.1130/0091-7613(1993)021<1063:AEHKIS>2.3.CO;2, 1993.
Kehew, A. E. and Teller, J. T.: History of late glacial runoff along the southwestern margin of the Laurentide Ice Sheet, Quaternary Sci. Rev., 13, 859–877, https://doi.org/10.1016/0277-3791(94)90006-X, 1994.
Keigwin, L. D. and Driscoll, N. W.: Deglacial floods in the Beaufort Sea, in: AGU Fall Meeting Abstracts, PP12B–07, American Geophysical Union, San Francisco, CA, USA, 15–19 December 2014.
Keigwin, L. D., Donnelly, J. P., Cook, M. S., Driscoll, N. W., and Brigham-Grette, J.: Rapid sea-level rise and Holocene climate in the Chukchi Sea, Geology, 34, 861, https://doi.org/10.1130/G22712.1, 2006.
Kendall, R. A., Mitrovica, J. X., and Milne, G. A.: On post-glacial sea level–II. Numerical formulation and comparative results on spherically symmetric models, Geophys. J. Int., 161, 679–706, https://doi.org/10.1111/j.1365-246X.2005.02553.x, 2005.
Kettner, A. J. and Syvitski, J. P. M.: HydroTrend v. 3.0: A climate-driven hydrological transport model that simulates discharge and sediment load leaving a river system, Comput. & Geosci., 34, 1170–1183, 2008.
Khider, D., Huerta, G., Jackson, C., Stott, L. D., and Emile-Geay, J.: A Bayesian, multivariate calibration for G lobigerinoides ruber Mg/Ca, Geochem. Geophy. Geosy., 16, 2916–2932, https://doi.org/10.1002/2015GC005844, 2015.
Kim, S. J., Crowley, T. J., Erickson, D. J., Govindasamy, B., Duffy, P. B., and Lee, B. Y.: High-resolution climate simulation of the last glacial maximum, Clim. Dynam., 31, 1–16, https://doi.org/10.1007/s00382-007-0332-z, 2008.
Kirby, J. F. and Swain, C. J.: A reassessment of spectral Te estimation in continental interiors: The case of North America, J. Geophys. Res.-Sol. Ea., 114, 1–36, https://doi.org/10.1029/2009JB006356, 2009.
Knox, J. C.: The Mississippi River System, in: Large rivers: geomorphology and management, edited by: Gupta, A., 145–182, John Wiley & Sons, Hoboken, NJ, USA, 2007.
Kujau, A., Nürnberg, D., Zielhofer, C., Bahr, A., and Röhl, U.: Mississippi River discharge over the last ∼ 560,000 years – Indications from X-ray fluorescence core-scanning, Palaeogeogr. Palaeocl., 298, 311–318, https://doi.org/10.1016/j.palaeo.2010.10.005, 2010.
Kutzbach, J. E. and Wright, H. E.: Simulation of the climate of 18,000 years BP: Results for the North American/North Atlantic/European sector and comparison with the geologic record of North America, Quaternary Sci. Rev., 4, 147–187, https://doi.org/10.1016/0277-3791(85)90024-1, 1985.
Laabs, B. J., Munroe, J. S., Best, L. C., and Caffee, M. W.: Timing of the last glaciation and subsequent deglaciation in the Ruby Mountains, Great Basin, USA, Earth Planet. Sc. Lett., 361, 16–25, https://doi.org/10.1016/j.epsl.2012.11.018, 2013.
Lambeck, K., Yokoyama, Y., and Purcell, T.: Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stages 3 and 2, Quaternary Sci. Rev., 21, 343–360, 2002.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level and global ice volumes from the Last Glacial Maximum to the Holocene, P. Natl. Acad. Sci. USA, 111, 15296–15303, https://doi.org/10.1073/pnas.1411762111, 2014.
Lavoie, C., Allard, M., and Duhamel, D.: Deglaciation landforms and C-14 chronology of the Lac Guillaume-Delisle area, eastern Hudson Bay: A report on field evidence, Geomorphology, 159–160, 142–155, https://doi.org/10.1016/j.geomorph.2012.03.015, 2012.
Le Morzadec, K., Tarasov, L., Morlighem, M., and Seroussi, H.: A new sub-grid surface mass balance and flux model for continental-scale ice sheet modelling: testing and last glacial cycle, Geosci. Model Dev., 8, 3199–3213, https://doi.org/10.5194/gmd-8-3199-2015, 2015.
Lehner, B., Verdin, K., and Jarvis, A.: HydroSHEDS Technical Documentation Version 1.2, vol. 89, 2013.
Lemieux, J.-M., Sudicky, E. A., Peltier, W. R., and Tarasov, L.: Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation, J. Geophys. Res., 113, 1–18, https://doi.org/10.1029/2007JF000838, 2008.
Lemmen, D. S., Duk-Rodkin, A., and Bednarski, J. M.: Late glacial drainage systems along the northwestern margin of the Laurentide Ice Sheet, Quaternary Sci. Rev., 13, 805–828, 1994.
Leonard, A. G.: Pleistocene drainage changes in western North Dakota, Geol. Soc. Am. Bull., 27, 295–304, https://doi.org/10.1130/GSAB-27-295, 1916.
Leopold, L. B. and Maddock, T.: The hydraulic geometry of stream channels and some physiographic implications, Professional Paper, United States Geological Survey, Washington, DC, 1953.
Lepper, K., Buell, A. W., Fisher, T. G., and Lowell, T. V.: A chronology for glacial Lake Agassiz shorelines along Upham's namesake transect, Quaternary Res., 80, 88–98, https://doi.org/10.1016/j.yqres.2013.02.002, 2013.
Levac, E., Lewis, M., Stretch, V., Duchesne, K., and Neulieb, T.: Evidence for meltwater drainage via the St. Lawrence River Valley in marine cores from the Laurentian Channel at the time of the Younger Dryas, Global Planet. Change, 130, 47–65, https://doi.org/10.1016/j.gloplacha.2015.04.002, 2015.
Leventer, A., Williams, D. F., and Kennett, J. P.: Dynamics of the Laurentide ice sheet during the last deglaciation: evidence from the Gulf of Mexico, Earth Planet. Sc. Lett., 59, 11–17, 1982.
Lewis, C. F. M. and Teller, J. T.: Glacial runoff from North America and its possible impact on oceans and climate, in: Glacier Science and Environmental Change, chap. Chapter Tw, 138–150, Blackwell Publishing, Malden, MA, USA, https://doi.org/10.1002/9780470750636.ch28, 2006.
Leydet, D. J.: Eastward Routing of Glacial Lake Agassiz Runoff caused the Younger Dryas Cold Event, MS Thesis, Oregon State University, Corvallis, OR, USA, 2016.
Licciardi, J. M., Teller, J. T., and Clark, P. U.: Freshwater routing by the Laurentide Ice Sheet during the last deglaciation, in: Mechanisms of global climate change at millennial time scales, edited by: Clark, P. U., Webb, R. S., and Keigwin, L. D., vol. 112, Geophysical Monograph, 177–201, American Geophysical Union, https://doi.org/10.1029/gm112p0177, 1999.
Liu, J., Milne, G. A., Kopp, R. E., Clark, P. U., and Shennan, I.: Sea-level constraints on the amplitude and source distribution of Meltwater Pulse 1A, Nat. Geosci., 9, 6–12, https://doi.org/10.1038/ngeo2616, 2015.
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J., and Cheng, J.: Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod warming, Science, 325, 310–314, https://doi.org/10.1126/science.1171041, 2009.
Livingstone, S. J., Storrar, R. D., Hillier, J. K., Stokes, C. R., Clark, C. D., and Tarasov, L.: An ice-sheet scale comparison of eskers with modelled subglacial drainage routes, Geomorphology, 246, 104–112, https://doi.org/10.1016/j.geomorph.2015.06.016, 2015.
Lopes, C. and Mix, A. C.: Pleistocene megafloods in the Northeast Pacific, Geology, 37, 79–82, https://doi.org/10.1130/G25025A.1, 2009.
Lowell, T. V., Larson, G. J., Hughes, J. D., and Denton, G. H.: Age verification of the Lake Gribben forest bed and the Younger Dryas Advance of the Laurentide Ice Sheet, Can. J. Earth Sci., 36, 383–393, https://doi.org/10.1139/e98-095, 1999.
Lowell, T. V., Applegate, P. J., Fisher, T. G., and Lepper, K.: What caused the low-water phase of glacial Lake Agassiz?, Quaternary Res., 80, 370–382, https://doi.org/10.1016/j.yqres.2013.06.002, 2013.
MacAyeal, D. R.: Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events, Paleoceanography, 8, 775–784, https://doi.org/10.1029/93PA02200, 1993.
Maccali, J., Hillaire-Marcel, C., Carignan, J., and Reisberg, L. C.: Geochemical signatures of sediments documenting Arctic sea-ice and water mass export through Fram Strait since the Last Glacial Maximum, Quaternary Sci. Rev., 64, 136–151, https://doi.org/10.1016/j.quascirev.2012.10.029, 2013.
Mackay, J. R. and Mathews, W. H.: Geomorphology and Quaternary History of the Mackenzie River Valley near Fort Good Hope, N.W.T., Canada, Can. J. Earth Sci., 10, 26–41, https://doi.org/10.1139/e73-003, 1973.
Mandryk, C. A., Josenhans, H., Fedje, D. W., and Mathewes, R. W.: Late Quaternary paleoenvironments of Northwestern North America: implications for inland versus coastal migration routes, Quaternary Sci. Rev., 20, 301–314, https://doi.org/10.1016/S0277-3791(00)00115-3, 2001.
Margold, M., Stokes, C. R., Clark, C. D., and Kleman, J.: Ice streams in the Laurentide Ice Sheet: a new mapping inventory, Journal of Maps, 16, 9669, https://doi.org/10.1080/17445647.2014.912036, 2014.
Margold, M., Stokes, C. R., and Clark, C. D.: Ice streams in the Laurentide Ice Sheet: Identification, characteristics and comparison to modern ice sheets, Earth-Sci. Rev., 143, 117–146, https://doi.org/10.1016/j.earscirev.2015.01.011, 2015.
Marshall, S. J. and Clarke, G. K. C.: Modeling North American freshwater runoff through the last glacial cycle, Quaternary Res., 52, 300–315, 1999.
Matsubara, Y. and Howard, A. D.: A spatially explicit model of runoff, evaporation, and lake extent: Application to modern and late Pleistocene lakes in the Great Basin region, western United States, Water Resour. Res., 45, W06425, https://doi.org/10.1029/2007WR005953, 2009.
McGee, D., Quade, J., Edwards, R. L., Broecker, W. S., Cheng, H., Reiners, P. W., and Evenson, N.: Lacustrine cave carbonates: Novel archives of paleohydrologic change in the Bonneville Basin (Utah, USA), Earth Planet. Sc. Lett., 351–352, 182–194, https://doi.org/10.1016/j.epsl.2012.07.019, 2012.
Meissner, K. J. and Clark, P. U.: Impact of floods versus routing events on the thermohaline circulation, Geophys. Res. Lett., 33, L15704, https://doi.org/10.1029/2006GL026705, 2006.
Metz, J. M., Dowdeswell, J., and Woodworth-Lynas, C. M. T.: Sea-floor scour at the mouth of Hudson Strait by deep-keeled icebergs from the Laurentide Ice Sheet, Mar. Geol., 253, 149–159, https://doi.org/10.1016/j.margeo.2008.05.004, 2008.
Metz, M., Mitasova, H., and Harmon, R. S.: Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search, Hydrol. Earth Syst. Sci., 15, 667–678, https://doi.org/10.5194/hess-15-667-2011, 2011.
Milliman, J. D. and Farnsworth, K. L.: River discharge to the coastal ocean: a global synthesis, Cambridge University Press, 2011.
Milliman, J. D. and Meade, R. H.: World-wide delivery of river sediment to the oceans, J. Geol., 91, 1–21, 1983.
Mitrovica, J. X.: Haskell [1935] revisited, J. Geophys. Res., 101, 555–569, https://doi.org/10.1029/95JB03208, 1996.
Mitrovica, J. X. and Forte, A. M.: A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sc. Lett., 225, 177–189, 2004.
Mitrovica, J. X. and Milne, G. A.: On post-glacial sea level: I. General theory, Geophys. J. Int., 154, 253–267, https://doi.org/10.1046/j.1365-246X.2003.01942.x, 2003.
Monaghan, G. W.: Systematic variation in the clay-mineral composition of till sheets; Evidence for the Erie Interstade in the Lake Michigan basin, in: GSA Special Papers: Late Quaternary History of the Lake Michigan Basin, edited by: Schneider, A. F. and Fraser, G. S., vol. 251, 43–50, Geological Society of America, Boulder, CO, USA, https://doi.org/10.1130/SPE251-p43, 1990.
Monteleone, K., Dixon, E. J., and Wickert, A. D.: Lost Worlds: A predictive model to locate submerged archaeological sites in SE Alaska, USA, in: Archaeology in the Digital Era: Papers from the 40th Annual Conference of Computer Applications and Quantitative Methods in Archaeology (CAA), Southampton, 26–29 March 2012, edited by: Earl, G., Sly, T., Chrysanthi, A., Murrieta-Flores, P., Papadopoulos, C., Romanowska, I., and Wheatley, D., 1–12, Amsterdam University Press, Southampton, UK, 2013.
Monteleone, K. R.: Lost worlds: Locating submerged archaeological sites in Southeast Alaska, PhD thesis, The University of New Mexico, 2013.
Montero-Serrano, J. C., Bout-Roumazeilles, V., Tribovillard, N., Sionneau, T., Riboulleau, A., Bory, A., and Flower, B.: Sedimentary evidence of deglacial megafloods in the northern Gulf of Mexico (Pigmy Basin), Quaternary Sci. Rev., 28, 3333–3347, https://doi.org/10.1016/j.quascirev.2009.09.011, 2009.
Moore, T. C., Walker, J. C. G., Rea, D. K., Lewis, C. F. M., Shane, L. C. K., and Smith, A. J.: Younger Dryas Interval and outflow from the Laurentide Ice Sheet, Paleoceanography, 15, 4–18, https://doi.org/10.1029/1999PA000437, 2000.
Mörner, N.-A. and Dreimanis, A.: The Erie interstade, Geol. Soc. Am. Mem., 136, 107–134, https://doi.org/10.1130/MEM136-p107, 1973.
Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sens. Environ., 111, 519–536, https://doi.org/10.1016/j.rse.2007.04.015, 2007.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Munroe, J. S. and Laabs, B. J. C.: Temporal correspondence between pluvial lake highstands in the southwestern US and Heinrich Event 1, J. Quaternary Sci., 28, 49–58, https://doi.org/10.1002/jqs.2586, 2013.
Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T., and Yang, Z.: Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean, Nature, 464, 740–743, https://doi.org/10.1038/nature08954, 2010.
Neteler, M., Bowman, M. H., Landa, M., and Metz, M.: GRASS GIS: A multi-purpose open source GIS, Environ. Modell. Softw., 31, 124–130, https://doi.org/10.1016/j.envsoft.2011.11.014, 2012.
Nordman, M., Milne, G., and Tarasov, L.: Reappraisal of the Ångerman River decay time estimate and its application to determine uncertainty in Earth viscosity structure, Geophys. J. Int., 201, 811–822, https://doi.org/10.1093/gji/ggv051, 2015.
Nowak, K. C.: Stochastic streamflow simulation at interdecadal time scales and implications to water resources management in the Colorado River Basin, PhD thesis, University of Colorado, 2011.
Obbink, E. A., Carlson, A. E., and Klinkhammer, G. P.: Eastern North American freshwater discharge during the Bolling-Allerod warm periods, Geology, 38, 171–174, https://doi.org/10.1130/G30389.1, 2010.
Occhietti, S. and Richard, P. J.: Effet réservoir sur les âges C de la Mer de Champlain à la transition Pléistocène-Holocène: révision de la chronologie de la déglaciation au Québec méridional, Géographie physique et Quaternaire, 57, 115, https://doi.org/10.7202/011308ar, 2003.
Occhietti, S., Govare, E., Klassen, R., Parent, M., and Vincent, J.-S.: Late Wisconsinan–Early Holocene deglaciation of Québec-Labrador, in: Quaternary Glaciations – Extent and Chronology — Part II: North America, edited by: Ehlers, J. and Gibbard, P. L., Developments in Quaternary Sciences, 243–273, 2004.
Ó Cofaigh, C., Evans, D. J. A., and Smith, I. R.: Large-scale reorganization and sedimentation of terrestrial ice streams during late Wisconsinan Laurentide Ice Sheet deglaciation, Geol. Soc. Am. Bull., 122, 743–756, https://doi.org/10.1130/B26476.1, 2010.
Orme, A. R.: Pleistocene pluvial lakes of the American West: a short history of research, Geological Society, London, Special Publications, 301, 51–78, https://doi.org/10.1144/SP301.4, 2008.
Oster, J. L. and Kelley, N. P.: Tracking regional and global teleconnections recorded by western North American speleothem records, Quaternary Sci. Rev., 149, 18–33, https://doi.org/10.1016/j.quascirev.2016.07.009, 2016.
Oster, J. L., Ibarra, D. E., Winnick, M. J., and Maher, K.: Steering of westerly storms over western North America at the Last Glacial Maximum, Nat. Geosci., 8, 201–205, https://doi.org/10.1038/ngeo2365, 2015.
Overeem, I., Syvitski, J. P. M., Hutton, E. W. H., and Kettner, A. J.: Stratigraphic variability due to uncertainty in model boundary conditions: A case-study of the New Jersey Shelf over the last 40,000 years, Mar. Geol., 224, 23–41, https://doi.org/10.1016/j.margeo.2005.06.044, 2005.
Oviatt, C. G.: Chronology of Lake Bonneville, 30,000 to 10,000 yr B.P, Quaternary Sci. Rev., 110, 166–171, https://doi.org/10.1016/j.quascirev.2014.12.016, 2015.
Owen, L. A., Finkel, R. C., Minnich, R. A., and Perez, A. E.: Extreme southwestern margin of late Quaternary glaciation in North America: Timing and controls, Geology, 31, 729–732, https://doi.org/10.1130/G19561.1, 2003.
Patterson, C. J.: Southern Laurentide ice lobes were created by ice streams: Des Moines Lobe in Minnesota, USA, Sediment. Geol., 111, 249–261, https://doi.org/10.1016/S0037-0738(97)00018-3, 1997.
Patterson, C. J.: Laurentide glacial landscapes: The role of ice streams, Geology, 26, 643–646, https://doi.org/10.1130/0091-7613(1998)026<0643:LGLTRO>2.3.CO;2, 1998.
Pearce, C.: The timing of the Gold Cove glacial event: A comment on “Signature of the Gold Cove event (10.2 ka) in the Labrador Sea”, Quatern. Int., 377, 157–159, https://doi.org/10.1016/j.quaint.2015.02.067, 2015.
Pearce, C., Andrews, J. T., Bouloubassi, I., Hillaire-Marcel, C., Jennings, A. E., Olsen, J., Kuijpers, A., and Seidenkrantz, M.-S. S.: Heinrich 0 on the east Canadian margin: Source, distribution, and timing, Paleoceanography, 30, 1613–1624, https://doi.org/10.1002/2015PA002884, 2015.
Pederson, J. L., Cragun, W. S., Hidy, A. J., Rittenour, T. M., and Gosse, J. C.: Colorado River chronostratigraphy at Lee's Ferry, Arizona, and the Colorado Plateau bull's-eye of incision, Geology, 41, 427–430, https://doi.org/10.1130/G34051.1, 2013.
Pelletier, J. D.: A spatially distributed model for the long-term suspended sediment discharge and delivery ratio of drainage basins, J. Geophys. Res., 117, F02028, https://doi.org/10.1029/2011JF002129, 2012.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice age terminal deglaciation: The global ICE-6G\_C (VM5a)model, J. Geophys. Res.-Sol. Ea., 120, 450–487, https://doi.org/10.1002/2014JB011176, 2015.
Peltier, W. R.: Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G (VM2) Model and GRACE, Annu. Rev. Earth Pl. Sc., 32, 111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004.
Polyak, V. J., Rasmussen, J. B., and Asmerom, Y.: Prolonged wet period in the southwestern United States through the Younger Dryas, Geology, 32, 5–8, https://doi.org/10.1130/G19957.1, 2004.
Prairie, J. and Callejo, R.: Natural Flow And Salt Computation Methods: Calendar Years 1971-1995, December, US Department of the Interior, Bureau of Reclamation, Salt Lake City, UT, and Boulder City, NV, 2005.
Prince, P. S. and Spotila, J. A.: Evidence of transient topographic disequilibrium in a landward passive margin river system: knickpoints and paleo-landscapes of the New River basin, southern Appalachians, Earth Surf. Proc. Land., 38, 1685–1699, https://doi.org/10.1002/esp.3406, 2013.
Qin, C.-z. and Zhan, L.: Parallelizing flow-accumulation calculations on graphics processing units – From iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm, Comput. & Geosci., 43, 7–16, https://doi.org/10.1016/j.cageo.2012.02.022, 2012.
Rashid, H., Piper, D. J. W., Mansfield, C., Saint-Ange, F., and Polyak, L.: Signature of the Gold Cove event (10.2 ka) in the Labrador Sea, Quatern. Int., 352, 212–221, https://doi.org/10.1016/j.quaint.2014.06.063, 2014.
Rayburn, J. A., K. Knuepfer, P. L., and Franzi, D. A.: A series of large, Late Wisconsinan meltwater floods through the Champlain and Hudson Valleys, New York State, USA, Quaternary Sci. Rev., 24, 2410–2419, https://doi.org/10.1016/j.quascirev.2005.02.010, 2005.
Rayburn, J. A., Franzi, D. A., and Knuepfer, P. L. K.: Evidence from the Lake Champlain Valley for a later onset of the Champlain Sea and implications for late glacial meltwater routing to the North Atlantic, Palaeogeogr. Palaeocl., 246, 62–74, https://doi.org/10.1016/j.palaeo.2006.10.027, 2007.
Rayburn, J. A., Cronin, T. M., Franzi, D. A., Knuepfer, P. L. K., and Willard, D. A.: Timing and duration of North American glacial lake discharges and the Younger Dryas climate reversal, Quaternary Res., 75, 541–551, https://doi.org/10.1016/j.yqres.2011.02.004, 2011.
Rech, J. A., Nekola, J. C., and Pigati, J. S.: Radiocarbon ages of terrestrial gastropods extend duration of ice-free conditions at the Two Creeks forest bed, Wisconsin, USA, Quaternary Res., 77, 289–292, https://doi.org/10.1016/j.yqres.2011.11.007, 2012.
Refsnider, K. A., Laabs, B. J. C., Plummer, M. A., Mickelson, D. M., Singer, B. S., and Caffee, M. W.: Last glacial maximum climate inferences from cosmogenic dating and glacier modeling of the western Uinta ice field, Uinta Mountains, Utah, Quaternary Res., 69, 130–144, https://doi.org/10.1016/j.yqres.2007.10.014, 2008.
Refsnider, K. A., Brugger, K. A., Leonard, E. M., Mccalpin, J. P., and Armstrong, P. P.: Last Glacial Maximum equilibrium-line altitude trends and precipitation patterns in the Sangre de Cristo Mountains, southern Colorado, USA, Boreas, 38, 663–678, https://doi.org/10.1111/j.1502-3885.2009.00097.x, 2009.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., van der Plicht, J., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Remenda, V. H., Cherry, J. A., and Edwards, T. W. D.: Isotopic Composition of Old Ground Water from Lake Agassiz: Implications for Late Pleistocene Climate, Science, 266, 1975–1978, https://doi.org/10.1126/science.266.5193.1975, 1994.
Reneau, S. L. and Dethier, D. P.: Late Pleistocene landslide-dammed lakes along the Rio Grande, White Rock Canyon, New Mexico, Geol. Soc. Am. Bull., 108, 1492–1507, https://doi.org/10.1130/0016-7606(1996)108<1492:LPLDLA>2.3.CO;2, 1996.
Reusser, L. J., Bierman, P. R., Pavich, M. J., Zen, E.-a., Larsen, J., and Finkel, R.: Rapid late Pleistocene incision of Atlantic passive-margin river gorges, Science, 305, 499–502, https://doi.org/10.1126/science.1097780, 2004.
Reusser, L., Bierman, P., and Pavich, M.: An episode of rapid bedrock channel incision during the last glacial cycle, measured with 10Be, Am. J. Sci., 306, 69–102, 2006.
Richard, P. J. H. and Occhietti, S.: 14C chronology for ice retreat and inception of Champlain Sea in the St. Lawrence Lowlands, Canada, Quaternary Res., 63, 353–358, https://doi.org/10.1016/j.yqres.2005.02.003, 2005.
Ridge, J. C.: Shed Brook Discontinuity and Little Falls Gravel: Evidence for the Erie interstade in central New York, Geol. Soc. Am. Bull., 109, 652–665, https://doi.org/10.1130/0016-7606(1997)109<0652:SBDALF>2.3.CO;2, 1997.
Ridge, J. C., Franzi, D. A., and Muller, E. H.: Late Wisconsinan, pre-Valley Heads glaciation in the western Mohawk Valley, central New York, and its regional implications, Geol. Soc. Am. Bull., 103, 1032–1048, https://doi.org/10.1130/0016-7606(1991)103<1032:LWPVHG>2.3.CO;2, 1991.
Rittenour, T. M., Goble, R. J., and Blum, M. D.: An optical age chronology of Late Pleistocene fluvial deposits in the northern lower Mississippi valley, Quaternary Sci. Rev., 22, 1105–1110, 2003.
Rittenour, T. M., Goble, R. J., and Blum, M. D.: Development of an OSL chronology for Late Pleistocene channel belts in the lower Mississippi valley, USA, Quaternary Sci. Rev., 24, 2539–2554, https://doi.org/10.1016/j.quascirev.2005.03.011, 2005.
Rittenour, T. M., Blum, M. D., and Goble, R. J.: Fluvial evolution of the lower Mississippi River valley during the last 100 k.y. glacial cycle: Response to glaciation and sea-level change, Geol. Soc. Am. Bull., 119, 586–608, https://doi.org/10.1130/B25934.1, 2007.
Roberts, G. G., White, N. J., Martin-Brandis, G. L., and Crosby, A. G.: An uplift history of the Colorado Plateau and its surroundings from inverse modeling of longitudinal river profiles, Tectonics, 31, 1–2, https://doi.org/10.1029/2012TC003107, 2012.
Rohling, E. J., Grant, K., Hemleben, C. H., Siddall, M., Hoogakker, B. A. A., Bolshaw, M., and Kucera, M.: High rates of sea-level rise during the last interglacial period, Nat. Geosci., 1, 38–42, https://doi.org/10.1038/ngeo.2007.28, 2007.
Ross, M., Campbell, J. E., Parent, M., and Adams, R. S.: Palaeo-ice streams and the subglacial landscape mosaic of the North American mid-continental prairies, Boreas, 38, 421–439, https://doi.org/10.1111/j.1502-3885.2009.00082.x, 2009.
Roy, M., Dell'Oste, F., Veillette, J. J., de Vernal, A., Hélie, J.-F., and Parent, M.: Insights on the events surrounding the final drainage of Lake Ojibway based on James Bay stratigraphic sequences, Quaternary Sci. Rev., 30, 682–692, https://doi.org/10.1016/j.quascirev.2010.12.008, 2011.
Rutt, I. C., Hagdorn, M., Hulton, N. R. J., and Payne, A. J.: The Glimmer community ice sheet model, J. Geophys. Res., 114, F02004, https://doi.org/10.1029/2008JF001015, 2009.
Schmidt, J. C., Schmidt, B. J. C., and Schmidt, J. C.: A Watershed Perspective of Changes in Streamflow , Sediment Supply , and Geomorphology of the Colorado River, in: Proceedings of the Colorado River Basin Science and Resource Management Symposium, 18–20 November 2008, Scottsdale, Arizona, edited by: Melis, T. S., Hamill, J. F., Bennett, G. E., Lewis G. Coggins, J., Grams, P. E., Kennedy, T. A., Kubly, D. M., and Ralston, B. E., vol. 2009, USGS Scientific Investigations Report, 51–76, United States Geological Survey, Scottsdale, Arizona, USA, 2010.
Schneider-Vieira, F., Baker, R., and Lawrence, M.: The Estuaries of Hudson Bay: A Case Study of the Physical and Biological Characteristics of Selected Sites, North/South Consultants Inc., Winnipeg, Manitoba, Canada, 1994.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Sionneau, T., Bout-Roumazeilles, V., Biscaye, P. E., Van Vliet-Lanoe, B., and Bory, A.: Clay mineral distributions in and around the Mississippi River watershed and Northern Gulf of Mexico: sources and transport patterns, Quaternary Sci. Rev., 27, 1740–1751, https://doi.org/10.1016/j.quascirev.2008.07.001, 2008.
Sionneau, T., Bout-Roumazeilles, V., Flower, B. P., Bory, A., Tribovillard, N., Kissel, C., Van Vliet-Lanoë, B., and Montero Serrano, J. C.: Provenance of freshwater pulses in the Gulf of Mexico during the last deglaciation, Quaternary Res., 74, 235–245, https://doi.org/10.1016/j.yqres.2010.07.002, 2010.
Smith, D. G.: Glacial lake McConnell: Paleogeography, age, duration, and associated river deltas, mackenzie river basin, western Canada, Quaternary Sci. Rev., 13, 829–843, https://doi.org/10.1016/0277-3791(94)90004-3, 1994.
Smith, R. S., Gregory, J. M., and Osprey, A.: A description of the FAMOUS (version XDBUA) climate model and control run, Geosci. Model Dev., 1, 53–68, https://doi.org/10.5194/gmd-1-53-2008, 2008.
Spero, H. J., Eggins, S. M., Russell, A. D., Vetter, L., Kilburn, M. R., and Hönisch, B.: Timing and mechanism for intratest Mg/Ca variability in a living planktic foraminifer, Earth Planet. Sc. Lett., 409, 32–42, https://doi.org/10.1016/j.epsl.2014.10.030, 2015.
Stanford, S. D.: Onshore record of Hudson River drainage to the continental shelf from the late Miocene through the late Wisconsinan deglaciation, USA: synthesis and revision, Boreas, 39, 1–17, https://doi.org/10.1111/j.1502-3885.2009.00106.x, 2010.
Stanford, S. D., Witte, R. W., Braun, D. D., and Ridge, J. C.: Quaternary fluvial history of the Delaware River, New Jersey and Pennsylvania, USA: The effects of glaciation, glacioisostasy, and eustasy on a proglacial river system, Geomorphology, 264, 12–28, https://doi.org/10.1016/j.geomorph.2016.04.002, 2016.
Stokes, C. R., Clark, C. D., and Storrar, R.: Major changes in ice stream dynamics during deglaciation of the north-western margin of the Laurentide Ice Sheet, Quaternary Sci. Rev., 28, 721–738, https://doi.org/10.1016/j.quascirev.2008.07.019, 2009.
Stokes, C. R., Tarasov, L., Blomdin, R., Cronin, T. M., Fisher, T. G., Gyllencreutz, R., Hättestrand, C., Heyman, J., Hindmarsh, R. C., Hughes, A. L., Jakobsson, M., Kirchner, N., Livingstone, S. J., Margold, M., Murton, J. B., Noormets, R., Peltier, W. R., Peteet, D. M., Piper, D. J., Preusser, F., Renssen, H., Roberts, D. H., Roche, D. M., Saint-Ange, F., Stroeven, A. P., and Teller, J. T.: On the reconstruction of palaeo-ice sheets: Recent advances and future challenges, Quaternary Sci. Rev., 125, 15–49, https://doi.org/10.1016/j.quascirev.2015.07.016, 2015.
Storrar, R. D., Stokes, C. R., and Evans, D. J.: A map of large Canadian eskers from Landsat satellite imagery, Journal of Maps, 9, 456–473, https://doi.org/10.1080/17445647.2013.815591, 2013.
Stroup, J. S., Lowell, T. V., and Breckenridge, A.: A model for the demise of large, glacial Lake Ojibway, Ontario and Quebec, J. Paleolimnol., 50, 105–121, https://doi.org/10.1007/s10933-013-9707-9, 2013.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008.
Syvitski, J. P. M., Peckham, S. D., Hilberman, R., and Mulder, T.: Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective, Sediment. Geol., 162, 5–24, https://doi.org/10.1016/S0037-0738(03)00232-X, 2003.
Tarasov, L. and Peltier, W. R.: Arctic freshwater forcing of the Younger Dryas cold reversal, Nature, 435, 662–665, https://doi.org/10.1038/nature03617, 2005.
Tarasov, L. and Peltier, W. R. R.: A calibrated deglacial drainage chronology for the North American continent: evidence of an Arctic trigger for the Younger Dryas, Quaternary Sci. Rev., 25, 659–688, https://doi.org/10.1016/j.quascirev.2005.12.006, 2006.
Tarasov, L., Dyke, A. S., Neal, R. M., and Peltier, W. R.: A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling, Earth Planet. Sc. Lett., 315–316, 30–40, https://doi.org/10.1016/j.epsl.2011.09.010, 2012.
Taylor, M., Hendy, I., and Pak, D.: Deglacial ocean warming and marine margin retreat of the Cordilleran Ice Sheet in the North Pacific Ocean, Earth Planet. Sc. Lett., 403, 89–98, https://doi.org/10.1016/j.epsl.2014.06.026, 2014.
Teller, J. T.: Preglacial (Teays) and Early Glacial Drainage in the Cincinnati Area, Ohio, Kentucky, and Indiana, Geol. Soc. Am. Bull., 84, 3677, https://doi.org/10.1130/0016-7606(1973)84<3677:PTAEGD>2.0.CO;2, 1973.
Teller, J. T.: Meltwater and precipitation runoff to the North Atlantic, Arctic, and Gulf of Mexico from the Laurentide Ice Sheet and adjacent regions during the Younger Dryas, Paleoceanography, 5, 897–905, https://doi.org/10.1029/PA005i006p00897, 1990a.
Teller, J. T.: Volume and routing of late-glacial runoff from the southern Laurentide Ice Sheet, Quaternary Res., 34, 12–23, https://doi.org/10.1016/0033-5894(90)90069-W, 1990b.
Teller, J. T.: Lake Agassiz during the Younger Dryas, Quaternary Res., 80, 361–369, https://doi.org/10.1016/j.yqres.2013.06.011, 2013.
Teller, J. T. and Leverington, D. W.: Glacial Lake Agassiz: A 5000 yr history of change and its relationship to the δ18O record of Greenland, Geol. Soc. Am. Bull., 116, 729, https://doi.org/10.1130/B25316.1, 2004.
Teller, J. T., Leverington, D. W., and Mann, J. D.: Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation, Quaternary Sci. Rev., 21, 879–887, https://doi.org/10.1016/S0277-3791(01)00145-7, 2002.
Tesauro, M., Kaban, M. K., and Cloetingh, S. A. P. L.: Global strength and elastic thickness of the lithosphere, Global Planet. Change, 90–91, 51–57, https://doi.org/10.1016/j.gloplacha.2011.12.003, 2012.
Tight, W. G.: Drainage modifications in southeastern Ohio and adjacent parts of West Virginia and Kentucky, US Geological Survey Professional Paper, US Geological Survey, Reston, Virginia, USA, 1903.
Todd, J. E.: The Pleistocene history of the Missouri River, Science, 39, 263, 1914.
Tripsanas, E. K., Bryant, W. R., Slowey, N. C., Bouma, A. H., Karageorgis, A. P., and Berti, D.: Sedimentological history of Bryant Canyon area, northwest Gulf of Mexico, during the last 135 kyr (Marine Isotope Stages 1–6): A proxy record of Mississippi River discharge, Palaeogeogr. Palaeocl., 246, 137–161, https://doi.org/10.1016/j.palaeo.2006.10.032, 2007.
Tripsanas, E. K., Karageorgis, A. P., Panagiotopoulos, I. P., Koutsopoulou, E., Kanellopoulos, T. D., Bryant, W. R., and Slowey, N. C.: Paleoenvironmental and paleoclimatic implications of enhanced Holocene discharge from the Mississippi River Based on the sedimentology and geochemistry of a deep core (JPC-26) from the Gulf Of Mexico, PALAIOS, 28, 623–636, https://doi.org/10.2110/palo.2012.p12-060r, 2014.
Tucker, G. E. and Hancock, G. R.: Modelling landscape evolution, Earth Surf. Proc. Land., 35, 28–50, https://doi.org/10.1002/esp.1952, 2010.
Tucker, G. E. and Whipple, K. X.: Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison, J. Geophys. Res., 107, 1–16, https://doi.org/10.1029/2001JB000162, 2002.
Tushingham, A. M. and Peltier, W. R.: Ice-3G: A new global model of Late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change, J. Geophys. Res., 96, 4497, https://doi.org/10.1029/90JB01583, 1991.
Ullman, D. J., LeGrande, A. N., Carlson, A. E., Anslow, F. S., and Licciardi, J. M.: Assessing the impact of Laurentide Ice Sheet topography on glacial climate, Clim. Past, 10, 487–507, https://doi.org/10.5194/cp-10-487-2014, 2014.
Ullman, D. J., Carlson, A. E., Anslow, F. S., Legrande, A. N., and Licciardi, J. M.: Laurentide ice-sheet instability during the last deglaciation, Nat. Geosci., 8, 534–537, https://doi.org/10.1038/NGEO2463, 2015.
Upham, W.: Lake Agassiz: a chapter in glacial geology, Bulletin of the Minnesota Academy of Natural Sciences, 2, 290–314, 1883.
U.S. Bureau of Reclamation: Report on the Water Supply of the Lower Colorado River, Project Planning Report, 1952.
van Andel, T. H.: Recent marine sediments of the Gulf of California, in: Mar. Geol. of the Gulf of California: A Symposium, edited by: van Andel, T. J. and Shor, G. G., Memoir, 216–310, American Association of Petroleum Geologists, 1964.
van Hise, C. R. and Leith, C. K.: The geology of the Lake Superior region, U.S. Government Printing Office, Washington, DC, available at: http://collections.mnhs.org/MNHistoryMagazine/articles/13/v13i04p403-407.pdf (last access: 1 February 2014), 1911.
Vázquez Riveiros, N., Govin, A., Waelbroeck, C., Mackensen, A., Michel, E., Moreira, S., Bouinot, T., Caillon, N., Orgun, A., and Brandon, M.: Mg/Ca thermometry in planktic foraminifera: Improving paleotemperature estimations for G. bulloides and N. pachyderma left, Geochem. Geophy. Geosy., 17, 1249–1264, https://doi.org/10.1002/2015GC006234, 2016.
Veillette, J. J.: Evolution and paleohydrology of glacial Lakes Barlow and Ojibway, Quaternary Sci. Rev., 13, 945–971, https://doi.org/10.1016/0277-3791(94)90010-8, 1994.
Vening Meinesz, F. A.: Une nouvelle methode pour la reduction isostatique regionale de l'intensite de la pesanteur, Bulletin Géodésique (1922–1941), 29, 33–51, 1931.
Ver Steeg, K.: The Teays River, Ohio J. Sci., 46, 297–307, 1946.
Vetter, L.: Combined Stable Isotope and Trace Element Analyses on Single Planktic Foraminifer Shells: Insights from Live Culture Experiments and Paleoceanographic Applications, PhD thesis, University of California, Davis, 2013.
Vincent, J.-S. and Hardy, L.: L'évolution et l'extension des lacs glaciaires Barlow et Ojibway en territoire québécois, Géographie physique et Quaternaire, 31, 357–372, https://doi.org/10.7202/1000283ar, 1977.
Wagner, J. D. M., Cole, J. E., Beck, J. W., Patchett, P. J., Henderson, G. M., and Barnett, H. R.: Moisture variability in the southwestern United States linked to abrupt glacial climate change, Nat. Geosci., 3, 110–113, https://doi.org/10.1038/ngeo707, 2010.
Waitt, R. B. J.: About forty last-glacial Lake Missoula jökulhlaups through southern Washington, J. Geol., 88, 653–679, 1980.
Wall, G. R., Nystrom, E. A., and Litten, S.: Suspended Sediment Transport in the Freshwater Reach of the Hudson River Estuary in Eastern New York, Estuar. Coast., 31, 542–553, https://doi.org/10.1007/s12237-008-9050-y, 2008.
Wickert, A. D.: Impacts of Pleistocene glaciation and its geophysical effects on North American river systems, PhD thesis, University of Colorado Boulder, 2014.
Wickert, A. D.: Reconstruction of North American Drainage Basins and River Discharge Since the Last Glacial Maximum, Data Repos. U M, https://doi.org/10.13020/D6D01H, 2016.
Wickert, A. D., Mitrovica, J. X., Williams, C., and Anderson, R. S.: Gradual demise of a thin southern Laurentide ice sheet recorded by Mississippi drainage, Nature, 502, 668–671, https://doi.org/10.1038/nature12609, 2013.
Willgoose, G.: Mathematical Modeling of Whole Landscape Evolution, Annu. Rev. Earth Pl. Sc., 33, 443–459, https://doi.org/10.1146/annurev.earth.33.092203.122610, 2005.
Williams, C., Flower, B. P., and Hastings, D. W.: Deglacial abrupt climate change in the Atlantic Warm Pool: A Gulf of Mexico perspective, Paleoceanography, 115, PA4221, https://doi.org/10.1029/2010PA001928, 2010.
Williams, C., Flower, B. P., and Hastings, D. W.: Seasonal Laurentide Ice Sheet melting during the “Mystery Interval” (17.5–14.5 ka), Geology, 40, 955–958, https://doi.org/10.1130/G33279.1, 2012.
Wright, H. E.: Tunnel valleys, glacial surges, and subglacial hydrology of the Superior Lobe, Minnesota, Geol. Soc. Am. Mem., 136, 251–276, 1973.
Wright, H. E.: Synthesis: the land south of the ice sheets, in: North America and Adjacent Oceans During the Last Deglaciation, edited by: Ruddiman, W. F. and Wright, H. E. J., Geology of North America, 479–488, Geological Society of America, Boulder, Colorado, USA, 1987.
Xie, P. and Arkin, P. A.: Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs, B. Am. Meteorol. Soc., 78, 2539–2558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2, 1997.
Yeager, S. G., Shields, C. A., Large, W. G., and Hack, J. J.: The low-resolution CCSM3, J. Climate, 19, 2545–2566, https://doi.org/10.1175/JCLI3744.1, 2006.
Zuffa, G., Normark, W., Serra, F., and Brunner, C.: Turbidite megabeds in an oceanic rift valley recording jökulhlaups of late Pleistocene glacial lakes of the western United States, J. Geol., 108, 253–274, 2000.
Short summary
The ice sheets that once spread across northern North America dramatically changed the drainage basin areas and discharges of rivers across the continent. As these ice sheets retreated, starting around 19 500 years ago, they sent meltwater to the oceans, influencing climate and building a geologic record of deglaciation. This record can be used to evaluate ice-sheet reconstructions and build an improved history and understanding of past ice-sheet collapse across North America.
The ice sheets that once spread across northern North America dramatically changed the drainage...
Special issue