Articles | Volume 5, issue 2
https://doi.org/10.5194/esurf-5-293-2017
https://doi.org/10.5194/esurf-5-293-2017
Research article
 | 
24 May 2017
Research article |  | 24 May 2017

Automated terrestrial laser scanning with near-real-time change detection – monitoring of the Séchilienne landslide

Ryan A. Kromer, Antonio Abellán, D. Jean Hutchinson, Matt Lato, Marie-Aurelie Chanut, Laurent Dubois, and Michel Jaboyedoff

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Ryan Kromer on behalf of the Authors (11 Apr 2017)  Author's response   Manuscript 
ED: Publish subject to technical corrections (20 Apr 2017) by Anette Eltner
ED: Publish subject to technical corrections (20 Apr 2017) by Tom Coulthard (Editor)
AR by Ryan Kromer on behalf of the Authors (20 Apr 2017)  Manuscript 
Download
Short summary
We developed and tested an automated terrestrial laser scanning (ATLS) system with near-real-time change detection at the Séchilienne landslide. We monitored the landslide for a 6-week period collecting a point cloud every 30 min. We detected various slope processes including movement of scree material, pre-failure deformation of discrete rockfall events and deformation of the main landslide body. This system allows the study of slope processes a high level of temporal detail.