Articles | Volume 6, issue 1
https://doi.org/10.5194/esurf-6-49-2018
https://doi.org/10.5194/esurf-6-49-2018
Research article
 | 
07 Feb 2018
Research article |  | 07 Feb 2018

A hydroclimatological approach to predicting regional landslide probability using Landlab

Ronda Strauch, Erkan Istanbulluoglu, Sai Siddhartha Nudurupati, Christina Bandaragoda, Nicole M. Gasparini, and Gregory E. Tucker

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Ronda Strauch on behalf of the Authors (17 Oct 2017)  Manuscript 
ED: Publish as is (05 Dec 2017) by Greg Hancock
ED: Publish as is (05 Dec 2017) by Douglas Jerolmack (Editor)
AR by Ronda Strauch on behalf of the Authors (18 Dec 2017)
Download
Short summary
We develop a model of annual probability of shallow landslide initiation triggered by soil water from a hydrologic model. Our physically based model accommodates data uncertainty using a Monte Carlo approach. We found elevation-dependent patterns in probability related to the stabilizing effect of forests and soil and slope limitation at high elevations. We demonstrate our model in Washington, USA, but it is designed to run elsewhere with available data for risk planning using the Landlab.