Articles | Volume 6, issue 1
https://doi.org/10.5194/esurf-6-49-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-6-49-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A hydroclimatological approach to predicting regional landslide probability using Landlab
Ronda Strauch
CORRESPONDING AUTHOR
Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
Erkan Istanbulluoglu
Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
Sai Siddhartha Nudurupati
Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
Christina Bandaragoda
Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
Nicole M. Gasparini
Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA
Gregory E. Tucker
Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, CO, USA
Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
Related authors
Ronda Strauch, Erkan Istanbulluoglu, and Jon Riedel
Nat. Hazards Earth Syst. Sci., 19, 2477–2495, https://doi.org/10.5194/nhess-19-2477-2019, https://doi.org/10.5194/nhess-19-2477-2019, 2019
Short summary
Short summary
Identifying landslide hazards is challenging but important for understanding risks to people and both built and natural resources. We use models to identify landslide hazards based on observed landslides and local site traits such as slope and on physical mechanisms such as soil moisture. Integrating both approaches improves hazard detection by accounting for processes not captured in the physically based model. Hazard maps are made for the North Cascades National Park Complex (Washington, USA).
Hunter N. Jimenez, Erkan Istanbulluoglu, Tolga Gorum, Thomas A. Stanley, Pukar M. Amatya, Hakan Tanyas, Mehmet C. Demirel, Aykut Akgun, and Deniz Bozkurt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3011, https://doi.org/10.5194/egusphere-2025-3011, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
After a major earthquake struck near the Türkiye/Syria border in February 2023, a powerful storm brought intense rainfall to the region, triggering additional landslides. We used satellite data and a physics-based model to map probabilistic landslide hazard using both coseismic and hydrologic drivers. We also explored how the sequence of these disasters affected landslide risk. Finally, we offer a method for seasonal forecasting of landslide hazard in at-risk areas using the historic climate.
Angel D. Monsalve, Samuel R. Anderson, Nicole M. Gasparini, and Elowyn M. Yager
Geosci. Model Dev., 18, 3427–3451, https://doi.org/10.5194/gmd-18-3427-2025, https://doi.org/10.5194/gmd-18-3427-2025, 2025
Short summary
Short summary
Rivers shape landscapes by moving sediments and changing their beds, but existing computer models oversimplify these processes by only considering erosion. We developed new software that simulates how rivers transport sediments and change over time through both erosion and deposition. This helps scientists and engineers better predict river behavior for water management, flood prevention, and ecosystem protection.
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024, https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Short summary
The time it takes for a landscape to adjust to new environmental conditions is critical for understanding the impacts of past and future environmental changes. We used different computational models and methods and found that predicted times for a landscape to reach a stable condition vary greatly. Our results illustrate that reporting how timescales are measured is important. Modelers should ensure that the measurement technique addresses the question.
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024, https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Short summary
MassWastingRunout (MWR) is a new landslide runout model designed for sediment transport, landscape evolution, and hazard assessment applications. MWR is written in Python and includes a calibration utility that automatically determines best-fit parameters for a site and empirical probability density functions of each parameter for probabilistic model implementation. MWR and Jupyter Notebook tutorials are available as part of the Landlab package at https://github.com/landlab/landlab.
Tian Gan, Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Irina Overeem, Albert J. Kettner, Benjamin Campforts, Julia M. Moriarty, Brianna Undzis, Ethan Pierce, and Lynn McCready
Geosci. Model Dev., 17, 2165–2185, https://doi.org/10.5194/gmd-17-2165-2024, https://doi.org/10.5194/gmd-17-2165-2024, 2024
Short summary
Short summary
This study presents the design, implementation, and application of the CSDMS Data Components. The case studies demonstrate that the Data Components provide a consistent way to access heterogeneous datasets from multiple sources, and to seamlessly integrate them with various models for Earth surface process modeling. The Data Components support the creation of open data–model integration workflows to improve the research transparency and reproducibility.
Sam Anderson, Nicole Gasparini, and Joel Johnson
Earth Surf. Dynam., 11, 995–1011, https://doi.org/10.5194/esurf-11-995-2023, https://doi.org/10.5194/esurf-11-995-2023, 2023
Short summary
Short summary
We measured rock strength and amount of fracturing in the two different rock types, sandstones and carbonates, in Last Chance Canyon, New Mexico, USA. Where there is more carbonate bedrock, hills and channels steepen in Last Chance Canyon. This is because the carbonate-type bedrock tends to be more thickly bedded, is less fractured, and is stronger. The carbonate bedrock produces larger boulders than the sandstone bedrock, which can protect the more fractured sandstone bedrock from erosion.
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Short summary
Scientists use computer simulation models to understand how Earth surface processes work, including floods, landslides, soil erosion, river channel migration, ocean sedimentation, and coastal change. Research benefits when the software for simulation modeling is open, shared, and coordinated. The Community Surface Dynamics Modeling System (CSDMS) is a US-based facility that supports research by providing community support, computing tools and guidelines, and educational resources.
Kelly Kochanski, Gregory Tucker, and Robert Anderson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-205, https://doi.org/10.5194/tc-2021-205, 2021
Manuscript not accepted for further review
Short summary
Short summary
Falling snow does not life flat. When blown by the wind, it forms elaborate structures, like dunes. Where these dunes form, they change the way heat flows through the snow. This can accelerate sea ice melt and climate change. Here, we use both field observations obtained during blizzards in Colorado and simulations performed with a state-of-the-art model, to quantify the impact of snow dunes on Arctic heat flows.
Nathan J. Lyons, Pedro Val, James S. Albert, Jane K. Willenbring, and Nicole M. Gasparini
Earth Surf. Dynam., 8, 893–912, https://doi.org/10.5194/esurf-8-893-2020, https://doi.org/10.5194/esurf-8-893-2020, 2020
Short summary
Short summary
Organisms evolve in ever-changing environments under complex process interactions. We applied a new software modelling tool to assess how changes in river course impact the evolution of riverine species. Models illustrate the climatically and tectonically forced landscape changes that can drive riverine biodiversity, especially where topographic relief is low. This research demonstrates that river course changes can contribute to the high riverine biodiversity found in real-world lowland basins.
Katherine R. Barnhart, Eric W. H. Hutton, Gregory E. Tucker, Nicole M. Gasparini, Erkan Istanbulluoglu, Daniel E. J. Hobley, Nathan J. Lyons, Margaux Mouchene, Sai Siddhartha Nudurupati, Jordan M. Adams, and Christina Bandaragoda
Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, https://doi.org/10.5194/esurf-8-379-2020, 2020
Short summary
Short summary
Landlab is a Python package to support the creation of numerical models in Earth surface dynamics. Since the release of the 1.0 version in 2017, Landlab has grown and evolved: it contains 31 new process components, a refactored model grid, and additional utilities. This contribution describes the new elements of Landlab, discusses why certain backward-compatiblity-breaking changes were made, and reflects on the process of community open-source software development.
Alison R. Duvall, Sarah A. Harbert, Phaedra Upton, Gregory E. Tucker, Rebecca M. Flowers, and Camille Collett
Earth Surf. Dynam., 8, 177–194, https://doi.org/10.5194/esurf-8-177-2020, https://doi.org/10.5194/esurf-8-177-2020, 2020
Short summary
Short summary
In this study, we examine river patterns and the evolution of the landscape within the Marlborough Fault System, South Island, New Zealand, where the Australian and Pacific tectonic plates collide. We find that faulting, uplift, river capture and the long-lived nature of the drainage network all dictate river patterns at this site. Based on these results and a wealth of previous geologic studies, we propose two broad stages of landscape evolution over the last 25 million years of orogenesis.
Ronda Strauch, Erkan Istanbulluoglu, and Jon Riedel
Nat. Hazards Earth Syst. Sci., 19, 2477–2495, https://doi.org/10.5194/nhess-19-2477-2019, https://doi.org/10.5194/nhess-19-2477-2019, 2019
Short summary
Short summary
Identifying landslide hazards is challenging but important for understanding risks to people and both built and natural resources. We use models to identify landslide hazards based on observed landslides and local site traits such as slope and on physical mechanisms such as soil moisture. Integrating both approaches improves hazard detection by accounting for processes not captured in the physically based model. Hazard maps are made for the North Cascades National Park Complex (Washington, USA).
Kelly Kochanski, Robert S. Anderson, and Gregory E. Tucker
The Cryosphere, 13, 1267–1281, https://doi.org/10.5194/tc-13-1267-2019, https://doi.org/10.5194/tc-13-1267-2019, 2019
Short summary
Short summary
Wind-blown snow does not lie flat. It forms dunes, ripples, and anvil-shaped sastrugi. These features ornament much of the snow on Earth and change the snow's effects on polar climates, but they have rarely been studied. We spent three winters watching snow move through the Colorado Front Range and present our findings here, including the first time-lapse videos of snow dune and sastrugi growth.
Katherine R. Barnhart, Rachel C. Glade, Charles M. Shobe, and Gregory E. Tucker
Geosci. Model Dev., 12, 1267–1297, https://doi.org/10.5194/gmd-12-1267-2019, https://doi.org/10.5194/gmd-12-1267-2019, 2019
Short summary
Short summary
Terrainbento 1.0 is a Python package for modeling the evolution of the surface of the Earth over geologic time (e.g., thousands to millions of years). Despite many decades of effort by the geomorphology community, there is no one established governing equation for the evolution of topography. Terrainbento 1.0 thus provides 28 alternative models that support hypothesis testing and multi-model analysis in landscape evolution.
Gregory E. Tucker, Scott W. McCoy, and Daniel E. J. Hobley
Earth Surf. Dynam., 6, 563–582, https://doi.org/10.5194/esurf-6-563-2018, https://doi.org/10.5194/esurf-6-563-2018, 2018
Short summary
Short summary
This article presents a new technique for computer simulation of slope forms. The method provides a way to study how events that disturb soil or turn rock into soil add up over time to produce landforms. The model represents a cross section of a hypothetical landform as a lattice of cells, each of which may represent air, soil, or rock. Despite its simplicity, the model does a good job of simulating a range of common of natural slope forms.
Abigail L. Langston and Gregory E. Tucker
Earth Surf. Dynam., 6, 1–27, https://doi.org/10.5194/esurf-6-1-2018, https://doi.org/10.5194/esurf-6-1-2018, 2018
Short summary
Short summary
While vertical incision in bedrock rivers is widely implemented in landscape evolution models, lateral erosion is largely ignored. This makes current models unfit to explain the formation of wide bedrock valleys and strath terraces. In this study we present a fundamental advance in the representation of lateral erosion of bedrock rivers in a landscape evolution model. The model results show a scaling relationship between valley width and drainage area similar to that found in natural systems.
Charles M. Shobe, Gregory E. Tucker, and Katherine R. Barnhart
Geosci. Model Dev., 10, 4577–4604, https://doi.org/10.5194/gmd-10-4577-2017, https://doi.org/10.5194/gmd-10-4577-2017, 2017
Short summary
Short summary
Rivers control the movement of sediment and nutrients across Earth's surface. Understanding how rivers change through time is important for mitigating natural hazards and predicting Earth's response to climate change. We develop a new computer model for predicting how rivers cut through sediment and rock. Our model is designed to be joined with models of flooding, landslides, vegetation change, and other factors to provide a comprehensive toolbox for predicting changes to the landscape.
Jordan M. Adams, Nicole M. Gasparini, Daniel E. J. Hobley, Gregory E. Tucker, Eric W. H. Hutton, Sai S. Nudurupati, and Erkan Istanbulluoglu
Geosci. Model Dev., 10, 1645–1663, https://doi.org/10.5194/gmd-10-1645-2017, https://doi.org/10.5194/gmd-10-1645-2017, 2017
Short summary
Short summary
OverlandFlow is a 2-dimensional hydrology component contained within the Landlab modeling framework. It can be applied in both hydrology and geomorphology applications across real and synthetic landscape grids, for both short- and long-term events. This paper finds that this non-steady hydrology regime produces different landscape characteristics when compared to more traditional steady-state hydrology and geomorphology models, suggesting that hydrology regime can impact resulting morphologies.
Daniel E. J. Hobley, Jordan M. Adams, Sai Siddhartha Nudurupati, Eric W. H. Hutton, Nicole M. Gasparini, Erkan Istanbulluoglu, and Gregory E. Tucker
Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, https://doi.org/10.5194/esurf-5-21-2017, 2017
Short summary
Short summary
Many geoscientists use computer models to understand changes in the Earth's system. However, typically each scientist will build their own model from scratch. This paper describes Landlab, a new piece of open-source software designed to simplify creation and use of models of the Earth's surface. It provides off-the-shelf tools to work with models more efficiently, with less duplication of effort. The paper explains and justifies how Landlab works, and describes some models built with it.
Gregory E. Tucker, Daniel E. J. Hobley, Eric Hutton, Nicole M. Gasparini, Erkan Istanbulluoglu, Jordan M. Adams, and Sai Siddartha Nudurupati
Geosci. Model Dev., 9, 823–839, https://doi.org/10.5194/gmd-9-823-2016, https://doi.org/10.5194/gmd-9-823-2016, 2016
Short summary
Short summary
This paper presents a new Python-language software library, called CellLab-CTS, that enables rapid creation of continuous-time stochastic (CTS) cellular automata models. These models are quite useful for simulating the behavior of natural systems, but can be time-consuming to program. CellLab-CTS allows users to set up models with a minimum of effort, and thereby focus on the science rather than the software.
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
The glacial paleolandscapes of Southern Africa: the legacy of the Late Paleozoic Ice Age
Multiple equilibrium configurations in river-dominated deltas
Investigating the celerity of propagation for small perturbations and dispersive sediment aggradation under a supercritical flow
Short communication: Multiscale topographic complexity analysis with pyTopoComplexity
Sub-surface processes and heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps): seasonal ice and convective cooling render rock glaciers climate-robust
Influence of alluvial slope on avulsion in river deltas
Surficial sediment remobilization by shear between sediment and water above tsunamigenic megathrust ruptures: experimental study
Curvature-based pebble segmentation for reconstructed surface meshes
Haloturbation in the northern Atacama Desert revealed by a hidden subsurface network of calcium sulfate wedges
An evaluation of flow-routing algorithms for calculating contributing area on regular grids
Geometric constraints on tributary fluvial network junction angles
Effect of grain-sorting waves on alternate bar dynamics: Implications of the breakdown of the hydrograph boundary layer
Automatic detection of floating instream large wood in videos using deep learning
Investigating uncertainty and parameter sensitivity in bedform analysis by using a Monte Carlo approach
Geomorphic imprint of high-mountain floods: insights from the 2022 hydrological extreme across the upper Indus River catchment in the northwestern Himalayas
Short communication: Learning How Landscapes Evolve with Neural Operators
A numerical model for duricrust formation by water table fluctuations
Width evolution of channel belts as a random walk
Evidence of slow millennial cliff retreat rates using cosmogenic nuclides in coastal colluvium
Equilibrium distance from long-range dune interactions
Examination of analytical shear stress predictions for coastal dune evolution
Localised geomorphic response to channel-spanning leaky wooden dams
Post-fire evolution of ravel transport regimes in the Diablo Range, CA
Landscape response to tectonic deformation and cyclic climate change since ca. 800 ka in the southern central Andes
The Aare main overdeepening on the northern margin of the European Alps: basins, riegels, and slot canyons
Surface grain-size mapping of braided channels from SfM photogrammetry
A simple model for faceted topographies at normal faults based on an extended stream-power law
Testing floc settling velocity models in rivers and freshwater wetlands
River suspended-sand flux computation with uncertainty estimation using water samples and high-resolution ADCP measurements
Barchan swarm dynamics from a Two-Flank Agent-Based Model
A landslide runout model for sediment transport, landscape evolution, and hazard assessment applications
Tracking slow-moving landslides with PlanetScope data: new perspectives on the satellite's perspective
Topographic metrics for unveiling fault segmentation and tectono-geomorphic evolution with insights into the impact of inherited topography, Ulsan Fault Zone, South Korea
Biomechanical parameters of marram grass (Calamagrostis arenaria) for advanced modeling of dune vegetation
Acceleration of coastal-retreat rates for high-Arctic rock cliffs on Brøggerhalvøya, Svalbard, over the past decade
The impact of bedrock meander cutoffs on 50 kyr scale incision rates, San Juan River, Utah
Sediment aggradation rates for Himalayan Rivers revealed through SAR remote sensing
Spatiotemporal denudation rates of the Swabian Alb escarpment (Southwest Germany) dominated by base-level lowering and lithology
Use of simple analytical solutions in the calibration of Shallow Water Equations debris flow models
How water, temperature, and seismicity control the preconditioning of massive rock slope failure (Hochvogel)
Large structure simulation for landscape evolution models
Terrace formation linked to outburst floods at the Diexi palaeo-landslide dam, upper Minjiang River, eastern Tibetan Plateau
AI-Based Tracking of Fast-Moving Alpine Landforms Using High Frequency Monoscopic Time-Lapse Imagery
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Role of the forcing sources in morphodynamic modelling of an embayed beach
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Time-varying drainage basin development and erosion on volcanic edifices
Geomorphic risk maps for river migration using probabilistic modeling – a framework
Pierre Dietrich, François Guillocheau, Guilhem A. Douillet, Neil P. Griffis, Guillaume Baby, Daniel P. Le Héron, Laurie Barrier, Maximilien Mathian, Isabel P. Montañez, Cécile Robin, Thomas Gyomlai, Christoph Kettler, and Axel Hofmann
Earth Surf. Dynam., 13, 495–529, https://doi.org/10.5194/esurf-13-495-2025, https://doi.org/10.5194/esurf-13-495-2025, 2025
Short summary
Short summary
At the evocation of icy landscapes, Africa is not the first place that comes to mind. The modern relief of Southern Africa is generally considered to be a result of uplift and counteracting erosion. We show that some of the modern relief of this region is due to fossil glacial landscapes – striated pavements, valleys, and fjords – tied to an ice age that occurred ca. 300 Myr ago. We focus on how these landscapes have escaped being erased for hundreds of millions of years.
Lorenzo Durante, Nicoletta Tambroni, and Michele Bolla Pittaluga
Earth Surf. Dynam., 13, 455–471, https://doi.org/10.5194/esurf-13-455-2025, https://doi.org/10.5194/esurf-13-455-2025, 2025
Short summary
Short summary
River deltas evolve due to natural forces and human activities, posing challenges for communities relying on stable water flow. This study examines how different flow distributions shape delta channels. Using a new theoretical model, we identify branch length as the key factor influencing stability. Applying this to Italy's Po River Delta, we highlight areas at risk of change, providing insights for better management and planning.
Hasan Eslami, Erfan Poursoleymanzadeh, Mojtaba Hiteh, Keivan Tavakoli, Melika Yavari Nia, Ehsan Zadehali, Reihaneh Zarrabi, and Alessio Radice
Earth Surf. Dynam., 13, 437–454, https://doi.org/10.5194/esurf-13-437-2025, https://doi.org/10.5194/esurf-13-437-2025, 2025
Short summary
Short summary
A channel may be aggraded by overloaded sediment. In this study we realize an aggradation experiment and determine the celerity at which an aggradation wave, due to sediment overloading, migrates. We also investigate the celerity of small perturbations, as quantified by mathematical formulations. The celerities of the two kinds are correlated with each other. However, the celerity of small perturbations is larger than the other one, which is less than a few percent of the water velocity.
Larry Syu-Heng Lai, Adam M. Booth, Alison R. Duvall, and Erich Herzig
Earth Surf. Dynam., 13, 417–435, https://doi.org/10.5194/esurf-13-417-2025, https://doi.org/10.5194/esurf-13-417-2025, 2025
Short summary
Short summary
pyTopoComplexity is an open-source Python tool for multiscale land surface complexity analysis. Applied to a landslide-affected area in Washington, USA, it accurately identified landform features at various scales, enhancing our understanding of landform recovery after disturbances. By integrating with Landlab’s landscape evolution simulations, the software allows researchers to explore how different processes drive the evolution of surface complexity in response to natural forces.
Dominik Amschwand, Jonas Wicky, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
Earth Surf. Dynam., 13, 365–401, https://doi.org/10.5194/esurf-13-365-2025, https://doi.org/10.5194/esurf-13-365-2025, 2025
Short summary
Short summary
Rock glaciers are comparatively climate-robust permafrost landforms. We estimated the energy budget of the seasonally thawing active layer (AL) of Murtèl rock glacier (Swiss Alps) based on a novel sub-surface sensor array. In the coarse blocky AL, heat is transferred by thermal radiation and air convection. The ground heat flux is largely spent on melting seasonal ice in the AL. Convective cooling and the seasonal ice turnover make rock glaciers climate-robust and shield the permafrost beneath.
Octria A. Prasojo, Trevor B. Hoey, Amanda Owen, and Richard D. Williams
Earth Surf. Dynam., 13, 349–363, https://doi.org/10.5194/esurf-13-349-2025, https://doi.org/10.5194/esurf-13-349-2025, 2025
Short summary
Short summary
Decades of delta avulsion (i.e. channel abrupt jump) studies have not resolved what the main controls of delta avulsion are. Using a computer model, integrated with field observation, analytical, and laboratory-made deltas, we found that the sediment load, which itself is controlled by the steepness of the river upstream of a delta, controls the timing of avulsion. We can now better understand the main cause of abrupt channel changes in deltas, a finding that aids flood risk management in river deltas.
Chloé Seibert, Cecilia McHugh, Chris Paola, Leonardo Seeber, and James Tucker
Earth Surf. Dynam., 13, 341–348, https://doi.org/10.5194/esurf-13-341-2025, https://doi.org/10.5194/esurf-13-341-2025, 2025
Short summary
Short summary
We propose a new mechanism of co-seismic sediment entrainment induced by shear stress at the sediment–water interface during major subduction earthquakes rupturing to the trench. Physical experiments show that flow velocities consistent with long-period earthquake motions can entrain synthetic marine sediment, and high-frequency vertical shaking can enhance this mobilization. They validate the proposed entrainment mechanism, which opens new avenues for paleoseismology in deep-sea environments.
Aljoscha Rheinwalt, Benjamin Purinton, and Bodo Bookhagen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1110, https://doi.org/10.5194/egusphere-2025-1110, 2025
Short summary
Short summary
Our study presents a computer-based method to detect and measure pebbles in 3D models reconstructed from camera photos. We tested it in a controlled setup and achieved 98 % accuracy in detecting pebbles. Unlike traditional 2D methods, our approach provides full 3D size and orientation data. This improves sediment analysis and riverbed studies by offering more precise measurements. Our work highlights the potential of 3D modeling for studying natural surfaces.
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
Earth Surf. Dynam., 13, 257–276, https://doi.org/10.5194/esurf-13-257-2025, https://doi.org/10.5194/esurf-13-257-2025, 2025
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Alexander B. Prescott, Jon D. Pelletier, Satya Chataut, and Sriram Ananthanarayan
Earth Surf. Dynam., 13, 239–256, https://doi.org/10.5194/esurf-13-239-2025, https://doi.org/10.5194/esurf-13-239-2025, 2025
Short summary
Short summary
Many Earth surface processes are controlled by the spatial pattern of surface water flow. We review commonly used methods for predicting such spatial patterns in digital landform models and document the pros and cons of commonly used methods. We propose a new method that is designed to minimize those limitations and show that it works well in a variety of test cases.
Jon D. Pelletier, Robert G. Hayes, Olivia Hoch, Brendan Fenerty, and Luke A. McGuire
Earth Surf. Dynam., 13, 219–238, https://doi.org/10.5194/esurf-13-219-2025, https://doi.org/10.5194/esurf-13-219-2025, 2025
Short summary
Short summary
We demonstrate that landscapes with more planar initial conditions tend to have lower mean junction angles. Geomorphic processes on alluvial piedmonts result in especially planar initial conditions, consistent with a correlation between junction angles and the presence/absence of Late Cenozoic alluvial deposits and the constraint imposed by the intersection of planar approximations to the topography upslope from tributary junctions. We caution against using junction angles to infer paleoclimate.
Soichi Tanabe and Toshiki Iwasaki
EGUsphere, https://doi.org/10.5194/egusphere-2025-103, https://doi.org/10.5194/egusphere-2025-103, 2025
Short summary
Short summary
We try to understand how the sediment supply from the upstream river reach affect the downstream river morphology using a numerical model. If the supplied sediment is composed of variety of size class of particles, a small size bed wave that is composed of mainly fine particles (sorting wave) can propagate to downstream very long distance. However, presence of bars suppresses the effect of sorting wave greatly, and thus the sediment supply has limited role in the downstream river morphology.
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
Earth Surf. Dynam., 13, 167–189, https://doi.org/10.5194/esurf-13-167-2025, https://doi.org/10.5194/esurf-13-167-2025, 2025
Short summary
Short summary
This study presents a novel convolutional-neural-network approach for detecting instream large wood in rivers, addressing the need for flexible monitoring methods across diverse data sources. Using a database of 15 228 fully labelled images, the model achieved a weighted mean average precision of 67 %. Fine-tuning parameters and sampling techniques can improve performance by over 10 % in some cases, offering valuable insights into ecosystem management.
Julius Reich and Axel Winterscheid
Earth Surf. Dynam., 13, 191–217, https://doi.org/10.5194/esurf-13-191-2025, https://doi.org/10.5194/esurf-13-191-2025, 2025
Short summary
Short summary
Analyzing the geometry and the dynamics of riverine bedforms (so-called dune tracking) is important for various fields of application and contributes to sound and efficient river and sediment management. We developed a workflow that enables a robust estimation of bedform characteristics and with which comprehensive sensitivity analyses can be carried out. Using a field dataset, we show that the setting of input parameters in bedform analyses can have a significant impact on the results.
Abhishek Kashyap, Kristen L. Cook, and Mukunda Dev Behera
Earth Surf. Dynam., 13, 147–166, https://doi.org/10.5194/esurf-13-147-2025, https://doi.org/10.5194/esurf-13-147-2025, 2025
Short summary
Short summary
Short-lived, high-magnitude flood events across high mountain regions leave substantial geomorphic imprints, which are frequently triggered by excess precipitation, glacial lake outbursts, and natural dam breaches. These catastrophic floods highlight the importance of understanding the complex interaction between climatic, hydrological, and geological forces in bedrock catchments. Extreme floods can have long-term geomorphic consequences on river morphology and fluvial processes.
Gareth G. Roberts
EGUsphere, https://doi.org/10.5194/egusphere-2025-307, https://doi.org/10.5194/egusphere-2025-307, 2025
Short summary
Short summary
The use of new Artificial Intelligence (AI) techniques to learn how landscapes evolve is demonstrated. A few ‘snapshots' of an eroding landscape at different stages of its history provide enough information for AI to ascertain rules governing its evolution. Once the rules are known, predicting landscape evolution is extremely rapid and efficient, providing new tools to understand landscape change.
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
Earth Surf. Dynam., 13, 119–146, https://doi.org/10.5194/esurf-13-119-2025, https://doi.org/10.5194/esurf-13-119-2025, 2025
Short summary
Short summary
We have developed a new numerical model to represent the formation of duricrusts, which are hard mineral layers found in soils and at the surface of the Earth. We assume that the formation mechanism implies variations in the height of the water table and that the hardening rate is proportional to precipitation. The model allows us to quantify the potential feedbacks they generate on the surface topography and the thickness of the regolith/soil layer.
Jens M. Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 13, 97–117, https://doi.org/10.5194/esurf-13-97-2025, https://doi.org/10.5194/esurf-13-97-2025, 2025
Short summary
Short summary
Channel belts comprise the area affected by a river due to lateral migration and floods. As a landform, they affect water resources and flood hazard, and they often host unique ecological communities. We develop a model describing the evolution of channel-belt area over time. The model connects the behaviour of the river to the evolution of the channel belt over a timescale of centuries. A comparison to selected data from experiments and real river systems verifies the random walk approach.
Rémi Bossis, Vincent Regard, Sébastien Carretier, and Sandrine Choy
Earth Surf. Dynam., 13, 71–79, https://doi.org/10.5194/esurf-13-71-2025, https://doi.org/10.5194/esurf-13-71-2025, 2025
Short summary
Short summary
The erosion of rocky coasts occurs episodically through wave action and landslides, constituting a major natural hazard. Documenting the factors that control the coastal retreat rate over millennia is fundamental to evidencing any change in time. However, the known rates to date are essentially representative of the last few decades. Here, we present a new method using the concentration of an isotope, 10Be, in sediment eroded from the cliff to quantify its retreat rate averaged over millennia.
Jean Vérité, Clément Narteau, Olivier Rozier, Jeanne Alkalla, Laurie Barrier, and Sylvain Courrech du Pont
Earth Surf. Dynam., 13, 23–39, https://doi.org/10.5194/esurf-13-23-2025, https://doi.org/10.5194/esurf-13-23-2025, 2025
Short summary
Short summary
Using a numerical model in 2D, we study how two identical dunes interact with each other when exposed to reversing winds. Depending on the distance between the dunes, they either repel or attract each other until they reach an equilibrium distance, which is controlled by the wind strength, wind reversal frequency, and dune size. This process is controlled by the modification of wind flow over dunes of various shapes, influencing the sediment transport downstream.
Orie Cecil, Nicholas Cohn, Matthew Farthing, Sourav Dutta, and Andrew Trautz
Earth Surf. Dynam., 13, 1–22, https://doi.org/10.5194/esurf-13-1-2025, https://doi.org/10.5194/esurf-13-1-2025, 2025
Short summary
Short summary
Using computational fluid dynamics, we analyze the error trends of an analytical shear stress distribution model used to drive aeolian transport for coastal dunes, which are an important line of defense against storm-related flooding hazards. We find that compared to numerical simulations, the analytical model results in a net overprediction of the landward migration rate. Additionally, two data-driven approaches are proposed for reducing the error while maintaining computational efficiency.
Joshua M. Wolstenholme, Christopher J. Skinner, David J. Milan, Robert E. Thomas, and Daniel R. Parsons
EGUsphere, https://doi.org/10.5194/egusphere-2024-3001, https://doi.org/10.5194/egusphere-2024-3001, 2024
Short summary
Short summary
Leaky wooden dams are a popular form of natural flood management used to slow the flow of water by increasing floodplain connectivity whilst decreasing connectivity along the river profile. By monitoring two leaky wooden dams in North Yorkshire, UK, we present the geomorphological response to their installation, highlighting that the structures significantly increase channel complexity in response to different river flow conditions.
Hayden L. Jacobson, Danica L. Roth, Gabriel Walton, Margaret Zimmer, and Kerri Johnson
Earth Surf. Dynam., 12, 1415–1446, https://doi.org/10.5194/esurf-12-1415-2024, https://doi.org/10.5194/esurf-12-1415-2024, 2024
Short summary
Short summary
Loose grains travel farther after a fire because no vegetation is left to stop them. This matters since loose grains at the base of a slope can turn into a debris flow if it rains. To find if grass growing back after a fire had different impacts on grains of different sizes on slopes of different steepness, we dropped thousands of natural grains and measured how far they went. Large grains went farther 7 months after the fire than 11 months after, and small grain movement didn’t change much.
Elizabeth N. Orr, Taylor F. Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo N. Alonso
Earth Surf. Dynam., 12, 1391–1413, https://doi.org/10.5194/esurf-12-1391-2024, https://doi.org/10.5194/esurf-12-1391-2024, 2024
Short summary
Short summary
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina, record river evolution and global climate cycles over time. Landform dating reveals lower-frequency climate cycles (100 kyr) preserved downstream and higher-frequency cycles (21/40 kyr) upstream, supporting theoretical predications that longer rivers filter out higher-frequency climate signals. This finding improves our understanding of the spatial distribution of sedimentary paleoclimate records within landscapes.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Loïs Ribet, Frédéric Liébault, Laurent Borgniet, Michaël Deschâtres, and Gabriel Melun
EGUsphere, https://doi.org/10.5194/egusphere-2024-3697, https://doi.org/10.5194/egusphere-2024-3697, 2024
Short summary
Short summary
This work presents a protocol and a model to get the size of the pebbles in mountain rivers from Unmanned Aerial Vehicle images. A set of 12 rivers located in south-eastern France were photographed to build the model. The results show that the model has little error and should be usable for similar rivers. Grain-size of mountain rivers is an important parameter for environmental diagnostics by mapping the aquatic habitats and for flood management by estimating the pebbles fluxes during floods.
Stefan Hergarten
Earth Surf. Dynam., 12, 1315–1327, https://doi.org/10.5194/esurf-12-1315-2024, https://doi.org/10.5194/esurf-12-1315-2024, 2024
Short summary
Short summary
Faceted topographies are impressive footprints of active tectonics in geomorphology. This paper investigates the evolution of faceted topographies at normal faults and their interaction with a river network theoretically and numerically. As a main result beyond several relations for the geometry of facets, the horizontal displacement associated with normal faults is crucial for the dissection of initially polygonal facets into triangular facets bounded by almost parallel rivers.
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
Earth Surf. Dynam., 12, 1267–1294, https://doi.org/10.5194/esurf-12-1267-2024, https://doi.org/10.5194/esurf-12-1267-2024, 2024
Short summary
Short summary
Fine sediment grains in freshwater can cohere into faster-settling particles called flocs, but floc settling velocity theory has not been fully validated. Combining three data sources in novel ways in the Wax Lake Delta, we verified a semi-empirical model relying on turbulence and geochemical factors. For a physics-based model, we showed that the representative grain diameter within flocs relies on floc structure and that heterogeneous flow paths inside flocs increase floc settling velocity.
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024, https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
Dominic T. Robson and Andreas C. W. Baas
Earth Surf. Dynam., 12, 1205–1226, https://doi.org/10.5194/esurf-12-1205-2024, https://doi.org/10.5194/esurf-12-1205-2024, 2024
Short summary
Short summary
Barchans are fast-moving sand dunes which form large populations (swarms) on Earth and Mars. We show that a small range of model parameters produces swarms in which dune size does not vary downwind – something that is observed in nature but not when using earlier models. We also show how the shape of dunes and the spatial patterns they form are affected by wind direction. This work furthers our understanding of the interplay between environmental drivers, dune interactions, and swarm properties.
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024, https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Short summary
MassWastingRunout (MWR) is a new landslide runout model designed for sediment transport, landscape evolution, and hazard assessment applications. MWR is written in Python and includes a calibration utility that automatically determines best-fit parameters for a site and empirical probability density functions of each parameter for probabilistic model implementation. MWR and Jupyter Notebook tutorials are available as part of the Landlab package at https://github.com/landlab/landlab.
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024, https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary
Short summary
This study investigates the use of optical PlanetScope data for offset tracking of the Earth's surface movement. We found that co-registration accuracy is locally degraded when outdated elevation models are used for orthorectification. To mitigate this bias, we propose to only correlate scenes acquired from common perspectives or base orthorectification on more up-to-date elevation models generated from PlanetScope data alone. This enables a more detailed analysis of landslide dynamics.
Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, and Byung Yong Yu
Earth Surf. Dynam., 12, 1091–1120, https://doi.org/10.5194/esurf-12-1091-2024, https://doi.org/10.5194/esurf-12-1091-2024, 2024
Short summary
Short summary
Topographic metrics were used to understand changes due to tectonic activity. We evaluated the relative tectonic activity along the Ulsan Fault Zone (UFZ), one of the most active fault zones in South Korea. We divided the UFZ into five segments, based on the spatial variation in activity. We modeled the landscape evolution of the study area and interpreted tectono-geomorphic history during which the northern part of the UFZ experienced asymmetric uplift, while the southern part did not.
Viktoria Kosmalla, Oliver Lojek, Jana Carus, Kara Keimer, Lukas Ahrenbeck, Björn Mehrtens, David Schürenkamp, Boris Schröder, and Nils Goseberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-2688, https://doi.org/10.5194/egusphere-2024-2688, 2024
Short summary
Short summary
This study analysed seasonal biomechanical traits of marram grass at two coastal dune sites using monthly field and lab data acquired 2022. Differences in density, leaf length, and flower stems were observed, which are unaffected by wind and deemed transferable. These findings enable surrogate model development for numerical and physical experiments alike, where live vegetation is impractical. Results address the knowledge gap how dune stability and erosion resistance are affected by vegetation.
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Aaron T. Steelquist, Gustav B. Seixas, Mary L. Gillam, Sourav Saha, Seulgi Moon, and George E. Hilley
Earth Surf. Dynam., 12, 1071–1089, https://doi.org/10.5194/esurf-12-1071-2024, https://doi.org/10.5194/esurf-12-1071-2024, 2024
Short summary
Short summary
The rates at which rivers erode their bed can be used to interpret the geologic history of a region. However, these rates depend significantly on the time window over which you measure. We use multiple dating methods to determine an incision rate for the San Juan River and compare it to regional rates with longer timescales. We demonstrate how specific geologic events, such as cutoffs of bedrock meander bends, are likely to preserve material we can date but also bias the rates we measure.
Jingqiu Huang and Hugh D. Sinclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-2600, https://doi.org/10.5194/egusphere-2024-2600, 2024
Short summary
Short summary
This study uses radar technology to track tiny changes in riverbeds elevation in Himalayan Rivers as they flow onto the Gangetic Plains. By analyzing data from 2016 to 2021, we found that sediment builds up in seasonally dry (ephemeral) rivers during monsoon seasons, while the surrounding floodplains is sinking. This research is important for understanding how these elevation changes affect flood risks in rapidly growing communities in Nepal and India. Our findings can improve flood management.
Mirjam Schaller, Daniel Peifer, Alexander B. Neely, Thomas Bernard, Christoph Glotzbach, Alexander R. Beer, and Todd A. Ehlers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2729, https://doi.org/10.5194/egusphere-2024-2729, 2024
Short summary
Short summary
This study reports chemical weathering, physical erosion, and total denudation rates from river load data in the Swabian Alb, Southwest Germany. Tributaries to the Neckar River draining to the North show higher rates than tributaries draining to the South into the Danube River causing a retreat of the Swabian Alb escarpment. Observations are discussed in the light of lithology, climate, and topography. The data are further compared to other rates over space and time as well as to global data.
Riccardo Bonomelli, Marco Pilotti, and Gabriele Farina
EGUsphere, https://doi.org/10.5194/egusphere-2024-2267, https://doi.org/10.5194/egusphere-2024-2267, 2024
Short summary
Short summary
Debris flows are fundamental components of the hazard in mountain regions and numerical models must be used for the related risk computation. Most existing commercial software strongly conceptualizes the main characteristics of the flow, leading to an inevitable calibration process, that is time-consuming and difficult to accomplish. This contribution offers some physically based solutions to confine the calibration process and to better understand the implications of the selected choice.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Julien Coatléven and Benoit Chauveau
Earth Surf. Dynam., 12, 995–1026, https://doi.org/10.5194/esurf-12-995-2024, https://doi.org/10.5194/esurf-12-995-2024, 2024
Short summary
Short summary
The aim of this paper is to explain how to incorporate classical water flow routines into landscape evolution models while keeping numerical errors under control. The key idea is to adapt filtering strategies to eliminate anomalous numerical errors and mesh dependencies, as confirmed by convergence tests with analytic solutions. The emergence of complex geomorphic structures is now driven exclusively by nonlinear heterogeneous physical processes rather than by random numerical artifacts.
Jingjuan Li, John D. Jansen, Xuanmei Fan, Zhiyong Ding, Shugang Kang, and Marco Lovati
Earth Surf. Dynam., 12, 953–971, https://doi.org/10.5194/esurf-12-953-2024, https://doi.org/10.5194/esurf-12-953-2024, 2024
Short summary
Short summary
In this study, we investigated the geomorphology, sedimentology, and chronology of Tuanjie (seven terraces) and Taiping (three terraces) terraces in Diexi, eastern Tibetan Plateau. Results highlight that two damming and three outburst events occurred in the area during the late Pleistocene, and the outburst floods have been a major factor in the formation of tectonically active mountainous river terraces. Tectonic activity and climatic changes play a minor role.
Hanne Hendrickx, Xabier Blanch, Melanie Elias, Reynald Delaloye, and Anette Eltner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2570, https://doi.org/10.5194/egusphere-2024-2570, 2024
Short summary
Short summary
This study introduces a novel AI-based method to track and analyse the movement of rock glaciers and landslides, key indicators of permafrost dynamics in high mountain regions. Using time-lapse images, our approach provides detailed velocity data, revealing patterns that traditional methods miss. This cost-effective tool enhances our ability to monitor geohazards, offering insights into climate change impacts on permafrost and improving safety in alpine areas.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024, https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Short summary
Fluvial sediment fluxes increased dramatically in Taiwan during Typhoon Morakot in 2009, which produced some of the heaviest landsliding on record. We analyzed fluvial discharge and suspended sediment concentration data at 87 gauging stations across Taiwan to quantify fluvial sediment responses since Morakot. In basins heavily impacted by landsliding, rating curve coefficients sharply increased during Morakot and then declined exponentially with a characteristic decay time of <10 years.
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024, https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary
Short summary
Ice cliffs are melt hot spots that increase melt rates on debris-covered glaciers which otherwise see a reduction in melt rates. In this study, we show how surface runoff streams contribute to the generation, evolution, and survival of ice cliffs by carving into the glacier and transporting rocky debris. On Kennicott Glacier, Alaska, 33 % of ice cliffs are actively influenced by streams, while nearly half are within 10 m of streams.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Brayden Noh, Omar Wani, Kieran B. J. Dunne, and Michael P. Lamb
Earth Surf. Dynam., 12, 691–708, https://doi.org/10.5194/esurf-12-691-2024, https://doi.org/10.5194/esurf-12-691-2024, 2024
Short summary
Short summary
In this paper, we propose a framework for generating risk maps that provide the probabilities of erosion due to river migration. This framework uses concepts from probability theory to learn the river migration model's parameter values from satellite data while taking into account parameter uncertainty. Our analysis shows that such geomorphic risk estimation is more reliable than models that do not explicitly consider various sources of variability and uncertainty.
Cited articles
Abbaszadeh, M., Shahriar K., Sharifzadeh M., and Heydari M.: Uncertainty and re-liability analysis applied to slope stability: a case study from Sungun copper mine, Geotechnical and Geological Engineering, 29, 581–596, 2011.
Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu, E.: The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds, Geosci. Model Dev., 10, 1645–1663, https://doi.org/10.5194/gmd-10-1645-2017, 2017.
Alvioli, M., Guzzetti, F., and Rossi, M.: Scaling properties of rainfall induced landslides predicted by a physically based model, Geomorphology, 213, 38–47, 2014.
Anagnostopoulos, G. G., Fatichi, S., and Burlando, P.: An advanced process-based distributed model for the investigation of rainfall-induced landslides: The effect of process representation and boundary conditions, Water Resour. Res., 51, 7501–7523, 2015.
Arnone, E., Dialynas, Y. G., Noto, L. V., and Bras, R. L.: Parameter Uncertainty in Shallow Rainfall-triggered Landslide Modeling at Basin Scale: A Probabilistic Approach, Proced. Earth Plan. Sc., 9, 101–111, 2014.
Arnone, E., Dialynas, Y. G., Noto, L. V., and Bras, R. L.: Accounting for soil parameter uncertainty in a physically based and distributed approach for rainfall-triggered landslides, Hydrol. Process., 30, 927–944, 2016a.
Arnone, E., Caracciolo, D., Noto, L. V., Preti, F., and Bras, R. L.: Modeling the hydrological and mechanical effect of roots on shallow landslides, Water Resour. Res., 52, 8590–8612, 2016b.
Barling, R. D., Moore, I. D., and Grayson, R. B.: A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content, Water Resour. Res., 30, 1029–1044, 1994.
Bathurst, J. C., Moretti, G., El-Hames, A., Moaven-Hashemi, A., and Burton, A.: Scenario modelling of basin-scale, shallow landslide sediment yield, Valsassina, Italian Southern Alps, Nat. Hazards Earth Syst. Sci., 5, 189–202, https://doi.org/10.5194/nhess-5-189-2005, 2005.
Baum, R. L., Galloway, D. L., and Harp, E. L.: Landslide and land subsidence hazards to pipelines, U.S. Geological Survey Open-File Report 2008-1164, 192 pp., 2008a.
Baum, R., Savage, W., and Godt, J .W.: TRIGRS – a fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0, U.S. Geological Survey Open-File Report 2008-1159, 75 pp., 2008b.
Baum, R. L., Godt, J. W., and Savage, W. Z.: Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration, J. Geophys. Res.-Earth, 115, F03013, https://doi.org/10.1029/2009JF001321, 2010.
Baum, R. L., Schulz, W. H., Brien, D. L., Burns, W. J., Reid, M. E., and Godt, J. W.: Plenary: Progress in Regional Landslide Hazard Assessment–Examples from the USA, in: Landslide Science for a Safer Geoenvironment, edited by: Sassa, K., Canuti, P., and Yin, Y., Springer International Publishing, Cham, Switzerland, 21–36, https://doi.org/10.1007/978-3-319-04999-1_2, 2014.
Bellugi, D., Dietrich, W. E., Stock, J., McKean, J., Kazian, B., and Hargrove, P.: Spatially explicit shallow landslide susceptibility mapping over large areas, in: 5th International Conference on Debris-Flow Hazards “Mitigation, Mechanics, Prediction and Assessment”, Italian Journal of Engineering Geology and Environment, Rome, Italy, 309–407, https://doi.org/10.4408/IJEGE.2011-03.B-045, 2011.
Bellugi, D., Milledge, D. G., Dietrich, W. E., Perron, J. T., and McKean, J.: Predicting shallow landslide size and location across a natural landscape: Application of a spectral clustering search algorithm, J. Geophys. Res.-Earth, 120, 2552–2585, 2015.
Benda, L. and Dunne, T.: Stochastic forcing of sediment supply to channel networks from landsliding and debris flow, Water Resour. Res., 33, 2849–2863, 1997a.
Benda, L. and Dunne, T.: Stochastic forcing of sediment routing and storage in channel networks, Water Resour. Res., 33, 2865–2880, 1997b.
Berti, M., Martina, M. L. V., Franceschini, S., Pignone, S., Simoni, A., and Pizziolo, M.: Probabilistic rainfall thresholds for landslide occurrence using Bayesian approach, J. Geophys. Res., 117, F04006, https://doi.org/10.1029/2012JF002367, 2012.
Beven, K. and Germann, P.: Macropores and water flow in soils revisited, Water Resour. Res., 49, 3071–3092, 2013.
Beven, K. J. and Kirkby, N. J.: A physically based variable contributing area model of basin hydrology, Hydrol. Sci. B., 24, 43–69, 1979.
Bordoni, M., Meisina, C., Valentino, R., Bittelli, M., and Chersich, S.: Site-specific to local-scale shallow landslides triggering zones assessment using TRIGRS, Nat. Hazards Earth Syst. Sci., 15, 1025–1050, https://doi.org/10.5194/nhess-15-1025-2015, 2015.
Borga, M., Fontana, G. D., Ros, D. D., and Marchi, L.: Shallow landslide hazard assessment using a physically based model and digital elevation data, Environ. Geol., 35, 81–88, 1998.
Borga, M., Fontana, G. D., and Cazorzi, F.: Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index, J. Hydrol., 268, 56–71, 2002.
Braun, J., Heimsath, A. M., and Chappell, J.: Sediment transport mechanisms on soil-mantled hillslopes, Geology, 29, 683–686, 2001.
Caine, N.: The rainfall intensity: duration control of shallow landslides and debris flows, Geogr. Ann. A., 62, 23–27, 1980.
Carrara, A., Cardinali, M., Guzzetti, F., and Reichenback, P.: GIS technology in mapping landslide hazards, in: Geographical Information System in Assessing Natural Hazard, edited by: Carrara, A. and Guzzetti, F., Kluwer, New York, 107–134, 1995.
Casadei, M., Dietrich, W. E., and Miller, N. L.: Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes, Earth Surf. Proc. Land., 28, 925–950, 2003.
Castranova, T.: Dockerfile for the HydroShare-JupyterHub base image, https://hub.docker.com/r/castrona/hydroshare-jupyterhub/builds/bv9dvs85ootzzgi3z7w2gb/, last access: 29 January 2018.
Catani F., Segoni, S., and Falorni, G.: An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale, Water Resour. Res., 46, W05508, https://doi.org/10.1029/2008WR007450, 2010.
Chen, W., Li, W., Hou, E., Zhao, Z., Deng, N., Bai, H., and Wang, D.: Landslide susceptibility mapping based on GIS and information value model for the Chencang District of Baoji, China, Arab. J. Geosci., 7, 4499–4511, 2014.
Cho, S. E.: Effects of spatial variability of soil properties on slope stability, Eng. Geol., 92, 97–109, 2007.
Chung, C. F., Fabbri, A. G., and van Westen, C. J.: Multivariate regression analysis for landslide hazard zonation, in: Carrara, A. and Guzzetti, F., Geographical Information System in Assessing Natural Hazard, Kluwer, New York, 107–134, 1995.
Crozier, M. J.: Landslides Causes, Consequences, and Environment, Croom Helm, London, 252 pp., 1986.
Crozier, M. J.: Prediction of a rainfall-triggered landslide: A test of the antecedent water status model, Earth Surf. Proc. Land., 24, 825–883, 1999.
Cullen, A. C. and Frey, H. C.: Probabilistic techniques in exposure assessment: a handbook for dealing with variability and uncertainty in models and inputs, Plenum Press, London, 1999.
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., and Pasteris, P. P.: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States, Int. J. Climatol., 28, 2031–2064, 2008 (data available at: PRISM Climate Group: Oregon State University, http://prism.oregonstate.edu).
DiBiase, R. A., Whipple, K. X., Heimsath, A. M., and Ouimet, W.B.: Landscape form and millennial erosion rates in the San Gabriel Mountains, CA, Earth Planet. Sc. Lett., 289, 134–44, 2010.
Dietrich, W. E., Reiss, R., Hsu, J., and Montgomery, D. R.: A process-based model for colluvial soil depth and shallow landsliding using digital elevation data, Hydrol. Process., 9, 383–400, 1995.
DOA-NRCS: Soil Data Viewer software, available at: www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/home/?cid=nrcs142p2_053620 (last access: 23 June 2015), 2015a.
DOA-NRCS: Soil Texture Calculator software, available at: www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167 (last access: 24 June 2015), 2015b.
DOA-NRCS: United States Department of Agriculture, Web Soil Survey, available at: http://websoilsurvey.nrcs.usda.gov/, (last access: 23 January 2017), 2016.
Dou, H. Q., Han, T. C., Gong, X. N., and Zhang, J.: Probabilistic slope stability analysis considering the variability of hydraulic conductivity under rainfall infiltration–redistribution conditions, Eng. Geol., 183, 1–13, 2014.
El-Ramly, H., Morgenstern, N. R., and Cruden, D. M.: Probabilistic slope stability analysis for practice, Can. Geotech. J., 39, 665–683, 2002.
Elsner, M. M., Cuo, L., Voisin, N., Deems, J. S., Hamlet, A. F., Vano, J. A., Mickelson, K. E. B., Lee, S., and Lettenmaier, D. P.: Implications of 21st century climate change for the hydrology of Washington State, Climatic Change, 102, 225–260, https://doi.org/10.1007/s10584-010-9855-0, 2010.
Fawcett, T.: An introduction to ROC analysis, Pattern Recogn. Lett., 27, 861–874, 2006.
Formetta, G., Capparelli, G., and Versace, P.: Evaluating performance of simplified physically based models for shallow landslide susceptibility, Hydrol. Earth Syst. Sci., 20, 4585–4603, https://doi.org/10.5194/hess-20-4585-2016, 2016.
Gabet, E. J. and Dunne, T.: Landslides on coastal sage-scrub and grassland hillslopes in a severe El Nino winter: The effects of vegetation conversion on sediment delivery, Geol. Soc. Am. Bull., 114, 983–990, 2002.
Gabet, E. J., Reichman, O. J., and Seabloom, E. W.: The effects of bioturbation on soil processes and sediment transport, Annu. Rev. Earth Planet. Sc., 31, 249–273, 2003.
Glade, T.: Landslide hazard assessment and historical landslide data – an inseparable couple? In The use of historical data in natural hazard assessments, Springer, the Netherlands, 153–168, 2001.
Ghirotti, M.: The 1963 Vaiont landslide, Italy, in: Landslides: Types, mechanisms and modeling, edited by: Claque, J. J. and Stead, D., Cambridge University Press, NY, 359 pp., 2012.
Godt, J. W. and McKenna, J. P.: Numerical modeling of rainfall thresholds for shallow landsliding in the Seattle, Washington, area, Reviews in Engineering Geology, 20, 121–136, 2008.
Godt, J. W., Schulz, W. H., Baum, R. L., and Savage, W. Z.: Modeling rainfall conditions for shallow landsliding in Seattle, Washington, Reviews in Engineering Geology, 20, 137–152, 2008.
Goode, J. R., Luce, C. H., and Buffington, J. M.: Enhanced sediment delivery in a changing climate in semi-arid mountain basins: Implications for water resource management and aquatic habitat in the northern Rocky Mountains, Geomorphology, 139, 1–15, 2012.
Gorsevski, P. V., Gessler, P. E., Boll, J., Elliot, W. J., and Foltz, R. B.: Spatially and temporally distributed modeling of landslide susceptibility, Geomorphology, 80, 178–198, 2006.
Guthrie, R. H. and Brown, J. K.: Denudation and landslides in coastal mountain watersheds : 10,000 years of erosion, Geogr. Helv., 63, 26–35, https://doi.org/10.5194/gh-63-26-2008, 2008.
Guthrie, R. H. and Evans, S. G.: Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia, Earth Surf. Proc. Land., 29, 1321–1339, 2004.
Hales, T. C., Cole-Hawthorne, C., Lovell, L., and Evans, S. L.: Assessing the accuracy of simple field based root strength measurements, Plant Soil, 372, 553–565, 2013.
Hamlet, A. F., Elsner, M. M., Mauger, G., Lee, S., and Tohver, I.: An Overview of the Columbia Basin Climate Change Scenarios Project: Approach, Methods, and Summary of Key Results, Atmos. Ocean., 51, 392–415, 2013.
Hammond, C., Hall, D., Miller, S., and Swetik, P.: Level 1 stability analysis (LISA), documentation for Version 2.0. USDA, For. Serv., Moscow, ID, Intermountain Res. Sta. Gen. Tech. Rep. INT-285, 1992.
Hanley, J. A. and McNeil, B. J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology, 143, 29–36, 1982.
Haugerud, R. A. and Tabor, R. W.: Geologic map of the North Cascade Range, Washington, US Department of the Interior, US Geological Survey, 29 pp., 2009.
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C.: The soil production function and landscape equilibrium, Nature, 388, 358–361, 1997.
Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics, Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, 2017.
Horsburgh, J. S., Morsy, M. M., Castronova, A. M., Goodall, J. L., Gan, T., Yi, H., Stealey, M. J., and Tarboton, D. G.: HydroShare: Sharing Diverse Environmental Data Types and Models as Social Objects with Application to the Hydrology Domain, J. Am. Water Resour. As., 52, 873–889, https://doi.org/10.1111/1752-1688.12363, 2016.
Hren, M. T., Hilley, G. E., and Chamberlain, C. P.: The relationship between tectonic uplift and chemical weathering rates in the Washington Cascades: field measurements and model predictions, Am. J. Sci., 307, 1041–1063, 2007.
Idaszak, R., Tarboton, D. G., Yi, H., Christopherson, L., Stealey, M. J., Miles, B., Dash, P., Couch, A., Spealman, C., Ames, D. P., and Horsburgh, J. S.: HydroShare – A case study of the application of modern software engineering to a large distributed federally-funded scientific software development project, Chapter 10 in Software Engineering for Science, edited by: Carver, J., Chue Hong, N. P., and Thiruvathukal, G. K., Taylor and Francis Group CRC Press, Boca Raton, FL, 219–236, 2016.
Istanbulluoglu, E.: Modeling catchment evolution: from decoding geomorphic processes signatures toward predicting impacts of climate change, Geography Compass, 3, 1125–1150, 2009.
Istanbulluoglu, E. and Bras, R. L.: Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography, J. Geophys. Res., 110, F02012, https://doi.org/10.1029/2004JF000249, 2005.
Istanbulluoglu, E., Tarboton, D. G., Pack, R. T., and Luce, C. H.: Modeling of the interactions between forest vegetation, disturbances, and sediment yields, J. Geophys. Res.-Earth, 109, F01009, https://doi.org/10.1029/2003JF000041, 2004.
Iverson, R. M.: Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897–1910, 2000.
Iverson, R. M., Reid, M. E., and LaHusen, R. G.: Debris-flow mobilization from landslides, Annu. Rev. Earth Planet. Sc., 25, 85–1, 1997.
Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J., and Xian, G.: A comprehensive change detection method for updating the National Land Cover Database to circa 2011, Remote Sens. Environ., 132, 159–175, https://doi.org/10.1016/j.rse.2013.01.012, 2013.
Kirschbaum, D. B., Adler, R., Hong, Y., Kumar, S., Peters-Lidard, C., and Lerner-Lam, A.: Advances in landslide nowcasting: evaluation of global and regional modeling approach, Environ. Earth. Sci., 66, 1683–1696, 2012.
Kulhawy, F. H. and Mayne, P. W.: Manual on estimating soil properties for foundation design. No. EPRI-EL-6800, Electric Power Research Inst., Palo Alto, CA (USA), Cornell Univ., Ithaca, NY (USA), Geotechnical Engineering Group, 1990.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land surface water and energy fluxes for GSMs, J. Geophys. Res., 99, 14415–14428, 1994.
Livneh B., Rosenberg, E. A., Lin, C., Nijssen, B., Mishra, V., Andreadis, K. M., Maurer, E. P., and Lettenmaier, D. P.: A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions, J. Climate, 26, 9384–9392, 2013.
Livneh, B., Bohn, T. J., Pierce, D. S., Munoz-Ariola, F., Nijssen, B., Vose, R., Cayan, D., and Brekke, L. D.: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and southern Canada 1950–2013, Nature Scientific Data, 5, 150042, https://doi.org/10.1038/sdata.2015.42, 2015.
Lee, S., Ryu, J.-H., and Kim, I.-S.: Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: Case study of Youngin, Korea, Landslides, 4, 327–338, 2007.
Legg, N. T., Meigs, A. J., Grant, G. E., and Kennard, P.: Debris flow initiation in proglacial gullies on Mount Rainier, Washington, Geomorphology, 226, 249–260, 2014.
Lepore, C., Arnone, E., Noto, L. V., Sivandran, G., and Bras, R. L.: Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico, Hydrol. Earth Syst. Sci., 17, 3371–3387, https://doi.org/10.5194/hess-17-3371-2013, 2013.
Lu, N. and Godt, J. W.: Hillslope hydrology and stability, Cambridge University Press, New York, NY, 2013.
Malkawi, A. I. H., Hassan, W. F., and Abdulla, F. A.: Uncertainty and reliability analysis applied to slope stability, Struct. Saf., 22, 161–187, 2000.
Mancini, F., Ceppi, C., and Ritrovato, G.: GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy, Nat. Hazards Earth Syst. Sci., 10, 1851–1864, https://doi.org/10.5194/nhess-10-1851-2010, 2010.
May, C. L., Pryor, B., Lisle, T. E., and Lang, M.: Coupling hydrodynamic modeling and empirical measures of bed mobility to predict the risk of scour and fill of salmon redds in a large regulated river, Water Resour. Res., 45, W05402, https://doi.org/10.1029/2007WR006498, 2009.
McKean, J. A., Dietrich, W. E., Finkel, R. C., Southon, J. R., and Caffee, M. W.: Quantification of soil production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile, Geology, 21, 343–346, 1993.
Miller, D. J.: Coupling GIS with physical models to assess deep-seated landslide hazards, Environ. Eng. Geosci., 1, 263–276, 1995.
Mitchell, S. G. and Montgomery, D. R.: Influence of a glacial buzzsaw on the height and morphology of the Cascade Range in central Washington State, USA, Quaternary Res., 65, 96–107, 2006.
Molnar, P.: Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates?, Annu. Rev. Earth Planet. Sc., 32, 67–89, 2004.
Montgomery, D. R.: Slope distributions, threshold hillslopes, and steady-state topography, Am. J. Sci., 301, 432–454, 2001.
Montgomery, D. R. and Dietrich, W. E.: A Physically Based Model for the Topographic Control on Shallow Landsliding, Water Resour. Res., 30, 1153–1171, 1994.
Montgomery, D. R. and Foufoula-Georgiou, E.: Channel network source representation using digital elevation models, Water Resour. Res., 29, 3925–3934, 1993.
Montrasio, L. and Valentino, R.: Modelling Rainfall-induced Shallow Landslides at Different Scales Using SLIP-Part I, Procedia Engineer., 158, 476–481, 2016.
Moon, S., Chamberlain, C. P., Blisniuk, K., Levine, N., Rood, D. H., and Hilley, G. E.: Climatic control of denudation in the deglaciated landscape of the Washington Cascades, Nat. Geosci., 4, 469–473, 2011.
Morsy, M. M., Goodall, J. L., Castronova, A. M., Dash, P., Merwade, V., Sadler, J. M., Rajib, M. A., Horsburgh, J. S., and Tarboton, D. G.: Design of a metadata framework for environmental models with an example hydrologic application in HydroShare, Environ. Modell. Softw., 93, 13–28, https://doi.org/10.1016/j.envsoft.2017.02.028, 2017.
Naudet, V., Lazzari, M., Perrone, A., Loperte, A., Piscitelli, S., and Lapenna, V.: Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, southern Italy), Eng. Geol., 98, 156–167, 2008.
Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., and Jaedicke, C.: Global landslide and avalanche hotspots, Landslides, 3, 159–173, 2006.
Nicótina, L., Tarboton, D. G., Tesfa, T. K., and Rinaldo, A.: Hydrologic controls on equilibrium soil depths, Water Resour. Res., 47, W04517, https://doi.org/10.1029/2010WR009538, 2011.
Nimmo, J. R.: Unsaturated Zone Flow Processes, in: Encyclopedia of HydrologicalSciences: Part 13 – Groundwater, edited by: Anderson, M. G. and Bear, J., Chichester, UK, Wiley, 4, 2299–2322, https://doi.org/10.1002/0470848944.hsa161, 2005.
Okimura, T.: Prediction of slope failure using the estimated depth of the potential failure layer, J. Natural Disaster Sci., 11, 67–89, 1989.
O'loughlin, E. M.: Prediction of surface saturation zones in natural catchments by topographic analysis, Water Resour. Res., 22, 794–804, 1986.
Pack, R. T., Tarboton, D. G., and Goodwin, C. N.: The SINMAP approach to terrain stability mapping, in: Proceedings of the 8th international congress of the international association of engineering geology and the environment, Vancouver, British Columbia, Canada, 21–25 September, vol. 2, AA Balkema, Rotterdam, 1157–1165, 1998.
Pack, R. T., Tarboton, D. G., and Goodwin, C.: SINMAP 2.0-A Stability Index Approach to Terrain Stability Hazard Mapping, User's Manual, available at: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1015&context=cee_facpub (last access: 28 January 2018), 2005.
Page, M. J., Trustrum, N. A., and DeRose, R. C.: A high-resolution record of storm-induced erosion from lake sediments, New Zealand, J. Paleolimnol., 11, 333–348, 1994.
Pardeshi, S. D., Autade, S. E., and Pardeshi, S. S.: Landslide hazard assessment: recent trends and techniques, SpringerPlus, 2, 523, https://doi.org/10.1186/2193-1801-2-523, 2013.
Pelletier, J. D. and Rasmussen, C.: Geomorphically based predictive mapping of soil thickness in upland watersheds, Water Resour. Res., 45, W09417, https://doi.org/10.1029/2008WR007319, 2009.
Pelletier, J. D., Barron-Gafford, G. A., Breshears, D. D., Brooks, P. D., Chorover, J., Durcik, M., Harman, C. J., Huxman, T. E., Lohse, K. A., Lybrand, R., and Meixner, T.: Coevolution of nonlinear trends in vegetation, soils, and topography with elevation and slope aspect: a case study in the sky islands of southern Arizona, J. Geophys. Res.-Earth, 118, 741–58, 2013.
Pollen, N. and Simon, A.: Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model, Water Resour. Res., 41, W07025, https://doi.org/10.1029/2004WR003801, 2005.
Pollock, M. M.: Biodiversity, in: River Ecology and Management: Lessons from the Pacific Coastal Ecoregion, edited by: Naiman, R. J. and Bilby, R. E., Springer-Verlag, New York, 430–452, 1998.
Raia, S., Alvioli, M., Rossi, M., Baum, R. L., Godt, J. W., and Guzzetti, F.: Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach, Geosci. Model Dev., 7, 495-514, https://doi.org/10.5194/gmd-7-495-2014, 2014.
Regmi, N. R., Giardino, J. R., McDonald, E. V., and Vitek, J. D.: A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA, Landslides, 11, 247–262, 2014.
Reiners, P. W., Ehlers, T. A., Garver, J. I., Mitchell, S. G., Montgomery, D. R., Vance, J. A., and Nicolescu, S.: Late Miocene exhumation and uplift of the Washington Cascade Range, Geology, 30, 767–770, 2002.
Reiners, P. W., Ehlers, T. A., Mitchell, S. G., and Montgomery, D. R.: Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades, Nature, 426, 645–647, 2003.
Richards, L. A.: Capillary conduction of liquids in porous mediums, Physics, 1, 318–333, 1931.
Riedel, J. and Probala, J.: Mapping ecosystems at the landform scale in Washington state, Park Science, 23, 37–42, 2005.
Riedel, J., Brady, S., Dorsch, S., and Wegner, J.: Geomorphology of the Thunder Creek Watershed: Landform Mapping at North Cascades National Park Service Complex, Washington, Natural Resource Technical Report NPS/NCCN/NRTR-2012/567, National Park Service, Fort Collins, Colorado, 2015.
Roe, G. H.: Orographic Precipitation, Annu. Rev. Earth Planet. Sc., 33, 645–671, 2005.
Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology, Water Resour. Res., 35, 853–870, 1999.
Roering, J. J., Schmidt, K. M., Stock, J. D., Dietrich, W. E., and Montgomery, D. R.: Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range, Can. Geotech. J., 40, 237–253, 2003.
Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E., Montgomery, D. R., and Schaub, T.: The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range, Can. Geotech. J., 38, 995–1024, 2001.
Schwarz, M., Giadrossich, F., and Cohen, D.: Modeling root reinforcement using a root-failure Weibull survival function, Hydrol. Earth Syst. Sci., 17, 4367–4377, https://doi.org/10.5194/hess-17-4367-2013, 2013.
Selby, M. J.: Hillslope Materials and Processes, 2nd Edn., Oxford University Press, Oxford, UK, 1993.
Sidle, R. C.: Relative importance of factors influencing landsliding in coastal Alaska, in: 21st Annual engineering geology and soils engineering symposium, University of Idaho, Moscow, ID, 311–325, 1984.
Sidle, R. C.: A conceptual model of changes in root cohesion in response to vegetation management, J. Environ. Qual., 20, 43–52, 1991.
Sidle, R. C.: A theoretical model of the effects of timber harvesting on slope stability, Water Resour. Res., 28, 1897–1910, 1992.
Sidle, R. C. and Ochiai, H.: Landslides: processes, prediction, and land use, Water Resources Monogram 18, American Geophysical Union, Washington DC, 2006.
Sidle, R. C., Noguchi, S., Tsuboyama, Y., and Laursen, K.: A conceptual model of preferential flow systems in forested hillslopes: Evidence of self-organization, Hydrol. Process., 15, 1675–1692, 2001.
Simoni, S., Zanotti, F., Bertoldi, G., and Rigon, R.: Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS, Hydrol. Process., 22, 532–545, 2008.
Strenk, P. M.: Evaluation of analytical procedures for estimating seismically induced permanent deformations in slopes, Doctoral Thesis, Dexel University, Philadelphia, PA, 2010.
Stock, J. and Dietrich, W. E.: Valley incision by debris flows: Evidence of a topographic signature, Water Resour. Res., 39, 1089, https://doi.org/10.1029/2001WR001057, 2003.
Strauch, R., Istanbulluoglu, E., Nudurupati, S. S., and Bandaragoda, C.: Regional landslide hazard using Landlab – NOCA Data, HydroShare, https://doi.org/10.4211/hs.a5b52c0e1493401a815f4e77b09d352b, 2017.
Strauch, R., Istanbulluoglu, E., Nudurupati, S. S., Bandaragoda, C., Gasparini, N., and Tucker, G.: A hydroclimatological approach to predicting regional landslide probability using Landlab: Model code and Users Manual, HydroShare, https://doi.org/10.4211/hs.27d34fc967be4ee6bc1f1ae92657bf2b, 2018.
Tarboton, D. G., Idaszak, R., Horsburgh, J. S., Heard, J., Ames, D., Goodall, J. L., Band, L., Merwade, V., Couch, A., Arrigo, J., Hooper, R., Valentine, D., and Maidment, D.: HydroShare: Advancing Collaboration through Hydrologic Data and Model Sharing, in: Proceedings of the 7th International Congress on Environmental Modelling and Software, edited by: Ames, D. P., Quinn, N. W. T., and Rizzoli, A. E., San Diego, California, USA, International Environmental Modelling and Software Society (iEMSs), http://www.iemss.org/sites/iemss2014/proceedings.php (last access: 26 January 2018), 2014.
Tarolli, P. and Dalla Fontana, G.: Hillslope-to-valley transition morphology: new opportunities from high resolution DTMs, Geomorphology, 113, 47–56, 2009.
Tarolli, P. and Tarboton, D. G.: A new method for determination of most likely landslide initiation points and the evaluation of digital terrain model scale in terrain stability mapping, Hydrol. Earth Syst. Sci., 10, 663–677, https://doi.org/10.5194/hess-10-663-2006, 2006.
Tarolli, P., Borga, M., and Dalla Fontana, G.: Analysing the influence of upslope bedrock outcrops on shallow landsliding, Geomorphology, 93, 186–200, 2008.
Taylor, F. and Brabb, E. E.: Map showing the status of landslide inventory and susceptibility mapping in California (No. 86-100), US Geological Survey, 1986.
Tesfa, T. K., Tarboton, D. G., Chandler, D. G., and McNamara, J. P.: Modeling soil depth from topographic and land cover attributes, Water Resour. Res., 45, W10438, https://doi.org/10.1029/2008WR007474, 2009.
Tobutt D. C.: Monte Carlo simulation methods for slope stability, Comput. Geosci., 8, 199–208, 1982.
Tucker, G. E. and Bras, R. L.: Hillslope processes, drainage density, and landscape morphology, Water Resour. Res., 34, 2751–2764, 1998.
Tucker, G. E. and Slingerland, R.: Drainage basin responses to climate change, Water Resour. Res., 33, 2031–2047, 1997.
Tucker, G. E., Hobley, D. E. J., Hutton, E., Gasparini, N. M., Istanbulluoglu, E., Adams, J. M., and Nudurupati, S. S.: CellLab-CTS 2015: continuous-time stochastic cellular automaton modeling using Landlab, Geosci. Model Dev., 9, 823–839, https://doi.org/10.5194/gmd-9-823-2016, 2016.
United States Department of the Interior, National Park Service (DOI-NPS): Foundation Document, North Cascades National Park Complex, Washington, available at: https://www.nps.gov/noca/learn/management/upload/North-Cascades-NP-Complex-Foundation-Document_small.pdf (last access: 23 January 2017), 2012.
United States Department of Agriculture, Natural Resources Conservation Service (DOA-NRCS), and United States Department of the Interior, National Park Service (DOI-NPS): Soil survey of North Cascades National Park Complex, Washington, https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/washington/NorthCascadesWA2012/NOCA_WA.pdf (last access: 26 January 2018), 2012.
United States Geological Survey (USGS): National Elevation Data last modified 6 March 2014, National Map Viewer, https://viewer.nationalmap.gov/launch/, last access: 24 November 2014a.
United States Geological Survey (USGS): National Land Cover Data (NLCD) version 31 March 2014, National Map Viewer, https://viewer.nationalmap.gov/launch/, last access: 25 November 2014b.
United States Geological Survey (USGS): Shuttle Radar Topography Mission (STRM) 1 arc-second global, Joint NASA-NGA partnership, data distributed and archived by USGS EROS Data Center, available at: https://lta.cr.usgs.gov/SRTM1Arc, last access: 26 April 2017.
van Beek, L. P. H.: Assessment of the influence of changes in land use and climate on landslide activity in a Mediterranean environment, Doctoral dissertation, Nederlandse Georafische Studies, Universiteit Utrecht, 294 pp., 2002.
van Westen, C. J., van Asch, T. W., and Soeters, R.: Landslide hazard and risk zonation – why is it still so difficult?, B. Eng. Geol. Environ., 65, 167–184, 2006.
Yin, D., Liu, Y. Y., Padmanabhan, A., Terstriep, J., Rush, J., and Wang, S.: A CyberGIS-Jupyter Framework for Geospatial Analytics at Scale, PEARC17 Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact, 18, https://doi.org/10.1145/3093338.3093378, 2017.
Wayland, N., Stimberis, J., Zagrodnik, J., Mass, C. F., and Lundquist, J. D.: Improving Simulations of Precipitation Phase and Snowpack at a Site Subject to Cold Air Intrusions: Snoqualmie Pass, WA, J. Geophys. Res.-Atmos., 121, 9929–9942, https://doi.org/10.1002/2016JD025387, 2016.
Wartman, J., Montgomery, D. R., Anderson, S. A., Keaton, J. R., Benoît, J., dela Chapelle, J., and Gilbert, R.: The 22 March 2014 Oso landslide, Washington, USA, Geomorphology, 253, 275–288, 2016.
Wu, W. and Sidle, R. C.: A Distributed Slope Stability Model for Steep Forested Watersheds, Water Resour. Res., 31, 2097–2110, 1995.
Zizioli, D., Meisina, C., Valentino, R., and Montrasio, L.: Comparison between different approaches to modeling shallow landslide susceptibility: a case history in Oltrepo Pavese, Northern Italy, Nat. Hazards Earth Syst. Sci., 13, 559–573, https://doi.org/10.5194/nhess-13-559-2013, 2013.
Short summary
We develop a model of annual probability of shallow landslide initiation triggered by soil water from a hydrologic model. Our physically based model accommodates data uncertainty using a Monte Carlo approach. We found elevation-dependent patterns in probability related to the stabilizing effect of forests and soil and slope limitation at high elevations. We demonstrate our model in Washington, USA, but it is designed to run elsewhere with available data for risk planning using the Landlab.
We develop a model of annual probability of shallow landslide initiation triggered by soil water...