Articles | Volume 6, issue 1
https://doi.org/10.5194/esurf-6-49-2018
https://doi.org/10.5194/esurf-6-49-2018
Research article
 | 
07 Feb 2018
Research article |  | 07 Feb 2018

A hydroclimatological approach to predicting regional landslide probability using Landlab

Ronda Strauch, Erkan Istanbulluoglu, Sai Siddhartha Nudurupati, Christina Bandaragoda, Nicole M. Gasparini, and Gregory E. Tucker

Related authors

A new approach to mapping landslide hazards: a probabilistic integration of empirical and physically based models in the North Cascades of Washington, USA
Ronda Strauch, Erkan Istanbulluoglu, and Jon Riedel
Nat. Hazards Earth Syst. Sci., 19, 2477–2495, https://doi.org/10.5194/nhess-19-2477-2019,https://doi.org/10.5194/nhess-19-2477-2019, 2019
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Testing floc settling velocity models in rivers and freshwater wetlands
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
Earth Surf. Dynam., 12, 1267–1294, https://doi.org/10.5194/esurf-12-1267-2024,https://doi.org/10.5194/esurf-12-1267-2024, 2024
Short summary
River suspended-sand flux computation with uncertainty estimation using water samples and high-resolution ADCP measurements
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024,https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Barchan swarm dynamics from a Two-Flank Agent-Based Model
Dominic T. Robson and Andreas C. W. Baas
Earth Surf. Dynam., 12, 1205–1226, https://doi.org/10.5194/esurf-12-1205-2024,https://doi.org/10.5194/esurf-12-1205-2024, 2024
Short summary
A landslide runout model for sediment transport, landscape evolution, and hazard assessment applications
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024,https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Tracking slow-moving landslides with PlanetScope data: new perspectives on the satellite's perspective
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024,https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary

Cited articles

Abbaszadeh, M., Shahriar K., Sharifzadeh M., and Heydari M.: Uncertainty and re-liability analysis applied to slope stability: a case study from Sungun copper mine, Geotechnical and Geological Engineering, 29, 581–596, 2011.
Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu, E.: The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds, Geosci. Model Dev., 10, 1645–1663, https://doi.org/10.5194/gmd-10-1645-2017, 2017.
Alvioli, M., Guzzetti, F., and Rossi, M.: Scaling properties of rainfall induced landslides predicted by a physically based model, Geomorphology, 213, 38–47, 2014.
Anagnostopoulos, G. G., Fatichi, S., and Burlando, P.: An advanced process-based distributed model for the investigation of rainfall-induced landslides: The effect of process representation and boundary conditions, Water Resour. Res., 51, 7501–7523, 2015.
Arnone, E., Dialynas, Y. G., Noto, L. V., and Bras, R. L.: Parameter Uncertainty in Shallow Rainfall-triggered Landslide Modeling at Basin Scale: A Probabilistic Approach, Proced. Earth Plan. Sc., 9, 101–111, 2014.
Download
Short summary
We develop a model of annual probability of shallow landslide initiation triggered by soil water from a hydrologic model. Our physically based model accommodates data uncertainty using a Monte Carlo approach. We found elevation-dependent patterns in probability related to the stabilizing effect of forests and soil and slope limitation at high elevations. We demonstrate our model in Washington, USA, but it is designed to run elsewhere with available data for risk planning using the Landlab.