Articles | Volume 6, issue 4
https://doi.org/10.5194/esurf-6-903-2018
https://doi.org/10.5194/esurf-6-903-2018
Research article
 | 
10 Oct 2018
Research article |  | 10 Oct 2018

Initial insights from a global database of rainfall-induced landslide inventories: the weak influence of slope and strong influence of total storm rainfall

Odin Marc, André Stumpf, Jean-Philippe Malet, Marielle Gosset, Taro Uchida, and Shou-Hao Chiang

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Odin Marc on behalf of the Authors (06 Jul 2018)  Author's response    Manuscript
ED: Publish subject to technical corrections (17 Sep 2018) by Michael Krautblatter
ED: Publish subject to technical corrections (17 Sep 2018) by Andreas Lang(Editor)
AR by Odin Marc on behalf of the Authors (21 Sep 2018)  Author's response    Manuscript
Download
Short summary
Rainfall-induced landslides cause significant damage and fatality worldwide, but we have few datasets constraining the impact of individual storms. We present and analyze 8 landslide inventories, with >150 to >150 00 landslides, comprehensively representing the landslide population caused by 8 storms from Asia and the Americas. We found that the total storm rainfall is a major control on total landsliding, landslide size, and that storms trigger landslides on less steep slopes than earthquakes.